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Executive Summary 
The vertically integrated investor-owned utilities, municipal utilities, and co-ops operating in the 
Florida Reliability Coordinating Council (FRCC) are expected to continue their current trend of 
procuring more solar photovoltaic (PV) capacity in response to PV price declines and city-level 
renewable energy goals. The municipal utilities participating in the Florida Alliance for 
Accelerating Solar and Storage Technology Readiness (FAASSTeR) project are no exception 
and may face distinctive PV integration challenges because their power system sizes are 
relatively small. In service of the FAASSTeR project, this study seeks to quantify the particular 
challenges that the four FRCC municipal balancing authorities—Gainesville Regional Utilities 
(GVL), City of Tallahassee Electric & Gas Utility (TAL), JEA, and the Florida Municipal Power 
Pool (FMPP)—may have regarding increasing balancing reserve needs, as well was the potential 
impact of two mitigation strategies: increased operational frequency and coordinated operations. 

This study analyzes the relationship between PV penetration and reserve needs by constructing 
data sets of historical load shapes paired with time-synchronous solar generation profiles 
simulated to contain different amounts of available generation per unit of annual load. Load and 
solar forecast errors are then estimated for different timescales. Depending on assumed 
operational practice, day-ahead (DA) forecasts and dispatch, hour-ahead (HA) forecasts and 
dispatch, or sub-hourly (SH) forecasts and dispatch, reserve requirements are estimated by 
covering a certain percentage of forecast errors for forecasts with the appropriate amount of 
look-ahead (e.g., day-ahead for DA, hour-ahead for HA). We explore the impact of system size 
and operational practice through the lens of eight FRCC balancing authorities (BAs)—GVL, 
TAL, JEA, Seminole Electric Cooperative (SEC), FMPP, Tampa Electric Company (TEC), Duke 
Energy (FPC), and Florida Power & Light (FPL)—and two fictitious “reserve sharing groups”—
MUNIS (GVL, TAL, JEA, and FMPP) and FRCC (all BAs except SEC). 

Given our focus on municipal utilities and the desire to map out the relationships between 
reserve requirements, PV generation and operational practice—especially for small BAs, which 
are less described in the relevant literature—our results focus on the steps a small BA like GVL 
could take to integrate increasing amounts of solar (we explore up to 30% PV). Most of these 
steps are potentially relevant to the other Florida municipal BAs (TAL, JEA, and FMPP) as well; 
however, GVL, as one of the smallest BAs (only TAL is of similar size) and as a BA that relies 
primarily on day-ahead forecasting of load as well as day-ahead commitment and dispatch 
decisions, may have the most to gain from improved operational practices. (TAL, in contrast, 
uses hour-ahead load forecasts and dispatch to update its day-ahead priors.) Overall, we find: 

• Moving from day-ahead to hour-ahead load forecasting, solar forecasting, and system 
dispatch could enable FRCC’s smallest municipal balancing authority, GVL, to 
incorporate about 30% solar generation with median reserves around 20% instead of 30% 
to 60% of load. (Median day-ahead reserves of 60% reflect the conservative, low-data 
solar forecasting methodology used in this study, while the 30% lower bound reflects 
75% improvement on that benchmark, as may be achievable with weather forecast-based 
solar forecasts.) 

• If all Florida municipal utilities collectively procured operational reserves, this could 
again approximately halve GVL’s reserve requirements at 30% solar generation, reducing 
the median requirements to about 10% of load. For comparison, the median reserve needs 
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of an “FRCC” reserve sharing group at 30% solar generation would be about 6% of load 
(all else equal). 

• Reserve needs vary greatly depending on how much forecast uncertainty is directly 
mitigated with reserves procurement. For example, if all Florida municipal utilities 
collectively procured operational reserves and had a PV penetration of about 30%, the 
median reserve requirements could be anywhere from 5.5% to 14% of load, if reserve 
levels are selected to cover 80% to 99% of forecast errors. This range overlaps with the 
analogous range for all of FRCC analyzed together, which is 3.5% to 9.0% of load. 

