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Physics-Guided Machine Learning for Prediction of 
Cloud Properties in Satellite-Derived Solar Data 

Grant Buster, Mike Bannister, Aron Habte, Dylan Hettinger, Galen Maclaurin,  
Michael Rossol, Manajit Sengupta, and Yu Xie 

National Renewable Energy Laboratory, Golden, CO, 80401, United States 

Abstract—With over 20 years of high-resolution surface 
irradiance data covering most of the western hemisphere, the 
National Solar Radiation Database (NSRDB) is a vital public data 
asset. The NSRDB uses a two-step Physical Solar Model (PSM) 
that explicitly considers the effects of clouds and other 
atmospheric variables on radiative transfer. High-quality physical 
and optical cloud properties derived from satellite imagery are 
perhaps the most important data inputs to the PSM, representing 
the greatest source of radiation attenuation and scattering. 
However, traditional methods for cloud property retrieval have 
their own limitations and are unable to accurately predict cloud 
properties outside of nominal conditions. We introduce a physics-
guided neural network that can accurately predict cloud 
properties when traditional methods fail or are inaccurate. Using 
this framework, we show reductions in relative Root Mean Square 
Error (RMSE) for Global Horizontal Irradiance (GHI) up to 13 
percentage points for timesteps that previously had missing or 
low-quality cloud property data. We expect that this methodology 
will be effective in improving the quality of cloud property and 
solar irradiance data in the NSRDB. 

Keywords—solar resource data, machine learning, physics-
guided neural networks, cloud properties, remote sensing, satellite-
derived irradiance 

I. INTRODUCTION 
Solar resource data is a fundamental input for virtually all 

solar related analyses including the analysis of solar energy 
conversion systems, power systems integration, market 
operations, and even financial investments in solar power 
systems. Satellite imagery has recently proven to be an effective 
resource for developing large quantities of solar resource data 
across large spatiotemporal extents [1]-[3]. Specifically, two-
step physical models such as by Pinker et al. [4] and Xie et al. 
[5] which explicitly consider the effects of clouds and other 
atmospheric variables on radiative transfer have benefited from 
the recent improvements in satellite technology and reanalysis 
datasets [6]-[7].  

A prominent example of solar resource data using the 
Physical Solar Model (PSM) by Xie et al. [5] is The National 
Solar Radiation Database (NSRDB), which is produced by the 
National Renewable Energy Laboratory (NREL) [8]. The 
NSRDB includes more than 20 years of surface irradiance and 
atmospheric data for most of the western hemisphere. The 
NSRDB can be freely accessed at https://nsrdb.nrel.gov/ and has 
been used widely by an ever-growing group of researchers and 
industry [8].  

The cloud physical and optical properties used by the 
NSRDB are retrieved from satellite measurements in visible, 
near-infrared, and infrared channels from The Advanced Very 
High-Resolution Radiometer (AVHRR) Pathfinder 
Atmospheres–Extended (PATMOS-x) project [9]. While this 
cloud property data is accurate and of great utility to the 
NSRDB, the underlying methods such as the Daytime Cloud 
Optical and Microphysical Properties Algorithm (DCOMP) [10] 
can fail to converge under suboptimal conditions with certain 
surface types or extreme solar zenith angles, resulting in 
inaccurate or missing cloud property data. To compensate, the 
NSRDB executes a heuristic gap-fill procedure to fill cloud 
property data that is missing from the DCOMP output. The 
NSRDB version 3.0.0 gap fill procedure, described in Section 
3.2 of Sengupta et al.’s 2018 paper [8], fills the irradiance at a 
timestep with missing cloud properties using a simple cloudy-
to-clear Global Horizontal Irradiance (GHI) ratio from the 
nearest timestep with valid cloud properties. In the NSRDB 
version 3.1.0, a slightly modified gap-fill procedure was 
introduced that would fill missing cloud properties using the 
temporally nearest valid cloud properties of the same cloud 
phase (water or ice). 

While the overall accuracy of the NSRDB is quite high with 
relative GHI mean bias error typically below 5 percent [11], the 
missing cloud properties nevertheless represent a significant 
fraction (between 20 and 30 percent) of daylight cloudy 
timesteps. These timesteps typically have relative GHI Root 
Mean Square Error (RMSE) 2 to 10 percentage points higher 
than timesteps with valid cloud properties produced directly by 
the DCOMP algorithm. To address this issue, we have 
developed machine learning methods for cloud property 
retrieval that can be used to complement the traditional methods 
from PATMOS-x [9] and DCOMP [10].  

