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Trends in Carbon Management

Emerging carbon conversion technologies need to be
resilient and responsive to market and policy shifts

Challenge: How do we designh carbon conversion technologies,
including capex-intensive facilities, to succeed in tomorrow’s
dynamic economy?
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Opportunity: Designed Resilience

“It is not the strongest of the species that survives, nor the most intelligent, but
the one most adaptable to change” Leon C. Megginson

National Academy of Sciences Definition of Resilience: “The ability to prepare and
plan for, absorb, recover from, and more successfully adapt to adverse events”

I. Linkov, et al., Changing the Resilience Paradigm, Nature Climate Change 4 (2014) 407. Po rte r’s Five Fo rces

Exhibit
Goal: Enable the design of versatile catalytic carbon Forces governing “:"“‘ in an industry
conversion technology platforms capable of nimbly l """"""" l
responding to external stimuli

Critical Needs: -m ’ \\
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* Feedstock flexibility - “‘“/
 Adaptive process design and control

* Low conversion costs

* Product tunability m

reat ot
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Catalytic Fast Pyrolysis (CFP) Technology Platform

Potential for whole biomass conversion to drop-in hydrocarbon fuels at
high yields (>75 gal/ton)

Raw Biomass Hydrogen Non-condensed gas Hydrogen
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Advantages of the Technology: D. Ruddy, et al. Green Chem 16 (2014) 454
* Cost of wood-based feedstock is de-coupled from petroleum price
Vapor-phase catalytic upgrading provides control over product slate
Reduces downstream hydrotreating costs as compared to fast pyrolysis
Upgraded bio-oil could be co-processed in existing refinery infrastructure
* Produces a drop-in fuel blendstock, with co-product opportunities
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CFP Process Design Options

In-Situ CFP Ex-Situ Entrained Bed CFP Ex-Situ Fixed Bed CFP
Metal Oxide Catalysts Zeolite Catalysts Metal-Acid Catalysts
H Pyrolysis lﬁ
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) Sand
Low capex requirements Controlled upgrading More diverse catalysts and
Harsh upgrading environment chemistries possible
environment Higher capex required Longer catalyst lifetimes required
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Ex-situ Fixed Bed CFP: 2018 State-of-Technology
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Upgrading Temperature: 435 °C ® PUTIO 0 10 20 30 40 hSO 60 70 80
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M. Griffin, et al., Energy Environ. Sci., 11 (2018) 2904-2918. NiMo Su/fide, LHSV: 0.2-0.3, 13 MPa 3
R. French, et al., ACS Sustain. Chem. Eng., 9 (2021) 1235-1245. Pacific Northwest
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Progress on Reducing Biofuel Production Costs from CFP

Reduced modeled biofuel production costs by ca. S3/GGE since 2014 by
improving carbon efficiency
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Targeted R&D on process optimization/durability and product diversification
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Process Optimization and Durability




Assessing Process Durability

H Pyrolysis lj . . .
u Vapor Progress: integrated experiments performed for 100+ reaction cycles reveal
— minimal impact on yields, oil-quality, and product composition
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support for technology transfer efforts
R. French, et al., ACS Sustain. Chem. Eng., 9 (2021) 1235-1245.
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Increasing Cycle Length

H Pyrolysis I 1
Vapor

»

Char
Combustor
(Fluidized
Bed)

Hot Gas
Filter

Upgrading
Catalyst

Pyrolyzer

Circulating
Sand

Conditions

Feedstock: Loblolly Pine
Catalyst: 0.5 wt% Pt/TiO,
Pyrolysis Temperature: 500 °C
Upgrading Temperature: 435 °C
Catalyst Mass: 100 g

WHSV: 1.4 g biomass/gcat*h
Near Atmospheric Pressure
Hydrogen Concentration: 83%
Biomass:Catalyst Ratio: 3-12
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Progress: optimizing the size and shape of the catalyst support reveals
improved deoxygenation activity and increased cycle length
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Coke on catalyst reduced from 2.1 wt% to 1.9 wt%
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Tracking Inorganic Deposition

Catalyst characterization after reaction with forest
residues revealed considerable potassium
deposition at the leading edge of the catalyst bed

ICP-OES
‘ WW ...............................................

-Ji_ | — B Potassium
e <100 ppm as prepared
:-1;"". R

v Phosphorous
:.L'-:"'-.,'i i <50 ppm as prepared
g
‘,-;:'_:'.-"‘.!-'—u—t Iron
A}'TI'”—’ . 40 ppm as prepared

> Calcium

58 ppm as prepared
|
L 0 500 1000 1500
i ppm

Experiments performed with a 50:50 wt% blend of clean pine and forest
residues for a cumulative time on stream of 32 h
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Dark field STEM images and EDS maps indicate well-dispersed K on
the surface of the post-reaction samples from the top of the bed

Mid T

T N

Ongoing Research:
Determine the impact of
oo/ | K on catalyst properties
. and performance

T 298 296 294 202
Binging Energy (eV)

XPS Spectra of K 2p Region
confirm K deposition
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Informing Scale Up

Progress: development of a new simulation framework that leverages DOE high performance computing
capabilities for multiscale modeling to inform in-silico optimization and process scale up

Ourflow

f Predicted catalyst coke profile
as a function of time on stream

Sharp temperature gradients
during regeneration at pilot-scale
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Outcome: early identification of potential process
disruption at the pilot scale due to thermal excursions
during regeneration. Ongoing collaborative research
targets alternative reactor designs to improve heat
transfer capabilities at scale

Iriflew

U.S. DEPARTMENT OF ENERGY

BIVENERGY TECHNOLOGIES UFFICE Image made using COMSOL Multiphysics® software and
provided courtesy of COMSOL.%6

B. Pecha, et al., Reaction Chemistry and Engineering, 6 (2021) 125-137.
B. Adkins, et al., Reaction Chemistry and Engineering, (2021) in press
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Product Diversification




Expanding the Product Slate from CFP
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Valorizing the CFP Aqueous Waste Stream

Expanding product slate from CFP technology platform by developing separation
strategies for chemical precursors

Separations Approach Product Characterization
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A. N. Wilson, et al., Green Chemistry, 21 (2019) 4217-4230
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Bioinsecticides derived from CFP Bio-Qil

Fractions of CFP bio-oil exhibit activity as bioinsecticides, presenting an
opportunity to improve sustainability in energy and food production sectors
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Targeting Olefins as Primary CFP Products

Early-stage results suggest that modifying the catalyst and process conditions
enables the CFP product slate to be tuned towards olefins

* Feedstock: Southern
yellow pine

* Pyrolysis and catalysis
temperature: 500°C

* Apparatus: Tandem
micro-furnace
pyrolyzer coupled to a
GC-MS/FID

* Pressure: 115kPa

« B/C:0.05

* Runin triplicate

Carbon Yield, % (g C / g C in pine)
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Reduced Ga species (e.g., [Ga(OH),]* and [GaH(OH)]*)
appear to be responsible for improved olefin yield
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Ga* indicates Ga/ZSM-5 pretreated in H,

K. lisa, et al., Green Chemistry, 22 (2020) 2403-2418
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Summary and Conclusions

* Designed resilience as a central theme for emerglng carbon
conversion and management technologies e

* Critical Needs:
Feedstock flexibility

Adaptive process design and control -

Low conversion costs

Product tunability
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* Catalysis enables the development 11 T

of versatile technology platforms “\rog j o 8-
that meet these needs ot
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