Although we did not analyze reserve requirements from a rigorous, BA-specific North American 
Electric Reliability Corporation (NERC) reliability perspective and used conservative, low-data 
“persistence” forecasts (i.e., no weather forecast information) when historical data on forecast 
errors were not available, this analysis demonstrates clear, quantified trends that can help guide 
utility decisions regarding operational changes in support of PV integration. Solar forecasting, 
operational forecast and dispatch frequency, and operational footprint are first-order drivers of 
reserve need with increasing PV capacity. It appears that BAs of all sizes have options for 
integrating more solar with affordable reserve costs relative to current practice.  
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1 Introduction 
The Florida power system is composed of vertically integrated investor-owned utilities, 
municipal utilities, and co-ops. The State of Florida does not have a renewable portfolio 
standard, but as solar photovoltaic (PV) prices have declined, almost all Florida utilities have 
begun procuring solar capacity. Utility-scale solar reached 2,658 megawatts (MW) in 2020 
(Florida Public Service Commission 2020). This trend is expected to continue as PV prices 
further decline (NREL 2020; Bolinger et al. 2020) and city-level renewable energy goals grow in 
number and stringency (City of Gainesville 2018; City of Tallahassee 2019; City of Orlando 
2017). Over the next 10 years, the state anticipates 13,303 MW of new solar PV capacity 
(Florida Public Service Commission 2020). 

Numerous studies of renewable energy integration and the value of renewable energy forecasting 
suggest that Florida power system operators may modify their operations to absorb increasing 
amounts of solar generation. In addition to cycling generators and periodically curtailing solar to 
satisfy, e.g., minimum generation and ramp-rate limits (Hale, Stoll, and Novacheck 2018), 
Florida balancing authorities (BAs) may integrate solar forecasting (Martinez-Anido et al. 2016) 
and specify additional operating reserves to cover increasing net-load3 variability and uncertainty 
on 4-second (regulating reserve) to 1-hour (ramping) timescales (Ibanez et al. 2012; Ela et al. 
2014). 

These activities can be undertaken by power system operators of any size; however, the actions 
required of large system operators or neighboring systems operated cooperatively are smaller 
than those required of a small system when measured on a normalized basis (e.g., percent of load 
for a given solar penetration) due to the damping effects of aggregating many geographically 
dispersed solar plants (Mills and Wiser 2010; Parsons et al. 2014; van Haaren, Morjaria, and 
Fthenakis 2012). Although this fact is generally known, the impacts on reserve requirements 
have not been well quantified for small utilities. For example, Bloom et al. (2016) quantify the 
reserve savings of BA aggregation, but their smallest level of aggregation corresponds to our 
most aggregated case. 

The Florida municipal utilities make a good case study in this regard, as they are operated as four 
different BAs of varying size. They can also be analyzed alongside other Florida Reliability 
Coordinating Council (FRCC)4 balancing authorities that add to the diversity of system size and 
ownership type (Figure 1). Table 2 summarizes the FRCC BAs as they were represented in our 
analysis, which began in 2018 and uses 2024 as its study year.  

 
3 Net load refers to load minus variable generation (e.g., from solar or wind plants). In other words, it is the amount 
of generation to be supplied from more dispatchable generators. In this paper, net load primarily refers to load minus 
solar generation. 
4 Starting from July 1, 2019, FRCC has been winding down its regional entity functions, but will continue its 
traditional member functions and coordinating roles, which include its work as a Reliability Coordinator and 
Planning Authority. SERC is the new Compliance Enforcement Authority for all North American Electric 
Reliability Corporation (NERC) registered entities that are currently within the FRCC Region (FRCC 2019). In 
2019, early release of U.S. Energy Information Administration (EIA) Form 861 reported some utilities listed in 
Table 1 as SERC and others as FRCC. For consistency, we use 2018 data instead. 
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Figure 1. Geographic location and interconnections between FRCC BAs 

Table 2. Summary of BAs Studied in this Analysis, with Estimates of PV Capacity and Annual 
Load for 2024 

BA ID BA Namea Ownership 
Type 

Generation 
Capacity 
(MW)b,c 

PV 
Capacity 
(MW)b,d 

PV 
Capacity 

(%) 

Annual 
Loadd,e 
(TWh) 

Annual PV 
Generation 

(GWh) 

PV 
Generation 

(%) 

GVL 
Gainesville 
Regional 
Utilities 

Municipal 750 1.2 0.2 1.73 1.8 0.1 

TAL 
City of 
Tallahassee 
Utilities 

Municipal 1,009 60.0 5.9 2.93 88.1 3.0 

JEA JEA Municipal 2,555 277.4 10.8 14.09 422.1 3.0 

SEC 
Seminole 
Electric 
Cooperative 

Cooperative 4,141 2.2 0.1 15.79 4.0 0.0 

FMPP 
Florida 
Municipal 
Power Pool 

Municipal 5,640 244.4 4.3 16.07 374.9 2.3 

TEC 
Tampa 
Electric 
Company 

Investor 
Owned 7,783 626.7 8.0 21.51 1,016.2 4.7 

FPC Duke Energy 
Florida, Inc. 