Machine learning methods have been used in a variety of 
remote sensing applications such as the characterization of 
airborne particulates, cloud detection, and even the direct 
prediction of solar radiation [12]-[14]. For this work, we propose 
a method to leverage machine learning methods to predict 
missing cloud properties while preserving the key strengths of 
the NSRDB methodology. Namely, we preserve the cloud 
identification methods from Heidinger et al [9], the valid cloud 
properties produced by the DCOMP algorithm from Walther et 
al [10], and the PSM by Xie et al. [5] on which the NSRDB is 
based. In this fashion, we are able to make significant 
improvements to the NSRDB while maintaining the overall data 
product that is already widely used by the public.  

Funding provided by the U.S. Department of Energy’s Office of Energy 
Efficiency and Renewable Energy (EERE). 
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II. METHODOLOGY 
Predicting cloud properties can be described as a regression 

problem where input features 𝑋𝑋 are transformed into the target 
output variable 𝑌𝑌 . The input features 𝑋𝑋  can be any data 
resources available to the NSRDB including Geostationary 
Operational Environmental Satellite (GOES) imagery, and 𝑌𝑌 is 
the relevant physical and optical cloud properties. This problem 
can be handled by training a simple feed-forward neural network 
𝑓𝑓 ∶ 𝑋𝑋 → 𝑌𝑌 that produces cloud properties predictions 𝑓𝑓(𝑋𝑋) = 𝑌𝑌�  
given some known input 𝑋𝑋. Such a model would be trained to 
minimize the empirical loss ℒ𝑁𝑁𝑁𝑁  of the model predictions 𝑌𝑌�  
versus known outputs 𝑌𝑌: 

 argmin𝑓𝑓    ℒ𝑁𝑁𝑁𝑁[𝑓𝑓(𝑋𝑋),𝑌𝑌]  (1) 

However, for such a formulation to be successful we would 
require data for 𝑋𝑋 and 𝑌𝑌 over the entire expected observational 
range. Because this problem is specifically attempting to 
produce cloud properties where the traditional models do not, 
much of the desired prediction space includes out-of-sample 
data 𝑋𝑋  with no known data 𝑌𝑌. Indeed, a simple feed-forward 
neural network trained only on the cloud properties successfully 
produced by the DCOMP algorithm is observed to not predict 
accurate cloud properties when extended to the out-of-sample 
prediction space, as shown in Section III. Instead, we develop a 
physics-guided neural network (PHYGNN) architecture that is 
trained using the full NSRDB radiative transfer model along 
with additional training data sources to accurately predict cloud 
properties for all daylight timesteps, including data that is out-
of-sample for the simple formulation in (1). This model 
architecture augments (1) by adding a physics-based loss term, 
ℒ𝑃𝑃𝑃𝑃𝑃𝑃: 

 argmin𝑓𝑓    𝛼𝛼𝑁𝑁𝑁𝑁 ℒ𝑁𝑁𝑁𝑁[𝑓𝑓(𝑋𝑋),𝑌𝑌] + 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃  ℒ𝑃𝑃𝑃𝑃𝑃𝑃[𝑓𝑓(𝑋𝑋),𝑃𝑃] (2) 

Where 𝛼𝛼 ∈ ℝ are weighting factors for the two loss terms 
and 𝑃𝑃 can be any supplemental input data used to calculate the 
physics-based loss term ℒ𝑃𝑃𝑃𝑃𝑃𝑃. In this case, ℒ𝑃𝑃𝑃𝑃𝑃𝑃 takes the cloud 
property predictions 𝑓𝑓(𝑋𝑋) = 𝑌𝑌�  along with supplemental inputs 
𝑃𝑃 , runs the full PSM by Xie et al. [5], and compares the 
predicted irradiance values against ground-measured 
irradiance. This method for training a PHYGNN model to 
predict cloud properties has several advantages for predicting 
cloud properties in the NSRDB. Primarily, the observation 
space of the training data 𝑋𝑋  and 𝑌𝑌  can be extended using 
additional data 𝑃𝑃 . An additional holistic benefit is that the 
PHYGNN model is trained on how cloud properties are used in 
the PSM and learns how to predict properties that result in more 
accurate irradiance values. The general PHYGNN architecture 
described in (2) has been used previously for a variety of 
applications in the physical sciences [15]-[16], and is shown in 
Section III to greatly outperform the simple feed-forward neural 
network described by (1).  

