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Background

• Hawaiian Electric expects Maui to be the first 
large island to be capable of operating with 
100% inverter-based power resources 

– 2020 peak: ~89.5% IBR (DER and wind)
– 100% IBR expected to possible for certain hours 

by 2023, from an energy balance perspective

• Maui would be the first interconnected power 
system of its size (~200 MW peak) with highly 
distributed utility-scale generation and 69 kV 
voltage levels to reach this milestone

• Grid-forming control capability required for 
Stage 2 PV-BESS plants (~2023 interconnection)

• Technical hurdles need to be overcome to 
ensure grid stability on the shortest time scales

• NREL currently performing EMT study (PSCAD)
• Electranix performing system impact study

• These studies are just steps in a complex due-diligence process working towards operating Maui in an 
unprecedented way
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PSCAD model development/validation

• Developed EMT (PSCAD) model of Maui, parallelized on 30 cores*
• Validated against HECO field event data and PSSE model [1]
• Simulating faults, contingencies under various grid and IBR configurations

*Thank you to 
Electranix for 
providing E-
TRAN Plus

3/2/2017 Event: 
Line-ground fault 

induces 
generation trip

[1] R. W. Kenyon, B. Wang, A. Hoke, J. Tan, B. Hodge, “Validation of Maui PSCAD Model: Motivation, Methodology, and Lessons Learned,” IEEE NAPS, April 2021.
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EMT Simulation Base Case: “Scenario S1”

S1: 2023 
DayMin (pre 
Stage II RFP)

2023 DayMin case: ~96% IBR
• Two “Stage 1” HPPs online:

• Kuihelani (60 MW)
• Paeahu (15 MW)
• GFM capability not required (but may be available?)

• “Stage 2” HPPs not yet online (expected later in 2023).  GFM capability required.
• Inertia: 370 MVA·s;  Inertia constant H = 0.97 s (~1 order of magnitude below typical systems)

Total Load Total Gen Dist. PV 
“rooftop”

Existing large PV
2 plants

Wind
4 plants

Paeahu
PV-BESS HPP

Kuihelani
PV-BESS HPP

Sync Gens
3 generators

144.6 146.0 104.3 5.3 24.9 0 5.7 5.7

Capacities, MW
Note: We use “inertia” as a proxy metric 

for online synchronous machines
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EMT Simulation Scenarios

Type III Wind 3.950.6 MW; 
Reduce DER PV accordingly

S1: 2023 
DayMin (pre 
Stage II RFP)

S2: Low 
inertia

S3: Very low 
inertia (KPP 

SCs only)

S4: Very low 
inertia (1 

MPP SC only)

S5: No SCs

S6: No SGs

S7: No utility 
inertia

S8: High DPV

S9: High 
Wind

Replace most wind with DER PV: 
Type III Wind 3.90 MW, Type IV 

Wind 2110.5 MW

Remove all 3 SGs 
(M4, M5, M6)

Remove 2 SCs 
(M17, M19)

Remove 2 more SCs 
(M14, M16)

Remove both KPP SCs 
(K3, K4); Remove M16 SC

SC: Synchronous Generator
SC: Synchronous Condenser
MPP: Maalaea Power Plant
KPP: Kahului Power Plant
DER PV: Distribution-connected PV

*Inertia constant calculation 
includes IBR capacity in MVA base

Remove remaining SC (M14) Remove remaining 
SCs (K3, K4) 

Remove all 3 SGs 

Scenario Inertia 
(MVA·s)

Inertia 
constant 
“H” (s)*

S1, S8, S9 370 0.97

S2 244 0.76

S3 124 0.48

S4 112 0.43

S5 53 0.23

S6 322 0.89

S7 5.3 0.03



Simulated Events

Event Contingency Notes
E1 A three-phase fault on bus 97 (KWP) and cleared in 5 cycles. Fault at a low short-circuit ratio (SCR) bus
E2 A three-phase fault on bus 1203 (AWP) and cleared in 5 cycles. Fault at a low SCR bus
E3 A three-phase fault on bus 35 (Kihei) and cleared in 5 cycles. Fault at a low critical-clearing-time (CCT) bus
E4 A three-phase fault on bus 39 (Maalaea) and cleared in 5 cycles. Fault at a low CCT bus
E5 A three-phase fault on bus 401 (Puunene) and cleared in 5 cycles. Fault at a low CCT bus
E6 A three-phase fault on bus 823 (Puuk B) and cleared in 5 cycles. Fault at a low CCT bus
E7 A three-phase fault on bus 850 (Mahina A) and cleared in 5 cycles. Fault at a low CCT bus
E8 Loss of the largest generator (21 MW wind plant)

E9 Loss of line 39-35 (Maalaea-Kihei) A critical contingency for Maui system which may lead
to voltage instability

