
Preprint

Grant Buster, Mike Bannister, Aron Habte, Dylan Hettinger, Galen Maclaurin, Michael Rossol, Manajit Sengupta, and Yu Xie

National Renewable Energy Laboratory

Presented at the 48th IEEE Photovoltaic Specialists Conference (PVSC 48)
June 20-25, 2020

Preprint

Grant Buster, Mike Bannister, Aron Habte, Dylan Hettinger, Galen Maclaurin, Michael Rossol, Manajit Sengupta, and Yu Xie

National Renewable Energy Laboratory

Suggested Citation
https://www.nrel.gov/docs/fy21osti/79705.pdf

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097, NREL 46526.

NREL prints on paper that contains recycled content.

Grant Buster, Mike Bannister, Aron Habte, Dylan Hettinger, Galen Maclaurin, Michael Rossol, Manajit Sengupta, and Yu Xie

National Renewable Energy Laboratory, Golden, CO, 80401, United States

Abstract—With over 20 years of high-resolution surface irradiance data covering most of the western hemisphere, the National Solar Radiation Database (NSRDB) is a vital public data asset. The NSRDB uses a two-step Physical Solar Model (PSM) that explicitly considers the effects of clouds and other atmospheric variables on radiative transfer. High-quality physical and optical cloud properties derived from satellite imagery are perhaps the most important data inputs to the PSM, representing the greatest source of radiation attenuation and scattering. However, traditional methods for cloud property retrieval have their own limitations and are unable to accurately predict cloud properties outside of nominal conditions. We introduce a physics-guided neural network that can accurately predict cloud properties when traditional methods fail or are inaccurate. Using this framework, we show reductions in relative Root Mean Square Error (RMSE) for Global Horizontal Irradiance (GHI) up to 13 percentage points for timesteps that previously had missing or low-quality cloud property data. We expect that this methodology will be effective in improving the quality of cloud property and solar irradiance data in the NSRDB.

Keywords—solar resource data, machine learning, physics-guided neural networks, cloud properties, remote sensing, satellite-derived irradiance

I. INTRODUCTION

Solar resource data is a fundamental input for virtually all solar related analyses including the analysis of solar energy conversion systems, power systems integration, market operations, and even financial investments in solar power systems. Satellite imagery has recently proven to be an effective resource for developing large quantities of solar resource data across large spatiotemporal extents [1]-[3]. Specifically, two-step physical models such as by Pinker et al. [4] and Xie et al. [5] which explicitly consider the effects of clouds and other atmospheric variables on radiative transfer have benefited from the recent improvements in satellite technology and reanalysis datasets [6]-[7].

A prominent example of solar resource data using the Physical Solar Model (PSM) by Xie et al. [5] is The National Solar Radiation Database (NSRDB), which is produced by the National Renewable Energy Laboratory (NREL) [8]. The NSRDB includes more than 20 years of surface irradiance and atmospheric data for most of the western hemisphere. The NSRDB can be freely accessed at https://nsrdb.nrel.gov/ and has been used widely by an ever-growing group of researchers and industry [8].

The cloud physical and optical properties used by the NSRDB are retrieved from satellite measurements in visible, near-infrared, and infrared channels from The Advanced Very High-Resolution Radiometer (AVHRR) Pathfinder Atmospheres—Extended (PATMOS-x) project [9]. While this cloud property data is accurate and of great utility to the NSRDB, the underlying methods such as the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) [10] can fail to converge under suboptimal conditions with certain surface types or extreme solar zenith angles, resulting in inaccurate or missing cloud property data. To compensate, the NSRDB executes a heuristic gap-fill procedure to fill cloud property data that is missing from the DCOMP output. The NSRDB version 3.0.0 gap fill procedure, described in Section 3.2 of Sengupta et al.’s 2018 paper [8], fills the irradiance at a timestep with missing cloud properties using a simple cloudy-to-clear Global Horizontal Irradiance (GHI) ratio from the nearest timestep with valid cloud properties. In the NSRDB version 3.1.0, a slightly modified gap-fill procedure was introduced that would fill missing cloud properties using the temporally nearest valid cloud properties of the same cloud phase (water or ice).

While the overall accuracy of the NSRDB is quite high with relative GHI mean bias error typically below 5 percent [11], the missing cloud properties nevertheless represent a significant fraction (between 20 and 30 percent) of daylight cloudy timesteps. These timesteps typically have relative GHI Root Mean Square Error (RMSE) 2 to 10 percentage points higher than timesteps with valid cloud properties produced directly by the DCOMP algorithm. To address this issue, we have developed machine learning methods for cloud property retrieval that can be used to complement the traditional methods from PATMOS-x [9] and DCOMP [10].

