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1  Introduction 
The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) hosts the world's 
most energy-efficient High-Performance Computing (HPC) data center (NREL, 2018). The data center 
is located inside the Energy Systems Integration Facility (ESIF), a 17,000 m2 research facility on 
NREL's campus in Golden, Colorado that was rated Platinum by the Leadership in Energy and 
Environmental Design (LEED) certification program for its energy efficient design and construction. 
The ESIF contains integrated energy laboratory space, a hydrogen storage facility, office space, state-of-
the-art 3D visualization rooms, and the HPC data center. A holistic approach was taken to design the 
930 m2 data center, with a goal to capture waste heat and to facilitate the efficient use of energy 
resources.   

Data centers are energy-intensive facilities that typically rely on air circulation to remove heat generated 
by the IT equipment. While this is effective in cooling the IT equipment, it requires a significant amount 
of facility energy to both cool the ambient air and to run fans that distribute this cool air to the individual 
components.  With data center energy consumption nationally over 70 billion kWh per year 
(representing almost 2% of energy consumption in the United States) and increasing by roughly 4% 
annually (17, Masanet et al., 2020), there is a clear need to improve data center energy efficiency in 
order to drive down energy consumption in these data centers. In fact, data center efficiency has steadily 
increased since 2007.  The energy efficiency is often measured by the power use effectiveness (PUE), 
which is the ratio of all energy required to run the data center to the energy required to run just the IT 
equipment, with values close to 1 that indicate better energy efficiency. Improvements in data center 
designs have led industry average PUE values across both water- and air-cooled systems together to fall 
from 2.5 in 2007 to 1.67 in 2019 (17). 

NREL’s ESIF data center accomplishes significantly greater facility energy consumption reduction 
compared to other data centers nationally by moving away from a traditional design with rows of air-
cooled components and moving to component-level warm-water liquid cooling that efficiently removes 
heat from the data center.  The waste heat captured from IT equipment can be reused within ESIF or 
rejected to the atmosphere without any mechanical cooling (which eliminates expensive and inefficient 
chillers).  This design has allowed the ESIF data center to maintain a trailing 12-month average PUE of 
1.06 or better since opening in 2013, indicating that on average only 6% of the energy entering the data 
center is consumed by the facility to deliver power and cooling to IT equipment. This is a significant 
improvement over the PUE average of data centers nationwide. In fact, NREL’s ESIF data center is also 
distinguished from other data centers in the United States by its reuse of energy (e.g., heat) generated by 
the data center for heating of the ESIF which accounted for 10.5% of annual IT equipment heat rejection 
during the first year of operation (1717).  The ESIF data center was also designed to reduce water use 
through utilization of a thermosyphon hybrid cooling system which reduced water consumption by 7.9 
million liters over a 2-year period from August 2016 to August 2018.    

In addition to energy efficiency, as we move to Exascale systems, a related concern is data center 
resiliency. HPC data centers such as the one at NREL's ESIF will increasingly need to rely on 
automation to keep pace with exascale growth in compute capability and to manage and optimize the 
data center environment and facility resources. Artificial intelligence (AI) and machine learning (ML) 
approaches provide the means to improve HPC data center efficiency (energy, operational, and 
managerial efficiency) and resiliency by learning historical trends and training models to operate on 
real-time data collected from both IT and facilities sources. The goal of coupled improvement of data 
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center resiliency and energy efficiency through automated data collection and AI has led to a multi-year, 
multi-staged collaboration between NREL and Hewlett-Packard Enterprise's Advanced Technology 
Group, referred to as Artificial Intelligence for Data Center Operations (AIOps). The extended efforts 
within the AIOps project include a common goal of building capabilities for an advanced smart facility 
and demonstration of data collection and AI modeling techniques in the ESIF data center.  

Given the complexity of a system such as the ESIF data center, building data-driven tools for monitoring 
and operating the system requires a large variety and quantity of sensors to adequately capture the 
computing facility and related IT energy use data.  NREL’s set of sensors measure not only power 
consumption from IT equipment, but also metrics about network use, storage, various system 
components (e.g., temperature, pressure, flow rate, valve states, fan speeds) internal to the data center, 
and external environmental conditions.  Through this ongoing effort to build an advanced smart facility, 
over one million metrics are recorded per minute using state-of-the-art streaming data architecture and 
software to capture and understand the state of the system in real time.  