E10 Loss of 4 BTM hydro units Reduces inertia (to zero in S7)
E11 Loss of synchronous condenser (SC) K4 is lost upon fault in S3; M14 is lost for all other

scenarios except for S5 and S7 where there is no SC

Note: Events simulated with UFLS and DER trip settings disabled.  Intent is to focus on system 
transient and dynamic stability.
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PSSE-PSCAD Comparison Summary
Scenarios

Ev
en

ts

• In some very high IBR scenarios, PSSE either didn’t start (S7), didn’t complete (S3-5, S8-9), or missed key control interactions (S4-5)
• Some very high IBR, low SC scenarios (S4, S5, S7) are fundamentally unstable, at least with conventional grid-following inverters 
• Zero sync gen scenario (S6) is numerically stable in PSSE and physically stable in PSCAD. (Significant level of SCs present)
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Event E1 (Fault at low SCR bus): Frequency

Scenario S1 (Base DayMin) Scenario S2 (Low Inertia) Scenario 3  (Very Low Inertia)

• Scenario 1 --> Scenario 3: reduced inertia and fewer voltage sources
• Exacerbated oscillatory modes in S3, both in damping and quantity of modes

• PSSE simulation for Scenario 3 is numerically unstable shortly after the fault

PSCAD: MPP is a PLL-measured frequency. PSCAD: M4 is a generator shaft rotation speed-derived frequency



NREL    |    10

E1: Aggregate Distributed Generation Output

• Scenario 1 --> Scenario 3: reduced inertia and fewer voltage sources
• Increased magnitude and duration of active power output oscillations of DG
• Appears to be phase-locked loop or inner P/Q/I control loop instability, due to 

fewer voltage sources on network

Scenario 2 Scenario 3Scenario S1 (Base DayMin) Scenario S2 (Low Inertia) Scenario 3  (Very Low Inertia)
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E1: Selected 69 kV RMS Voltages

• Scenario 1 --> Scenario 3: reduced inertia and fewer voltage sources
• Clear increase in voltage instability with fewer voltage sources on the system
• Substantial tripping of DG would have occurred in S3, but this functionality was 

disabled to enable an analytic comparison between scenarios

Scenario 1 Scenario 2 Scenario 3Scenario S1 (Base DayMin) Scenario S2 (Low Inertia) Scenario 3  (Very Low Inertia)
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Damping ratio: A metric for grid stability

• Damping ratios of oscillatory modes estimated for E1 in scenarios S1-S5. 
• Inertia calculated based on online SGs and SCs; proxy for total voltage sources online

S1 S2 S3 S4 S5

Low freq
mode

0.44 Hz 
(25.4%)

0.50 Hz 
(16.0%)

0.64 Hz 
(5.03%)

0.65 Hz 
(-0.46%)

1.77 Hz 
(-1.55%)

Med freq
mode

5.82 Hz 
(0.33%)

5.94 Hz 
(0.04%)

6.00 Hz 
(0.21%)

5.67 Hz 
(0.45%) N/A

Inertia 
(MVA·s) 365 239 119 108 48
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• Reduced inertia  reduced damping (less stable)
• S3 and S4 have almost same inertia but in different locations  location matters

• But, see later simulations with GFM controls….
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Event E8 – Loss of Generation: Frequency

Scenario 1 Scenario S6: No SGs

• Scenario S1 versus Scenario S3: reduced inertia and fewer voltage sources
• Lower nadir, larger ROCOF, as expected
• No voltage perturbation, yet large oscillations still present in PLL-derived frequency

• Scenario S6: all (3) synchronous generators taken offline
• Successful operation with all primary response from GFL devices

Scenario 3

PSCAD: MPP is a PLL-measured frequency. PSCAD: M4 is a generator shaft rotation speed derived frequency

Scenario S1 (Base DayMin) Scenario S3 (Very Low Inertia)
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Influence of Inner Control Loops: Active Power

• DER totals (104 MW, of 146 MW). 180 aggregate units. Comparing three levels of control detail:
• Ideal current source implementation (similar to PSSE control)
• Power loops modeled (current loops ideal, no output filter)
• Full model with power and current loops
• Other GFL devices maintain inner loops/output filter

• Conclusion: Modeling of inner loops is critical for understanding high-IBR stability issues

Scenario 1 Scenario 2 Scenario 3Scenario S1 (Base DayMin) Scenario S2 (Low Inertia) Scenario 3  (Very Low Inertia)
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Influence of Inner Control Loops: Frequency

Scenario 1 Scenario 2 Scenario 3

• As expected from large swings in DER active power, large swings in frequency
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Stabilizing with Grid Forming (GFM) Inverters

• Multi-loop droop control inverter model developed in PSCAD
• PSCAD models are available to public (https://github.com/NREL/PyPSCAD )
• DC side dynamics are not included, under the assumption of a BESS input source 

with response dynamics fast enough not to influence power system dynamics

• Substituted GFM inverter for some IBRs in previously unstable cases:
• Replaced G2 (30 MVA) of the Kuihelani HPP (leaving G4 as a GFL)