Machine learning methods have been used in a variety of remote sensing applications such as the characterization of airborne particulates, cloud detection, and even the direct prediction of solar radiation [12]-[14]. For this work, we propose a method to leverage machine learning methods to predict missing cloud properties while preserving the key strengths of the NSRDB methodology. Namely, we preserve the cloud identification methods from Heidinger et al [9], the valid cloud properties produced by the DCOMP algorithm from Walther et al [10], and the PSM by Xie et al. [5] on which the NSRDB is based. In this fashion, we are able to make significant improvements to the NSRDB while maintaining the overall data product that is already widely used by the public.

Funding provided by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE).

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
II. METHODOLOGY

Predicting cloud properties can be described as a regression problem where input features X are transformed into the target output variable Y. The input features X can be any data resources available to the NSRDB including Geostationary Operational Environmental Satellite (GOES) imagery, and Y is the relevant physical and optical cloud properties. This problem can be handled by training a simple feed-forward neural network $f : X \rightarrow Y$ that produces cloud properties predictions $f(X) = \hat{Y}$ given some known input X. Such a model would be trained to minimize the empirical loss \mathcal{L}_{NN} of the model predictions \hat{Y} versus known outputs Y:

$$\text{argmin}_f \mathcal{L}_{NN}[f(X), Y] \quad (1)$$

However, for such a formulation to be successful we would require data for X and Y over the entire expected observational range. Because this problem is specifically attempting to produce cloud properties where the traditional models do not, much of the desired prediction space includes out-of-sample data X with no known data Y. Indeed, a simple feed-forward neural network trained only on the cloud properties successfully produced by the DCOMP algorithm is observed to not predict accurate cloud properties when extended to the out-of-sample prediction space, as shown in Section III. Instead, we develop a physics-guided neural network (PHYGNN) architecture that is produced by the DCOMP algorithm is observed to not predict accurate cloud properties when extended to the out-of-sample prediction space, as shown in Section III. Instead, we develop a physics-guided neural network (PHYGNN) architecture that is trained using the full NSRDB radiative transfer model along with additional training data sources to accurately predict cloud properties for all daylight timesteps, including data that is out-of-sample for the simple formulation in (1). This model architecture augments (1) by adding a physics-based loss term, \mathcal{L}_{PHY}:

$$\text{argmin}_f \alpha_{NN} \mathcal{L}_{NN}[f(X), Y] + \alpha_{PHY} \mathcal{L}_{PHY}[f(X), P] \quad (2)$$

Where $\alpha \in \mathbb{R}$ are weighting factors for the two loss terms and P can be any supplemental input data used to calculate the physics-based loss term \mathcal{L}_{PHY}. In this case, \mathcal{L}_{PHY} takes the cloud property predictions $f(X) = \hat{Y}$ along with supplemental inputs P, runs the full PSM by Xie et al. [5], and compares the predicted irradiance values against ground-measured irradiance. This method for training a PHYGNN model to predict cloud properties has several advantages for predicting cloud properties in the NSRDB. Primarily, the observation space of the training data X and Y can be extended using additional data P. An additional holistic benefit is that the PHYGNN model is trained on how cloud properties are used in the PSM and learns how to predict properties that result in more accurate irradiance values. The general PHYGNN architecture described in (2) has been used previously for a variety of applications in the physical sciences [15]-[16], and is shown in Section III to greatly outperform the simple feed-forward neural network described by (1).

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar zenith angle</td>
<td>Feature, supplemental P input</td>
</tr>
<tr>
<td>Air temperature</td>
<td>Feature</td>
</tr>
<tr>
<td>Dew point</td>
<td>Feature</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Feature</td>
</tr>
<tr>
<td>Total precipitable water</td>
<td>Feature, supplemental P input</td>
</tr>
<tr>
<td>Surface albedo</td>
<td>Feature, supplemental P input</td>
</tr>
<tr>
<td>Cloud type</td>
<td>Feature, supplemental P input</td>
</tr>
<tr>
<td>Cloud probability</td>
<td>Feature</td>
</tr>
<tr>
<td>Cloud fraction</td>
<td>Feature</td>
</tr>
<tr>
<td>0.65 µm reflectance</td>
<td>Feature</td>
</tr>
<tr>
<td>0.65 µm reflectance standard deviation (on a 3x3 grid)</td>
<td>Feature</td>
</tr>
<tr>
<td>3.75 µm reflectance</td>
<td>Feature</td>
</tr>
<tr>
<td>3.75 µm brightness temperature</td>
<td>Feature</td>
</tr>
<tr>
<td>11.0 µm brightness temperature</td>
<td>Feature</td>
</tr>
<tr>
<td>11.0 µm brightness temperature standard deviation (on a 3x3 grid)</td>
<td>Feature</td>
</tr>
<tr>
<td>Aerosol optical depth</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Alpha (aerosol angstrom exponent)</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Surface pressure</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Aerosol single scattering albedo</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Aerosol asymmetry parameter</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Total ozone</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Time index</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Ground-measured GHI</td>
<td>Supplemental P input</td>
</tr>
<tr>
<td>Cloud optical depth</td>
<td>PHYGNN output</td>
</tr>
<tr>
<td>Cloud effective particle radius</td>
<td>PHYGNN output</td>
</tr>
</tbody>
</table>