This streaming data platform allows for innovation through the development of data-driven analytics 
applications that support maintenance and operation of the system. Of particular importance to data 
center operations is the implementation of cooling system control algorithms to help keep air and water 
temperatures within appropriate operational ranges, anomaly detection algorithms to identify potential 
thermal leaks or device failures, and optimization algorithms to maximize the overall resiliency and 
efficiency of the data center. Nearly every device (motors, fans, valves) can be set to control the energy 
efficiency of the overall system, and the AIOps project seeks to build capabilities that utilize data and 
device controls that can eventually lead to automated data center operations.  

This technical report describes progress and findings on the first two years of the AIOps collaboration, 
in particular: 

• Details of the overall streaming data and software architecture that have been developed to 
support the capture and accessibility of the complete set of facility and IT energy data from 
hundreds of sensors, meters, and controls.   

• Dashboards, visualization tools, and algorithms that have been developed to better monitor the 
state of the various components of the data center.  

• Preliminary results from ongoing research into understanding the power footprint of certain 
application job types and their impact on the data center’s cooling resources. 

In the next section, we provide background on the data center design and motivation for this effort. This 
section is followed by detailed descriptions of methods and results. Finally, we conclude with a 
summary of impacts and discussion of ongoing work and next steps. 
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2 Background 
In building its data center, NREL’s vision was to create a 
showcase facility that demonstrates best practices in data 
center sustainability and serves as an exemplar for the 
scientific computing community. The innovation focused 
on three critical aspects of data center sustainability:  

• Efficiently cool the IT equipment using direct, 
component-level liquid cooling with a PUE 
design target of 1.06 or better.  

• Capture and reuse the waste heat produced.  

• Minimize the water used as part of the cooling 
process. 

The ESIF data center accomplishes these goals through 
high efficiency architectures, instrumentation, and 
monitoring.  Electrical energy supplied to the data center IT 
systems (shown along the bottom of Figure 1) is converted to thermal energy, with the majority of IT 
energy utilized by the flagship HPC systems that are direct liquid-cooled. The liquid cooling approach 
involves a cooling distribution unit (CDU), which interfaces with the facility cooling loop and provides 
cooling liquid at the appropriate temperature, pressure, and chemistry for the IT equipment. There are 
also legacy IT systems that are traditionally air-cooled, and through the use of fan walls, the heat from 
these systems is also transferred to a closed facility loop called the Energy Recovery Water (ERW) loop. 
To maximize energy efficiency, there are no compressor-based cooling systems. The three heat-rejection 
options for this IT load operate in the following hierarchy and are shown along the top of the diagram in 
Figure 1 (priority is indicated from left to right): 

• When possible, heat energy from the energy recovery loop is transferred through the energy 
recovery heat exchanger to the ESIF building process hot water loop to help heat the building or 
campus. 

• After reuse potential is exhausted and when temperatures permit, heat is dissipated through the 
thermosyphon cooler (an advanced dry cooler that uses refrigerant in a passive cycle to dissipate 
heat) to economize water use. More details on how the Thermosyphon reduces water usage can 
be found in 17. 

• Finally, the remaining heat is transferred from the ERW loop to a tower water open loop via the 
cooling tower heat exchanger. The resulting ERW supply temperature is 24°C or lower.  

Figure 1: Cooling system representation 
for the HPC data center in the ESIF 
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The data center was designed to support up to 10 MW of total IT load at full capacity. However, the 
current system capacity is 5 MW with typical operation about 2 MW. There are two different 
mechanical rooms in the data center - one of which is located directly below the data center floor where 
the hydronic distribution system for racks and the heat exchanger for energy recovery are located. There 
is also an outdoor platform where the thermosyphon and multiple cooling towers are located. 

 

 

The largest IT energy component inside the ESIF data center is the flagship HPC system. NREL's first 
flagship HPC system, named Peregrine, was located on the data center floor near a visitor window 
(Figure 2) and was deployed in two separate phases.  Peregrine was active from the opening of the ESIF 
building in 2013 until it was retired in August 2019. Peregrine was the first installation of the HP Apollo 
Liquid-Cooled Supercomputing Platform and consisted of 2,592 compute nodes and a 2.25 petabyte data 
storage system. 