Investor 
Owned 13,175 304.0 2.3 43.32 487.0 1.1 

FPL 

Florida 
Power & 
Light 
Company 

Investor 
Owned 30,915 1,007.0 3.2 123.30 1,645.8 1.3 

a 2018 EIA Form 861 data (EIA 2019) 
b Nameplate capacity of current generators, planned builds, and retirements as represented in the SNL database 
(S&P Global 2018) as of October 2018, plus known planned PV builds in JEA and FMPP 
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c In some cases, distributed generators/co-gen units are included and assigned to the hosting BA (thus overstating 
BA-level generating capacity) 
d Distributed PV capacity is not included. Consistent with that, annual load is the “net energy for load,” which does not 
include load that is served by behind-the-meter generation. 
e Estimated annual load for 2024, created by combining Federal Energy Regulatory Commission (FERC) Form 714 
net energy for load 2006–2015 (FERC 2015) and net energy for load growth rates from the 2019 Florida electric 
utilities’ Ten-Year Site Plans (Florida Public Service Commission 2019). Further details are provided in Section 4.1. 

This analysis benefited from close cooperation with Gainesville Regional Utilities (GRU or 
GVL), the City of Tallahassee Electric & Gas Utility (TAL), JEA (Jacksonville’s municipal 
utility), Orlando Utilities Commission (OUC), Lakeland Electric, and the Florida Municipal 
Electric Association (FMEA) through the Florida Alliance for Accelerating Solar and Storage 
Technology Readiness (FAASSTeR) project.5 Iterating with team members and visiting during 
workshops helped the authors better understand how GVL, TAL, JEA, and the Florida Municipal 
Power Pool (FMPP)—the latter of which jointly operates FMEA, OUC, and Lakeland Electric 
resources—operate today, and what challenges they may have integrating more PV generation in 
the near term. 

This paper describes the impact of system size and operating practice on the amount of balancing 
reserves that need to be held to cover the variability and uncertainty of net load over a wide 
range of PV penetrations. By performing this study in the context of FRCC and the municipal 
utilities therein, we aim to provide specific information of use to those utilities and the State of 
Florida more broadly, as well as general information of interest to the power system community. 

2 Large System Operational Practices and 
Implications for Balancing Reserves 

Power systems are operated with an interlocking series of processes, each of which is 
characterized by its key decisions and time frames. Focusing on the day-to-day operations that 
ensure electricity supply and demand balance at all times, these processes can generally be 
categorized into the three stages of unit commitment (UC), security-constrained economic 
dispatch (SCED), and real-time operations. The first stage is typically run once a day, ahead of 
the following day’s operations, and is therefore often referred to as day-ahead UC. In the UC 
process, the system operator determines the least-cost combination of generating units to be on 
during each time interval in the next 24-hour period based on the day-ahead load forecast and 
respecting the limitations of the transmission system and each unit’s physical operating 
constraints, including minimum off and on times (FERC 2006). This process fixes the binary 
on/off unit commitment decision for slower-starting generators (e.g., nuclear, coal, and natural 
gas combined cycle plants) and provides an initial dispatch plan that is refined in subsequent 
stages.  

The second stage, SCED, happens throughout the operating day, on regular, potentially 
interlocking schedules, or in response to new information. During SCED, operators determine 
the level at which each committed resource should operate to ensure reliability at minimum cost, 
subject to the physical, contractual, and institutional constraints in the system. In addition to the 
units committed in the first stage, operators can also quick-start generators (e.g., natural gas 
combustion turbines) on reserve to respond to unexpected changes in supply and demand or 
contingencies (Milligan et al. 2012). Real-time operations must keep the demand, generation, 

 
5 https://faasster.org/  

https://faasster.org/
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and interchange in balance to maintain a system frequency within defined limits (NERC 2016). 
During real-time operations, generators follow the dispatch plans set by the SCED phase; for a 
subset of generators, those plans include the supply of operating reserves, which are the control 
mechanisms by which real-time balancing and reliability are achieved.  

Operating the power system is difficult because there is variability and uncertainty in both supply 
and demand, and the two must be in balance every second. Operating reserves are needed to 
achieve this feat for both normal operation and during severe, yet rare, events (Ibanez, Krad, and 
Ela 2014). Among the operating reserves, regulation is held to provide continuous, fast, and 
frequent (second-to-second and minute-to-minute) correction of supply and demand and provide 
frequency support (NERC 2017). The service is dispatched by system operators sending out a 4-
second-interval automatic generation control (AGC) signal to generating units and responsive 
loads that have the ability to rapidly adjust their dispatch set point and automatically follow such 
signals. This regulation process is a key part of operators’ balancing strategies during normal 
operation (Ela, Milligan, and Kirby 2011). Flexibility reserve, also known as ramping reserve, is 
used to respond to less frequent failures and events that occur over longer time frames (typically 
10–20 minutes) and that may lead to a shortage of ramping capability, such as wind forecast 
errors (Milligan et al. 2010). Regulating reserve is required in all U.S. power markets, whereas 
ramping reserve is an emerging product that is currently only available in the California 
Independent System Operator (CAISO) and Midcontinent Independent System Operator 
(MISO). In this report, we use balancing reserves to refer to these two types of real-time 
adjustments that operate at different timescales. 