Besides the custom loss function described in (2), the PHYGNN architecture used in this work is a standard feed-forward neural network with 3 layers, 64 nodes per layer, 18 input features (including one-hot encodings), and 2 output channels. The network also includes a 1 percent dropout rate on all hidden layer output connections during training. The model is trained using the Adam optimizer with a learning rate of 0.002. The training is split into 100 pre-training epochs with $\alpha_{NN} = 1$ and $\alpha_{PHY} = 0$, and 100 final training epochs with $\alpha_{NN} = 0.5$ and $\alpha_{PHY} = 0.5$. Model weights are updated 64 times per epoch (64 batches per epoch). Loss values are calculated using mean absolute error.

The PHYGNN model is trained using satellite data from GOES [6], reanalysis data from Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA2) [7], cloud identification from PATMOS-x [9], surface albedo data derived from MODIS [17], and ground measurement data from the NOAA Surface Radiation Budget (SURFRAD)
III. RESULTS

The results presented in Fig. 1 and Fig. 2 show the Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) RMSE for four years of the NSRDB irradiance data vs. ground-measured irradiance, respectively. Data presented in Fig. 1 and Fig. 2 is exclusively from the 20 percent of the data that the simple feed-forward neural network and PHYGNN models were not trained on. For these results, the four years of NSRDB data at each of the seven SURFRAD sites is produced twice: once using source data from the GOES East satellites, and once using source data from the GOES West satellites. Fig. 1 and Fig. 2 present results from all daylight cloudy timesteps that are missing cloud property inputs from the DCOMP algorithm [10]. The “DCOMP + Gap-Fill” data in Fig. 1 and Fig. 2 was produced using the NSRDB version 3.1.0 cloud property heuristic gap-fill procedure described in Section I. Relative error metrics are calculated with respect to the mean of the data. It should be noted that because these results are for all daylight cloudy timesteps, the absolute magnitude of the errors can be quite high because the mean data value which is used to normalize the metrics includes low irradiance timesteps when the sun is rising or setting. However, these timesteps are important to include because the DCOMP algorithm performs poorly when the sun is close to the horizon.

As shown in Fig. 1 and Fig. 2, NSRDB data produced from the heuristic gap-filled DCOMP cloud properties exhibits high relative RMSE. The simple feed-forward neural network with loss function defined by (1) is shown to predict accurate cloud properties for some locations but performs worse than the heuristic gap-fill method for others. In contrast to the simple feed-forward neural network model, the PHYGNN model with loss function defined by (2) significantly improves the validation statistics for all locations, reducing the relative GHI RMSE by 6 to 13 percentage points from the heuristic gap-filled DCOMP results.

A noteworthy result is the highly inaccurate NSRDB GHI data at the Penn. State University (PSU) location predicted by both the heuristic gap-fill and simple feed-forward neural network models (relative GHI RMSE of 54.2 and 65.5 percent, respectively) and the significant improvement by the PHYGNN model (relative GHI RMSE of 40.4 percent). The inaccurate irradiance at PSU is primarily because the site is at a very extreme viewing angle from the GOES West satellites, which dramatically increases the RMSE even though the predicted irradiance from the GOES East satellites is accurate. In fact, in the actual NSRDB data, locations as far east as Pennsylvania would never be produced using data from the GOES West satellites. Nevertheless, this provides a challenging prediction scenario for these models and shows that the PHYGNN model is able to learn how to produce accurate cloud properties even in the worst out-of-sample conditions, reducing the relative GHI RMSE by 13.8 percentage points.

IV. CONCLUSIONS

In this work, we use machine learning techniques to predict physical and optical cloud properties for input to satellite-derived solar resource data. By training a neural network with an understanding of a full radiative transfer model, our physics-guided approach is able to significantly increase the accuracy of cloud property predictions as related to the surface irradiance experienced on the ground. We validate this PHYGNN model
against four years of ground measurement data with inputs from four GOES satellites, along with a simple feed-forward neural network model and the heuristic gap-fill methodology that is currently used in the NSRDB. We show that the PHYGNN model greatly outperforms the simple feed-forward neural network and heuristic gap-fill methodology and is able to improve the accuracy of irradiance data in the NSRDB, especially for timesteps that were previously missing cloud property data from the traditional cloud property retrieval algorithms. Open-source software for creating PHYGNN models has been made available on GitHub [19], and NSRDB data including the improvements from the PHYGNN predictions will be available to the public in the NSRDB 2020 data (NSRDB version 3.2.0).

ACKNOWLEDGMENT

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (Systems Integration Subprogram) Contract Number 36598. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, perpetual license to freely use, reproduce, and distribute the published form of this work, or allow others to do so, for U.S. Government purposes.

A portion of this research was performed using computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory.

REFERENCES