The current flagship system, named Eagle, entered production in January 2019. The Eagle system 
resides in the back half of the data center that now consists of ten HPE 8600 E-Cells with Intel Xeon 
Gold Skylake processors, containing a total of 2,618 nodes. Each E-Cell consists of two 42U high racks 
in a sealed unit that uses closed-loop cooling technology. The ten E-Cells, along with five corresponding 
CDUs take up two rows (the floor graphic in Figure 2 shows the initial deployment of seven E-Cells and 
four CDUs). The Eagle system also includes a 3rd row of HPE Adaptive Rack Cooling System (ARCS), 
which houses “Big Memory” nodes and special-use nodes that also include 100 GPUs for graphics 
processing. Eagle also has a 17 petabyte data storage system with a parallel, high-performance Lustre 
filesystem. 

Figure 2: NREL ESIF data center in Golden, Colorado, USA. 
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3 Methods 
3.1 Streaming Data Architecture 
Over 1 million metrics are collected per minute related to the Eagle system, and more than 4,000 metrics 
are collected per minute related to the ESIF data center and facilities. The facility metrics consist of 
power, temperature, flow rate, pressure, and other states (e.g., alarm, position, speed) for facility and 
data center components including data center cooling towers and thermosyphons, pumps, fan walls, heat 
exchangers, hydronic loops, and environmental conditions (e.g., outdoor air temperatures and humidity). 
The Eagle metrics consist of integrated Eagle job logs; node metrics such as memory, disk, network, 
processor, and GPU utilization, plus hardware power and temperatures; and InfiniBand, Lustre, and 
application metrics. In addition, rack-level data such as air temperature, fan speeds, rack hardware, 
water temperatures, and inverter data are collected, as well as data from the CDUs and ARCS that 
include temperatures, flow rates, and pressures. Many of these metrics are collected every few seconds, 
while some are collected at 1-minute intervals.  

Such a large volume and velocity of data requires a system that can effectively handle millions of 
simultaneous data streams but is also resilient to downtime and lags in reporting. The data architecture 
design for the collection of data in the ESIF data center therefore considers the data sources, data 
frequencies, the movement of data, and the eventual storage and use of the data. The goal of the data 
collection architecture is to provide a scalable infrastructure suitable for collecting, managing and 
processing streaming data from multiple heterogeneous data sources. The integration of the HPC node-
level metrics, jobs data, and facility data in a single platform is extremely valuable for improving data 
center resiliency and for future applications of energy optimization, such as job scheduling based on 
power profile or optimizing water temperature setpoints and cooling power configurations.  

The data architecture was implemented with a focus on open-source platforms and highly scalable 
systems. The data sources either push data to a device historian (a single-node Influx database running at 
the network interface to enable meter collection) or push data directly to a five-node Apache Kafka 
streaming data cluster (Figure 3).   

Figure 3: NREL HPC data architecture design 
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Data collected into the device historian is periodically queried and pushed to the streaming data cluster. 
The data streams are then accessible from a number of clients for either real-time visualizations and 
analytics or are collected into a time-series cluster for archival storage. The time-series cluster is an 
Apache Druid installation: an open-source, distributed data store that is designed to quickly ingest 
massive quantities of event data and allows for real-time analytics on top of the data.  The data is 
persistent in the time-series cluster for historical analysis and interactive dashboards over the entire 
dataset. The persistent storage of the data is particularly useful when testing new predictive analytics 
methods, as the entire historical dataset is available for training and validation.   

3.2 Data Center Metrics 
One important use of the data collection capabilities is to obtain a clearer understanding of the data 
center performance relative to power usage effectiveness (PUE) and energy reuse effectiveness (ERE). 
The PUE and ERE are critical to understanding the real-time and long-term performance of the ESIF 
data center.  Numerous data points are involved in the PUE and ERE calculations for both the facility 
and equipment. These readings are then used to calculate the PUE, which is defined as 

𝑃𝑃𝑃𝑃𝑃𝑃 =  (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹 + 𝐼𝐼𝐼𝐼 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹)
𝐼𝐼𝐼𝐼 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹�  

and ERE is defined as: 

𝑃𝑃𝐸𝐸𝑃𝑃 =  (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹 + 𝐼𝐼𝐼𝐼 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹 − 𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹)
𝐼𝐼𝐼𝐼 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹� . 