NERC requires BAs to hold sufficient amounts of operating reserves to respond to imbalances 
between demand and supply, recover after an event (e.g., sudden loss of supply or transmission), 
and respond to frequency deviations, but leaves the specific calculation of the reserve needs to 
the balancing area’s discretion (NERC 2002). Failure to meet a frequency-related control 
performance standard or exceeding the balancing authority area control error limit for more than 
30 consecutive minutes triggers a violation (NERC 2016) and results in a base penalty that 
ranges from $1,000–$25,000/day and $2,000–$335,000/day, depending on such factors as 
violation risk factor, severity level, and the BA’s compliance history (NERC 2014). The addition 
of solar PV increases the variability and uncertainty between day-ahead scheduling and real-time 
operations (Shedd et al. 2012; Lew et al. 2013). As a result, additional regulation and flexibility 
reserves may be deployed to stay within NERC’s reliability bounds by managing the added 
variability and uncertainty (CAISO 2010; Mills et al. 2013; Lu et al. 2011; Ma et al. 2012). 

Newer flexibility (or ramping) reserve products have been designed to address deviations from 
the forecasted net-load ramp. As such, they are generally slower (i.e., lower ramp rate) and 
longer in duration than regulating reserves. For example, CAISO procures flexible ramping 
reserve (both up and down in the 15-minute and 5-minute markets) at a maximum of the 2.5th 
percentile (down reserves) and the 97.5th percentile (up reserves) of the net-load error 
(Westendorf 2018). It is continuously procured and dispatched in the real time dispatch. This 
ensures that sufficient ramp capability is committed in the real-time unit commitment to cover 
uncertainty materializing in real-time dispatch, but does not cover uncertainty between the 15-
minute market runs (CAISO 2020). A variety of technologies provide this service, including 
natural gas, hydro, demand response, and coal. The price of flexible ramping reserve is very low 
in the upward direction and almost always at $0 per megawatt-hour (MWh) in the downward 
direction (CAISO 2020). In contrast, regulation reserves are dispatched after the final SCED run 
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(sometimes referred to as the real-time market), through following the AGC signal, not through 
economic bids, because the system relies on regulation reserves to resolve second-to-second 
imbalances that drive frequency deviation and area control error (CAISO 2015). CAISO’s 
regulation reserve averaged around 430 MW and 350 MW (representing 1.0% and 0.8% of peak 
load) for up and down regulation in 2019, respectively, and typically has the highest price among 
all ancillary services (CAISO 2020). It is served primarily by natural gas and hydro, with an 
increasing share served by battery storage. 

Capacity expansion models (CEMs), which are used in planning processes to help determine 
what new generating units may be needed and what older generating units should be retired, 
often include reduced-form representations of reserve requirements to ensure that they are 
planning a realistic, reliable system. The CEMs that the authors are familiar with were designed 
for larger systems with significant quantities of wind and solar generation, and therefore have 
reserve requirements that attempt to summarize the reserve needs implied by different quantities 
of wind and solar capacity (Halamay et al. 2011; Sullivan, Eurek, and Margolis 2014). For 
example, the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment 
System (ReEDS) capacity expansion model (Brown et al. 2020) requires regulation reserve to be 
1% of load plus 0.5% of wind generation and 0.3% of solar PV capacity, and flexibility reserves 
equal to 10% of wind generation plus 4% of solar PV capacity, with the additional reserves for 
PV only held during daylight hours. These requirements were derived from Ibanez et al. (2012) 
and are generally understood to apply only to large-enough BAs operating with day-ahead unit 
commitment followed by intraday and sub-hourly (SH) SCED, with all operations informed by 
load, wind, and solar forecasts at the relevant timescales.  

3 Florida Municipal Utilities’ Operational Practices 
In Florida, 33 municipal electric utilities serve approximately three million residents—14% of 
the state’s population (FMEA 2020). Their operational practices in forecasting, dispatch, and 
reserves vary. To understand their practices, we sent a questionnaire out to six utilities: GVL, 
TAL, JEA (formerly Jacksonville Electric Authority), Lakeland Electric, Florida Municipal 
Power Agency (FMPA), and OUC. 