• Significant improvement in S3 system response
• Stabilizes S4 and S5 as well

• S7 (no synchronous machines) is stable with two GFMs (G2 and G4, 60 MVA total)

• Only looked at generation loss; comparing Scenario S3 results
• Simulations of fault scenarios with GFMs in progress

https://github.com/NREL/PyPSCAD
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S3 E8 (Loss of largest generator) - Frequency

G2 as a GFL G2 as a GFM

• Substantial increase in primary damping; major reduction in faster modes
• Nadir is raised significantly (58.7 to 59.5 Hz), and ROCOF improved (despite no 

increase in inertia
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G2 as a GFL G2 as a GFM

• Substantial increase in DER output stability (with no change in DER controls)
• GFM control doesn't add to system inertia  the presence of voltage sources is 

the primary driver in increased stability

S3 E8: Aggregate DER PV Output
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S3 E8: Selected Voltages 

G2 as a GFL G2 as a GFM

• Single GFM mitigates severe voltage oscillations throughout system



NREL    |    20

S3 E8: Kuihelani HPP Output Power
All IBRs as GFL G2 as a GFM; all others GFL

• GFL (green) device requires a change in frequency as a signal to adjust power export. Note 
that the power injection is itself a type of disturbance

• As a GFM (red), active power is extracted by the network from the device due to the 
operation as a voltage source maintaining phase angle and hence frequency. (Power isn't 
injected, it's extracted).  GFM control inherently provides FFR (among other things).
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S7 E8: No Synchronous Resources Online
Frequency GFMs: G2 and G4 Paeahu HPP: FFR

Wind BESS: FFR

• System is stable with only two GFM; no other voltage sources
• Faster oscillation modes are absent
• Frequency reaches steady state sooner than with 

synchronous resources present
• Large ROCOF, very short. How are DERs measuring?
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Summary of Maui EMT findings to date

• Phasor-domain simulations face numerical instability and miss key system dynamics in 
some low-inertia scenarios

• Modeling inverter control loops (power and current) of GFL devices is required to 
detect faster modes in the system response under very weak grid conditions

• Study indicates that the presence of synchronous generators is not necessary for 
stability; system is stable with GFL and synchronous condensers

• Presence of a single GFM (30 MVA) at Kuihelani greatly increases damping, ROCOF, and 
nadir of primary frequency mode

• Stabilizes faster modes
• Mitigates instability of remaining GFLs
• Presumably need two GFMs for N-1 reliability

• Presence of two GFMs (60 MVA total) stabilizes zero-inertia system 

• Note: These simulations focus on transient stability and do not consider other topics 
necessary for 100% IBR operation, e.g. protection, reserves, resource adequacy…
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Questions and hypotheses

• Can we predict (without EMT simulation) where stability boundaries lie? Existing 
metrics don’t adequately capture stability concerns because they don’t account for 
synchronous condensers or GFM contributions.  Perhaps a new system-wide metric 
can capture this?

• SNSP or “% IBR” neglect SC and GFM
• Inertia constant, H, neglects GFM IBR.  (And for high IBR systems, H should 

include IBR capacity in denominator, not just total machine MVA; or just use total 
load as denominator?)

• Hypotheses: 
• The stabilizing effect of a GFM depends on its capacity, not its dispatch level.  

(Could even be in charging mode)
• SC and SG are roughly equal in transient stabilizing effects
• A GFL IBR providing FFR has some stabilizing effect: > 0, but << GFM

• Are equal capacities of GFM IBR and SC roughly equal in stabilizing effect? 
• Are all GFM IBR variations equal in their stabilizing effects?  (Probably not)
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More Questions

• These simulations used generic GFL and GFM models.  Will the results hold for vendor-
specific models?  What about actual inverter hardware?

• What levels of current, power, and energy headroom are needed for GFMs to stabilize 
a given system?

• What do the models miss that will be seen in field operational experience?
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Next steps

Verify with actual HPP models Validate in PHIL

Controlled Grid Interface

13.2 kV

Scheduling Model 
(Control room)

Plant-
level 

controller

MIDAS Server

Real-time 
Maui Grid

RTDS

Communication

PV+BESS
(60MW/240MWh)

Hardware Testing Facility

Point of Interconnection

Grid

5-min Load, 
Wind, PV profiles

Weather Model M
od

bu
s 

C
lie

nt

Second Level Load, 
Wind, PV profiles

M
od

bu
s 

Se
rv

er

AGC HPP

TCP/IP via LAN
5-min setpoint update 

 from RTED 

1-sec profiles

System Condition 
from RTDS

BESS Controller

1MW/1MWh BESS

430 kW PV array
(First Solar) 

PV Controller

Electrical connection

PV BESS

Simulated 
voltage signal

Measured 
current signal

• Where possible, check simulation results 
using plant developers’ model

Add distribution model

• Add single reduced distribution feeder to 
PSCAD model

• Include single-phase inverter models
• Investigate any changes in dynamics 

relative to substation-level aggregation
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