 

TABLE I.  PHYGNN DATASET NAMES AND USES 

Dataset Name Use 

Solar zenith angle Feature, supplemental 𝑃𝑃 input 

Air temperature Feature 

Dew point Feature 

Relative humidity Feature 

Total precipitable water Feature, supplemental 𝑃𝑃 input 

Surface albedo Feature, supplemental 𝑃𝑃 input 

Cloud type Feature, supplemental 𝑃𝑃 input 

Cloud probability  Feature 

Cloud fraction Feature 

0.65 µm reflectance  Feature 
0.65 µm reflectance standard deviation (on 
a 3x3 grid) Feature 

3.75 µm reflectance Feature 

3.75 µm brightness temperature Feature 

11.0 µm brightness temperature Feature 
11.0 µm brightness temperature standard 
deviation (on a 3x3 grid) Feature 

Aerosol optical depth Supplemental 𝑃𝑃 input 

Alpha (aerosol angstrom exponent) Supplemental 𝑃𝑃 input 

Surface pressure  Supplemental 𝑃𝑃 input 

Aerosol single scattering albedo Supplemental 𝑃𝑃 input 

Aerosol asymmetry parameter  Supplemental 𝑃𝑃 input 

Total ozone Supplemental 𝑃𝑃 input 

Time index  Supplemental 𝑃𝑃 input 

Ground-measured GHI Supplemental 𝑃𝑃 input 

Cloud optical depth PHYGNN output 

Cloud effective particle radius PHYGNN output 

 

Besides the custom loss function described in (2), the 
PHYGNN architecture used in this work is a standard feed-
forward neural network with 3 layers, 64 nodes per layer, 18 
input features (including one-hot encodings), and 2 output 
channels. The network also includes a 1 percent dropout rate on 
all hidden layer output connections during training. The model 
is trained using the Adam optimizer with a learning rate of 
0.002. The training is split into 100 pre-training epochs with 
𝛼𝛼𝑁𝑁𝑁𝑁 = 1  and 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃 = 0 , and 100 final training epochs with 
𝛼𝛼𝑁𝑁𝑁𝑁 = 0.5  and 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃 = 0.5 . Model weights are updated 64 
times per epoch (64 batches per epoch). Loss values are 
calculated using mean absolute error.  

The PHYGNN model is trained using satellite data from 
GOES [6], reanalysis data from Modern Era Retrospective 
Analysis for Research and Applications Version 2 (MERRA2) 
[7], cloud identification from PATMOS-x [9], surface albedo 
data derived from MODIS [17], and ground measurement data 
from the NOAA Surface Radiation Budget (SURFRAD) 
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Network Observations sites [18]. The full set of training features 
(𝑋𝑋), supplemental data inputs (𝑃𝑃) to calculate the physical loss 
term ℒ𝑃𝑃𝑃𝑃𝑃𝑃, and PHYGNN outputs (𝑌𝑌�) are recorded in TABLE 
I. Four years of data is used from four GOES satellites (GOES 
West 15/17 and GOES East 13/16) over the seven SURFRAD 
sites. Including the data from the newer GOES satellites (GOES 
16 and 17) with higher temporal resolution, a total of 1,226,400 
daylight data observations were used. The available training data 
was randomly partitioned with 20 percent used for post-training 
validation, 20 percent of the remaining data used for in-situ 
training validation, and the remaining data (64 percent of the 
total dataset) used for training. For the results in this paper, the 
SURFRAD data, which is typically available at 1-minute 
intervals, is averaged using a 15-minute centered moving 
window average. This helps reduce the variability associated 
with a point-source measurement when compared to the large 
spatial extent that the NSRDB grid cells represent.  