3.3 Anomaly Detection 
Exascale data centers can be expected to be more highly instrumented and complex than today’s already 
complex HPC data centers. With significantly more data being collected at much faster rates, the 
management of future data centers will be more difficult and more prone to failures. Through the AIOps 
Collaboration, NREL and HPE aim to introduce automatic, rapid, real-time, and highly scalable 
anomaly detection to the data center in order to:  

• Reduce equipment failure and downtime to increase data center resiliency. 

• Introduce advanced monitoring techniques to reduce false alarms, simplify data center 
management, and enhance root-cause analysis of anomalous data. 

• Provide a means of scalability for monitoring data feeds more broadly by focusing only on 
anomalous results. 

As part of this collaboration, HPE has developed AI and ML tools to develop a robust anomaly detection 
capability that performs in real-time, automatically, and at massive scale. An end-to-end anomaly 
detection pipeline was deployed in the ESIF Data Center in June 2020, with the pipeline operating on 
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real-time IT (Eagle cluster) and facilities data. The current components and status of the AIOps stack are 
shown in Figure 5. The anomaly detection pipeline uses both uni-variate and multi-variate models. 
Multi-variate models are applied to single devices, such as a single CDU, and data center-wide, with 
models configured to ingest data from multiple devices (e.g., a computational node, a network switch, a 
CDU, a cooling tower, etc.) in order to detect anomalies in metrics correlated across multiple disparate 
devices in the data center. Multi-variate anomaly detection can lead to a reduction in false positives and 
false negatives since anomalous behavior is considered in the context of multiple correlated metrics 
whose joined behavior is known to a model. As part of the AIOps stack, AIOps ML includes Statistical 
methods (Z-Score, (double) MAD, Tukey, Entropy-based) for univariate anomaly detection models, 
machine learning and deep learning methods such as forecasting-based (ARIMA, LSTM), and 
reconstruction-based (PCA, autoencoders) anomaly detection for both uni-variate and multi-variate 
models. The AIOps ML stack provides components to support end-to-end ML workflows, from loading, 
cleaning, and visualizing data to training various anomaly detection models and evaluating and 
deploying models. AIOps ML supports supervised and unsupervised model evaluation. The basis of 
unsupervised evaluation is the store of realistic uni-variate and multi-variate models of anomalous 
behavior. AIOps ML takes nominal metrics, injects artificially generated anomalous data, and runs 

Figure 5: AIOps technology stack 

Figure 4: Grafana Cooling Tower dashboard for the ESIF data center 
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models against the modified data. This feature enables more comprehensive analysis of the models’ 
performance, and better model tuning. 

In support of operational resiliency, the streaming data and analytics platform was initially deployed 
with a pipeline for detecting anomalies in the cooling infrastructure using historical and real-time data 
from the Eagle supercomputer and the ESIF data center (Figure 6). For this application, CDU and 
Cooling Rack Controller (CRC) data streams are pushed to the Kafka cluster. These data streams are 
then used as input into an anomaly detection framework that implements a variety of anomaly detection 
models (discussed above) on real-time data to detect abnormal activity for the CDUs and CRCs.  For 
this case, both univariate and multivariate models are used in the anomaly detection, where the anomaly 
score is determined from the reconstruction or forecasting error discovered by the model. The anomaly 
detection model then sends the anomaly scores, current anomaly thresholds, and anomaly labels back 
through the Kafka cluster for use in alerts, dashboards, and analysis programs. Historical datasets were 
used to train the models offline, while the near real-time model is run on streaming data from the Kafka 
feeds.  

 

4 Results 
4.1 Dashboards 
The NREL Advanced Computing Operations (ACO) team has implemented a number of dashboards to 
better understand the state of the data center systems, to monitor energy efficiency (PUE and ERE), and 
to display facility metrics related to thermal loops. While these dashboards help describe the numerous 
facility metrics with various layers of granularity, the complexity of manually monitoring such a system 
is a cumbersome task. This stems from the large number of simultaneous data streams that require 
monitoring as well as the compounding impacts of a large number of potential adjustments that can be 
made to nearly every device in the facility cooling system to achieve optimal system performance.  