The questionnaire focused on four issues: (1) operational relationships, including trading and 
reserve sharing partners; (2) dispatch and reserve practices, including unit commitment 
frequency, dispatch frequency, software, reserve amount, risks, and concerns; (3) load 
forecasting, including historical data used, forecast method, forecast scope, accuracy, and 
corrective actions; and (4) solar forecasting, including method and scope.  

One of our main observations based on the questionnaire answers is that the municipal BAs have 
significantly different forecast and dispatch procedures (Table 3). GVL, for example, relies 
mainly on day-ahead forecasting, unit commitment, and dispatch. Because they dispatch only a 
handful of generating units, the headroom of the one or two units assigned to follow the AGC 
signal is relatively large proportional to load such that GVL can ride through most day-ahead 
forecast errors using the day-ahead dispatch plan—additional forecast adjustments mid-day 
would be unlikely to significantly change dispatch instructions. TAL and JEA are the only BAs 
in this group that systematically update load forecasts and system dispatch on an hourly basis. 
FMPP is the only BA to incorporate solar forecasts based on expected weather. At this point, 
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none of the Florida municipal utilities are conducting sub-hourly, real-time dispatch with 
accompanying sub-hourly load and solar forecasts. 

Table 3. Summary of FRCC Municipal BA Operating Practice 
Balancing 
Authority 

Day-Ahead Forecasting Intraday Updates Operating 
Reserves Load Solar Load Solar 

Gainesville  
(GVL) 

Hourly  
10-day 
horizon 

N/A N/A N/A N/Ab 

Tallahassee  
(TAL) 

Hourly 
16-day 
horizon 

Hourly 
fixed profile 

Hourly updates N/A ±16 MW 

JEA Hourly 
14-day 
horizon 

N/A Hourly 
5-min updates 

N/A ±50 MW 

FMPP (incl. 
FMPA, OUC, 
Lakeland) 

Hourly 
7-day horizon 

Hourly 
7-day horizon 

Infrequent updates 
as needed 

Infrequent updates 
as needed 

+50 MWa,b (more 
if no quick starts) 

a FMPP requires 50 MW of up reserve during unit commitment, primarily to have sufficient spinning capacity to meet 
Florida Reserve Sharing Group obligations. As such, this does not represent “regulation reserves” per se. 
b Although Gainesville and FMPP do not have precise regulation reserve requirements, during real-time operations 
they have significant capacity following AGC and continuously monitor both area control error and their ability to meet 
Florida Reserve Sharing Group obligations. 

The findings from this questionnaire clarified that in addition to BA size, it is important to 
consider operational practice as a key driver that impacts the amount of reserves a BA needs to 
hold to manage net-load variability and uncertainty. We identified three categories of operational 
practice, distinguished by the highest frequency of forecasts and dispatch: day-ahead (only), 
hour-ahead, and sub-hourly. This process also clarified that the reserves literature for systems 
with significant wind and solar generation, which almost exclusively addresses these questions 
for large BAs with sub-hourly operations, provides little actionable information for smaller BAs 
with less frequent dispatch. 

4 Methods 
The amount of reserves a balancing authority needs to hold fundamentally depends on the 
expected sizes of the gaps between generator dispatch points and actual demand. For balancing 
(e.g., regulation and flexibility) reserves, the key differences of interest are between forecasted 
and actual demand, because under normal operating conditions the system dispatch will be set to 
follow the load forecast—reserves then need to be available to make up the difference between 
the forecasted dispatch point and the actual real-time demand. Because PV generation is zero 
marginal cost, its variable output is generally dispatched first and, in many ways, shows up in the 
system as a negative load. Therefore, we can also think about balancing reserves in relation to 
the gap between forecasted and actual net load, where for the purposes of this study net load is 
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defined as load minus PV generation.6 In either case, balancing reserve requirements are driven 
by forecast errors. 

Although we are ultimately interested in net-load forecast errors, because load and solar data are 
fundamentally different, in this study we estimate load and solar forecast errors separately, 
estimate the amount of reserves needed to cover those types of forecast errors separately, and 
then combine them (nonlinearly) to arrive at an overall reserves requirement.  