III. RESULTS 
The results presented in Fig. 1 and Fig. 2 show the Global 

Horizontal Irradiance (GHI) and Direct Normal Irradiance 
(DNI) RMSE for four years of the NSRDB irradiance data vs. 
ground-measured irradiance, respectively. Data presented in 
Fig. 1 and Fig. 2 is exclusively from the 20 percent of the data 
that the simple feed-forward neural network and PHYGNN 
models were not trained on. For these results, the four years of 
NSRDB data at each of the seven SURFRAD sites is produced 
twice: once using source data from the GOES East satellites, and 
once using source data from the GOES West satellites. Fig. 1 
and Fig. 2 present results from all daylight cloudy timesteps that 
are missing cloud property inputs from the DCOMP algorithm 
[10]. The “DCOMP + Gap-Fill” data in  Fig. 1 and Fig. 2 was 
produced using the NSRDB version 3.1.0 cloud property 
heuristic gap-fill procedure described in Section I. Relative error 
metrics are calculated with respect to the mean of the data. It 
should be noted that because these results are for all daylight 
cloudy timesteps, the absolute magnitude of the errors can be 
quite high because the mean data value which is used to 
normalize the metrics includes low irradiance timesteps when 
the sun is rising or setting. However, these timesteps are 
important to include because the DCOMP algorithm performs 
poorly when the sun is close to the horizon.  

As shown in Fig. 1 and Fig. 2, NSRDB data produced from 
the heuristic gap-filled DCOMP cloud properties exhibits high 
relative RMSE. The simple feed-forward neural network with 
loss function defined by (1) is shown to predict accurate cloud 
properties for some locations but performs worse than the 
heuristic gap-fill method for others. In contrast to the simple 
feed-forward neural network model, the PHYGNN model with 
loss function defined by (2) significantly improves the 
validation statistics for all locations, reducing the relative GHI 
RMSE by 6 to 13 percentage points from the heuristic gap-filled 
DCOMP results.  

A noteworthy result is the highly inaccurate NSRDB GHI 
data at the Penn. State University (PSU) location predicted by 
both the heuristic gap-fill and simple feed-forward neural 
network models (relative GHI RMSE of 54.2 and 65.5 percent, 
respectively) and the significant improvement by the PHYGNN 
model (relative GHI RMSE of 40.4 percent). The inaccurate 

irradiance at PSU is primarily because the site is at a very 
extreme viewing angle from the GOES West satellites, which 
dramatically increases the RMSE even though the predicted 
irradiance from the GOES East satellites is accurate. In fact, in 
the actual NSRDB data, locations as far east as Pennsylvania 
would never be produced using data from the GOES West 
satellites. Nevertheless, this provides a challenging prediction 
scenario for these models and shows that the PHYGNN model 
is able to learn how to produce accurate cloud properties even in 
the worst out-of-sample conditions, reducing the relative GHI 
RMSE by 13.8 percentage points.  

 
Fig. 1. Ground-truth validation of cloudy NSRDB GHI with missing cloud 

property inputs for seven SURFRAD sites. Includes validation of 
NSRDB data produced using only heuristic gap-filled cloud properties 
(“DCOMP + Gap-Fill”), using a simple feed-forward neural network 
(“NN”), and using a physics-guided neural network (“PHYGNN”). 

 
Fig. 2   Ground-truth validation of cloudy NSRDB DNI with missing cloud 

property inputs for seven SURFRAD sites. Includes validation of 
NSRDB data produced using only heuristic gap-filled cloud properties 
(“DCOMP + Gap-Fill”), using a simple feed-forward neural network 
(“NN”), and using a physics-guided neural network (“PHYGNN”). 

IV. CONCLUSIONS 
In this work, we use machine learning techniques to predict 

physical and optical cloud properties for input to satellite-
derived solar resource data. By training a neural network with 
an understanding of a full radiative transfer model, our physics-
guided approach is able to significantly increase the accuracy of 
cloud property predictions as related to the surface irradiance 
experienced on the ground. We validate this PHYGNN model 
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against four years of ground measurement data with inputs from 
four GOES satellites, along with a simple feed-forward neural 
network model and the heuristic gap-fill methodology that is 
currently used in the NSRDB. We show that the PHYGNN 
model greatly outperforms the simple feed-forward neural 
network and heuristic gap-fill methodology and is able to 
improve the accuracy of irradiance data in the NSRDB, 
especially for timesteps that were previously missing cloud 
property data from the traditional cloud property retrieval 
algorithms. Open-source software for creating PHYGNN 
models has been made available on GitHub [19], and NSRDB 
data including the improvements from the PHYGNN 
predictions will be available to the public in the NSRDB 2020 
data (NSRDB version 3.2.0). 
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