Figure 6: Streaming data architecture for the AIOps project 
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The ACO team has also found that set-points, alarms, and dashboards are not always sufficient to 
identify anomalies in the system. For example, cooling tower configurations and water temperature set-
points have a tendency to be set once and left alone if the overall system is working well. This creates 
opportunities for improved efficiency through automated set-point control. In addition, facility events 
from pump and cooling tower failures are not always easy to identify through dashboards, highlighting 
the need for a new approach to monitoring and system optimization. 

There are additional challenges to dashboard building with such a large amount of data.  For example, 
high frequency anomalies may not be seen on dashboards that aggregate sensor values by averaging 
over longer frequencies. In addition, some activity requires investigation at a temporal resolution that is 
typically not used for data center operations management (e.g., the need to look at graphs of multiple 
data points within a single minute).  Finally, some activities require a look at data at different scales, 
such as the loss of a 2 kW fan that does not manifest itself when viewing at 1 MW scale of system.  

The following describes an example case of a temporal resolution issue with a Grafana dashboard NREL 
created for the Eagle CDUs (responsible for transferring thermal energy from racks to the facility) for a 
period from September 19, 2019 to September 21, 2019 (Figure 7). 

The different graphs show the supply and return temperatures on both the facility and secondary side 
water loops, along with flow rates, secondary pump speed, and primary valve position. The middle 
graph on the left side shows the secondary water supply temperature (that is used to cool the nodes) is 
around 33°C. On occasion CDU 4 spikes by about 0.4°C but remains relatively stable when viewing a 
week’s worth of data. 

Figure 7: Eagle CDU Dashboard (top row: primary supply temperature, primary 
return temperature, primary flow; middle row: secondary supply temperature, 

secondary return temperature, secondary flow; bottom row: secondary pump speed, 
primary valve position) 
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 A more granular view of one single day (September 19) indicates that the range in temperature swings 
is still < 1°C.  However, when the graph is resolved to display only a 2-hour period, it becomes clear 
that the temperature swings are actually > 10°C and up to 14°C (Figure 8), which is abnormal behavior. 
Further investigation by the ACO team indicated that the temperature swings were the result of a 
facility-side control valve within the CDU that was cycling widely every 30 seconds to 1 minute, 
causing the oscillating temperature swings. The behavior would last a few days and then return to 
normal oscillations of less than 1°C. This behavior also repeated itself over many months. The AIOps 
system was able to detect this anomalous behavior on the very first cycle. By contrast, if the valve had 
vailed, it would have caused substantial downtime for 4 racks. 

4.2 Anomaly detection 
The fact that this behavior in the CDUs went unnoticed for many months provided a great test case to 
evaluate the AIOps anomaly detection model on data from this time period.  The existing aggregated 
dashboards missed the abnormal valve cycling behavior, but alerts from the anomaly detection model 
during this time period identified an issue (Figure 9).  While the ACO team was aware that CDU 4 was 
specified to handle a full load, the initial configuration of this CDU had it loaded up to 50% of its 
maximum load. The valve cycled widely at times as a result of the light loading, creating a response in 
the resulting CDU temperature and prompting the ACO team to make the necessary adjustments so that 
the valve did not cycle as widely as before. While these types of adjustments are necessary to maintain 
optimal performance of the data center, it requires a great deal of manual effort and some luck to 
identify these types of system events. The anomaly detection pipeline developed by NREL and HPE 
facilitates the identification of these types of events through an automated, data-driven approach.  Given 
the vast number of sensors to monitor at NREL, prior dashboards have required down-selection and 
manual curation of which sensors appear on the dashboards. In 2015, a 3-way valve failure that led to 
system shut down did not appear to be a high priority item to monitor but caused NREL to lose 20,000 
node-hours in the shutdown. Motivated by this work, a key ongoing priority is automation around the 

Figure 8: Eagle CDU-4 secondary supply temperature for a 2-hour period 
from 10:00 to 12:00 on September 20, 2019. 
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monitoring and selection of sensors. This is a fundamental paradigm shift in how dashboards are built 
and used, allowing data center operators to monitor everything and focus on key anomalous events. 