We focus on estimating reserve requirements for different FRCC BAs assuming different levels 
of PV penetration and different operating practices. We estimate forecast errors for load and 
solar generation using different forecasting horizons (e.g., day-ahead, hour-ahead, or 5-minute-
ahead), selected based on assumed operational practice. The forecast methods we use are 
conservative, persistence-type forecasts that have low data requirements but are tailored to make 
use of all the load and solar data that were available. Then, the estimated load or solar forecast 
errors are binned and we compute percentile levels per bin to establish a per-bin level of reserves 
in megawatts or percent of load. The reserve requirements are then applied to a time-
synchronized data set of historical load and simulated solar generation that covers 2007–2012 at 
5-minute resolution (described in the next subsection and in Appendix A). Our results consist of 
statistical summaries of the reserve requirements themselves, which we use to analyze the impact 
of PV generation and operational practices on the reserve requirements of FRCC BAs of 
different electrical size and geographic extent. 

4.1 Time-Synchronized Load and Solar Data Sets 
The primary inputs of our analysis are historical load shapes paired with solar generation profiles 
created to contain an amount of available energy approximately equal to a certain percentage of 
annual load. The simulated solar generation profiles are for the same weather years as the 
historic load shapes to capture realistic correlations between load and solar generation. Our 
starting point for analysis is an estimate of PV capacity and annual load levels for the 2024-time 
frame. 

The load profiles used in our analysis are historical data from 2007–2012 that were scaled to 
contain an equal amount of load in each year. The original data are 2006–2015 net energy for 
load for the eight BAs listed in Table 2. The energy contained in each profile was scaled to 
capture the growth expected between 2015 and 2024 by the 2019 Florida electric utilities’ Ten-
Year Site Plans (Florida Public Service Commission 2019). We chose 2024 as the target model 
year to better align with our starting point of all planned PV capacity (current plants plus known 
PV development plans). 

The goal of the study was to analyze reserve requirements over a wide range of solar 
penetrations, where solar penetration is defined as the percent of annual load that, on net and 
absent any solar curtailment, could be supplied by solar generation. To develop realistic solar 
generation profiles for each BA, we started with the locations of existing and planned PV plants 

 
6 More generally, net load is defined as load minus all variable generation, which could include resources like wind 
and run-of-river hydro, in addition to PV. 
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and then added simulated PV plants to obtain aggregate generation profiles with realistic 
geographic scaling.  

Solar profiles for 2007–2012 are available on a location-by-location basis from the Renewable 
Resource and Power Data tool (R2PD).7 R2PD is a python interface for pulling Wind Integration 
National Dataset (WIND) Toolkit and Solar Integration National Dataset (SIND) Toolkit data 
from the DR POWER repository8 to produce aggregate, power system modeler-friendly wind, 
solar, and weather profiles. The actual and clear-sky solar generation profiles were originally 
computed using the System Advisor Model (SAM) (Blair et al. 2018) and basic specifications for 
utility-scale fixed-tilt and one-axis tracking plants, the former for urban and the latter for rural 
sites. Clear-sky generation is simulated based solely on latitude, longitude, date and time 
information, and plant specifications—it is the electricity output that would be expected if every 
day were perfectly sunny, which is a useful benchmark for understanding how actual generation 
compares to its theoretical maximum. Actual generation for historical conditions is simulated 
with the System Advisor Model using data from the National Solar Radiation Database 
(NSRDB) downscaled from 30- to 5-minute resolution using the methods described in Buster et 
al. (2021). 

Solar generation is placed near BAs’ transmission nodes, using a database, GridDB, that 
identifies which nodes are associated with each BA and which nodes are associated with existing 
or planned PV plants, existing or planned generation of any type, upcoming generation 
retirements, or load. Specific PV expansion sites were then selected by specifying which types of 
nodes were candidates for placement, and what percentage should be randomly selected for 
inclusion. As described in Appendix B, although there were many options for determining PV 
expansion nodes, this ended up having negligible impact on our results. In what follows, all 
results were produced by randomly selecting 50% of a BA’s nodes for PV expansion. 

 
7 https://github.com/Smart-DS/R2PD  
8 https://egriddata.org/dataset/nrel-renewable-energy-resource-data  

https://github.com/Smart-DS/R2PD
https://egriddata.org/dataset/nrel-renewable-energy-resource-data
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Figure 2. Workflow used to construct time-synchronized load and solar data sets for FRCC 