4.3 Energy Balance 
The consistent collection, storage, and persistence of the streaming data architecture has also allowed 
NREL researchers to obtain real-time estimates of the data center’s energy balance. The calculation of 
the energy balance has been implemented in a python-based software tool, which measures the energy 
balance of the entire data center by grouping energy consumption metrics by resource component (e.g., 
Eagle, Lights & Plugs, Air-to-liquid cooling) and calculating the amount of energy that is lost to the 
ESIF (Figure 10).  This version of the software builds upon the energy balance shown above by 
ingesting real-time data from the Druid database, includes all of the data from NREL’s Eagle system and 
associated electrical subsystems, and incorporates sensors from new additions to the system.  

The goal of producing a real-time energy balance is to account for all the electrical energy that is input 
into the data center from the grid and to account for its breakdown in usage amongst the different facility 
equipment, devices, and IT equipment, as well as the subsequent method of capture and rejection of that 
energy. This model therefore allows us to capture changes at any of the phases of energy usage, capture, 
and rejection and can serve as a first-level monitoring tool for the data center for any undetected 
anomalies in energy consumption or reuse. 

 

Figure 9: Example of CDU Valve cycling observed by the AIOps anomaly detection model. 
Blue lines indicate the total power consumption of the CDU, the green line indicates the angle 

of valve position, the red line indicates the anomaly score, and the yellow line indicates the 
threshold used to determine the presences of anomalous behavior. The thick dark red lines 

indicate the start and end of anomalous behavior. 
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Figure 10: Sankey representation of Energy Model for the ESIF data center, demonstrating how electricity input (far 
left) into the data center is used (middle left), captured (middle right), and rejected (far right) as part of the data 

center design. Vertical bars represent the representative amount of energy used/captured/rejected by the individual 
components.  

4.4 Application Power Usage 
In addition to enabling real-time anomaly detection pipelines and improved real-time energy balance 
calculations, the streaming data architecture in the ESIF data center has also allowed NREL researchers 
to investigate the power footprint of individual jobs on Eagle and their associated cooling resource 
requirements.  The power footprints of running jobs on Eagle gives insight into the collective energy 
that is consumed by these jobs and that contribute to the total IT energy consumption. Prior work at 
NREL (e.g., 17 and 17) has indicated that further reductions in PUE/ERE can be achieved through 
optimization of the timing of jobs. In that work, application-level power usage of a production system 
was characterized for the Peregrine supercomputer and potential methods for predicting power usage 
were explored based on a priori and in situ characteristics about application job type. Other related work 
has shown the effects of different approaches to power management, such as power throttling strategies 
like core parking, which for certain applications are optimal in minimizing performance losses while 
maximizing power savings leading to further reductions in PUE/ERE (Purkayastha et al., 2018). Other 
strategies like frequency reduction have also shown benefits in reducing power consumption without 
affecting performance for a different class of applications. These initial studies also demonstrated 
potential use cases of these methods through a simulated power-aware scheduler for the different 
approaches.  
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Current research being undertaken at NREL in collaboration with HPE as part of the AIOps project 
seeks to extend the use case of power usage prediction and to build a prototype implementation. To 
enable similar research in this area, a publicly available dataset1 has been constructed consisting of three 
months of job data including anonymized SLURM metadata and derived node level power metrics per 
job. The dataset was constructed from three months of data over different seasons (December 2019, 
April 2020, and August 2020), selected for periods where the system was operating under nominal 
conditions. Jobs lasting less than five minutes, those with missing metadata, those run on GPU or 
special-use nodes, and those run by end use rather than users were all removed from the dataset. This 
dataset was then combined with executable information from XALT metadata (Agrawal 2014) to create 
a set of data labeled by application. An anonymized release including application labels is planned for a 
future release to compliment the set of publicly released data. 

 

Figure 11: Three randomly sampled job power profiles per application. 