balancing authorities  

The workflow for creating per-balancing authority data sets of load and solar data is shown in 
Figure 2. Once the balancing authority, solar penetration, and solar expansion locations are 
specified, R2PD requires a list of specific PV capacities (in megawatts) to place at specific 
latitude-longitude locations. If current and/or planned PV capacity is to be included, that capacity 
is placed first and it is noted what percent of annual load that amount of generation covers. (For 
example, Tallahassee’s current and planned PV capacity is 60 MW, which in our data set 
corresponds to 3% of annual load.) Then, if additional PV capacity is desired (e.g., if we want a 
20% PV scenario for Tallahassee), we do a test run by placing 1 MW of capacity at each selected 
PV-expansion node, getting the resulting profiles, and then stating the amount of generation in 
units of percent of annual load per megawatt placed at all selected nodes (e.g., for our main 
Tallahassee case, we found 1.08% annual load per megawatt placed at 21 selected PV-expansion 
nodes). That factor is then used to determine how many megawatts per PV-expansion node 
should be placed to reach the target penetration (e.g., 15.8 MW for our running example to reach 
20% PV, because [20 – 3.0]/1.08 = 15.8 MW). Finally, we have the information needed to run 
through the entire Figure 2 workflow. Because R2PD uses a nearest-neighbor search with no 
double counting of sites, the actual solar profiles that are output do not exactly match our desired 
levels of PV generation (e.g., our running example ended up with 21.0% PV).  
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Figure 3. Example net-load shapes for different balancing authorities, seasons, and PV 

penetrations 

The resulting data sets show expected net-load patterns that reflect balancing authority size, 
geographic distribution, seasonality, weather, and amount of solar generation. For example, 
Figure 3 shows how net-load patterns change with increasing amounts of PV for three selected 
historical days (one in January, one in March, and one in August) and balancing authorities of 
different sizes. For all three balancing authorities, we see similar seasonal load patterns: two 
daily peaks in winter that reflect significant amounts of electric heating, low and fairly flat 
daytime load with an evening residential peak in spring, and a classic summer-peaking pattern in 
August. Regarding solar generation, for similar penetration levels we see more variability in the 
net-load profiles of the smallest balancing authority (GVL) and much larger net-load dips on this 
particular March day in both GVL and JEA as compared to all of FRCC considered together. 
However, that does not mean that FRCC’s profiles are unimpacted by weather; the March FRCC 
profile is influenced by widespread afternoon cloudiness, at least at higher PV penetrations. 
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Figure 4. Clear-sky fraction ramp envelopes for eight BAs with similar amounts of simulated PV 

capacity (around 1 GW) 

The variability differences we see between smaller and larger BAs in individual daily profiles 
can be confirmed by summarizing larger quantities of data. Figure 4 and Figure 5 depict 
envelopes that contain 95% of the clear-sky fraction ramps (𝑅𝑅𝐶𝐶𝐶𝐶,∆𝑡𝑡), defined for each ramp 
timescale ∆𝑡𝑡 from 5 minutes to 8 hours as: 

𝑅𝑅𝐶𝐶𝐶𝐶,∆𝑡𝑡(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) − 𝐶𝐶𝐶𝐶(𝑡𝑡 − ∆𝑡𝑡) = 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)
𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) −

𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡−∆𝑡𝑡)
𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡−∆𝑡𝑡)  (1) 

where CF indicates clear-sky fraction, 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is actual solar generation, and 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the 
corresponding solar generation under clear-sky conditions. The clear-sky fraction, 
𝐶𝐶𝐶𝐶 = 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, is an important quantity that describes how actual solar generation 
deviates from what would be expected under perfect conditions. Because it is normalized, it is 
also comparable across systems of any size. By plotting bounds that contain 95% of clear-sky 
ramps, the envelopes in Figure 4 and Figure 5 describe solar variability beyond what is already 
expected based on Earth’s movements relative to the sun—the wider the envelope, the more 
variable the solar generation contained in the overall data set.  

The envelopes in Figure 4 represent how the solar variability for the eight BAs differs with PV 
capacity fixed at around 1 GW. It therefore captures the impact of geographic area and 
dispersion. GVL, TAL, and JEA are all highly concentrated—they serve single cities, JEA being 
the largest—and their aggregate solar profiles therefore show the most variability, with highly 
correlated and thus reinforcing weather in the component profiles. TEC (serving much of the 
Tampa metropolitan area) and FMPP (with most load and transmission nodes concentrated 
between Orlando and the City of Lakeland) are both larger but still geographically concentrated, 
at least as compared to SEC, FPC, and FPL. As the largest BAs in FRCC by both system size 
and footprint, FPC and FPL not surprisingly show the greatest amounts of geographic averaging. 
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SEC’s positioning in this plot reflects the fact that it has a wide-ranging service territory 
covering much of rural Florida. 

The differences in variability are even more pronounced if we look at similar PV penetration, 
measured here and in the remainder of the report as available PV generation9 divided by total 
energy demand, instead of similar PV capacity. Figure 5 shows clear-sky fraction ramps for eight 
BAs, all at around 30% PV penetration. Because the sizes of the BAs are so different, the 
corresponding capacities vary greatly—from GVL’s 341 MW to FPL’s 23,400 MW—and we 
end up with clear groupings solely based on BA electrical (rather than geographic) size. Smaller 
quantities of PV show higher relative variability, such that GVL and TAL profiles are most 
variable, and FPL profiles are the least variable, according to the clear-sky fraction ramp metric.  