Analysis of the power footprint of these jobs has indicated that there are distinct job power profiles; 
however, this footprint is not entirely describable by the associated job executable. Figure 11 shows 
three randomly sampled job power time-series for the top nine application types run on Eagle. Note that 
there are substantial differences within a given application (e.g., python3.7) as well as between 
applications (e.g., wind plant simulation (openfast-farm) and atomic structure analysis (vasp)). Many of 
these applications with widely varying power profiles are indicative of a very broad job type 
classification with many different underlying use cases. In most of these cases the mean and standard 

 
1 https://data.nrel.gov/submissions/152 
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deviation of these power time-series are fairly well defined, although others do show interesting time 
varying behavior (e.g., python3.7, wrf.exe).  

Figure 12 shows the entire distribution of average and standard deviation of power profiles for jobs by 
each category.  

Figure 12: Histogram of all labeled application jobs within the 3 month sample period, with average job power on the 
x-axis and standard deviation of job power on the y-axis. 

 
While the overall spread of the various distributions is quite large in many cases (once again indicating a 
broad job type classification with many underlying use cases), there are indications of centroids that are 
in some cases quite well defined across all jobs for a given application (e.g., 
make_cdft_section_q_and_s, openfast-farm). While the job executable can be a strong indicator of 
power footprint in many cases, a more complicated and multi-metric model would be necessary to be 
fully predictive. 
 

5 Conclusions 
NREL’s HPC data center in the ESIF has been built with energy efficiency as a key component of its 
design.  While the data center has maintained an impressive 12-month running average PUE of 1.06 or 
less, there are still opportunities to improve the energy efficiency of the center through automated, data-
driven operations.  NREL’s collaboration with HPE through the AIOps project has thus far 
demonstrated some of the potential optimizations that are possible with scalable data architecture for 
real-time monitoring and analytics.  
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The ESIF data center is now equipped with state-of-the-art scalable streaming data architecture for data 
collection, which requires accessibility of data from facilities, compute infrastructure, and HPC jobs data 
streams. This design will enable NREL to continue to optimize and manage the energy efficiency of the 
ESIF data center and to build new capabilities for ML approaches that improve the HPC operational 
efficiency. Furthermore, the streaming data architecture capabilities will enable a variety of other 
projects across the NREL research community, which will be able to utilize modern data architectures 
for their dashboards and analytics.   

From a monitoring perspective, the AIOps project has contributed to the development of additional 
dashboarding capabilities that allow the user to view real-time alerts across all of the CDU and CRC 
sensors via an anomaly detection pipeline.  These additional capabilities will facilitate quicker response 
times to future failure events in the data center and detect event onsets before they become critical, 
minimizing downtime and potentially saving hardware systems from catastrophic failure.    

Taking this collaboration forward, there are several key threads of ongoing work: (1) a power-aware 
scheduler for the Eagle supercomputer is being developed, which would allow power-intense jobs to be 
run at times of the day when renewable energy is being generated on campus or when energy reuse can 
be maximized.  A power-aware scheduling system could be further expected to ramp up cooling 
resources ahead of an expectedly intensive job to further maximize energy efficiency in the data center.  
(2) Research is currently underway to understand the relationship between not only a job’s application 
type and its power profile, but also that job’s impact on required cooling resources.  This understanding 
will help to better inform a predictive scheduler.  (3) The team is using existing data to produce a model 
for prediction or forecasting PUE for the weeks or months ahead, which would allow for more optimal 
utility planning, among other benefits.  (4) In 2021/2022 HPE will introduce AIOps Analytics, along 
with improvements to the AIOps Runtime stack. AIOps Analytics will include elements of root-cause 
analysis and trustworthy AI for more comprehensive and reliable interpretation of models’ decisions. 
AIOps Runtime will be capable of monitoring model performance, including identification of data drift 
and concept drift, and capable of triggering automatic model re-training. AIOps anomaly detection 
operates in real-time and at scale (measured in two dimensions: metrics and ML models); it is one of the 
first such solutions to be introduced in data centers. 

Taken together, these efforts will inform future supercomputer procurement efforts as to the type of 
resources that are used, how efficiently they are used, and ways that the NREL HPC community can 
improve its practices and help steer advancement in the design and widespread adoption of energy 
efficient data center practices, significantly decreasing the carbon cost of leadership class computing 
while also reducing maintenance costs and improving system reliability.    
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