 
Figure 5. Clear-sky fraction ramp envelopes for eight BAs with PV penetrations on an annual 

generation basis (around 30% PV for each respective BA) 

4.2 Assumed Operational Practices 
Based on our understanding of Florida municipal utility and large balancing authority operations, 
we estimate balancing reserve requirements for three types of operational practice: 

• Day-ahead (DA) forecasts and dispatch 
• Hour-ahead (HA) forecasts and dispatch 
• Sub-hourly (SH) forecasts and dispatch. 

A utility that follows DA operational practice is assumed to create or obtain day-ahead load and 
solar forecasts, run a unit-commitment and SCED process to create an operational plan for the 
next day, and then typically use that plan as-is for the following day. By necessity, such 

 
9 Available PV generation refers to all potential PV generation from a set of PV plants, prior to any possible dispatch 
instructions that would have the plant deviate from full output (e.g., to curtail or provide reserves for reliability 
reasons). 
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operations require commitment of a significant amount of capacity to follow an AGC signal and 
thereby keep area control error within NERC limits, because AGC will need to make up for day-
ahead forecast errors. Our example for this type of operation is Gainesville, which serves most of 
its load by dispatching just four main plants—a biomass steam turbine, a natural gas combined 
cycle plant, a natural gas combustion turbine plant, and a steam plant with one natural gas and 
one coal unit. Assigning the headroom that remains on one or two of these units to follow AGC 
gives the system plenty of balancing capacity as a percent of load.  

HA operational practice starts with a day-ahead forecast and unit commitment and dispatch 
process, but during the following day, although the initial plan is set, the remainder of the day’s 
plan is adjusted every hour as updated load and solar forecasts come in. In this case, balancing 
reserves only need to handle the difference between hour-ahead forecasts and actual net load, 
rather than the full day-ahead mismatch, and that amount of reserve requirement may be 
accounted for in both the day-ahead UC and the SCED processes, if reserves provision is co-
optimized along with dispatch. Tallahassee and JEA are current exemplars of this type of 
operational practice, although currently only with respect to load forecasts. (Weather-based solar 
forecasts have not yet been incorporated into their operational practices.) 

Large balancing authorities with SH operational practice typically go through day-ahead and 
hour-ahead steps (although the latter may be on a longer timescale, as many as 4 hours), but then 
also run a forecast and dispatch process at the 15- to 5-minute timescale. Regulation reserves 
therefore need to balance out second-to-second supply and demand differences whose sizes are 
dictated by 5- to 15-minute net-load forecast errors and variability. Flexibility reserves are 
procured at the 15–60-minute timescale and dispatched every 5 minutes to address any ramping 
challenges that emerge from variable generation forecasting errors. For simplicity of comparison 
with the other operational practice categories, we combine these two reserve types in our results. 
However, as discussed in Section 2, regulation reserve is generally the more demanding and 
expensive service. 

4.3 Load Forecast Errors 
Because the historical load data used in our 2007–2012 data set do not contain any information 
on load forecast errors, we need a different data source to estimate FRCC balancing authority 
load forecast errors. Fortunately, EIA Form 930 has been collecting hourly data, including day-
ahead forecast and actual load, from the balancing authorities since 2015. We therefore use this 
source of self-reported, historical day-ahead forecast error data, accessed via the ABB data 
service Energy Velocity Suite (2020), to directly quantify the uncertainty FRCC balancing 
authorities start with considering their day-ahead load forecast errors. 

Figure 6 summarizes the historical day-ahead load forecast errors as reported in the EIA 930 data 
set. Different balancing authorities show significantly different levels of accuracy and 
distributional patterns. The data from SEC appear to contain many outliers that may signify 
frequent reporting errors. None of the BAs demonstrate classic normal distributions. Some of the 
balancing authorities’ forecasts appear to be significantly biased—FPC’s data are particularly 
notable in this regard as actual demand is usually significantly higher than forecast demand. The 
long negative tails may reflect hurricanes and other events that drive significant outages. 
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Figure 6. Historical day-ahead load forecast errors for FRCC balancing authorities as reported in 

EIA Form 930 for 2015–2019 
Reported values are (Actual – Forecast) × 100/Actual. Positive values reflect underestimates of actual load and a 
need for up reserves; negative values reflect overestimates of actual load and a need for down reserves. Forecast 

errors outside the limits shown are placed in the first (FE < −50%) or last (FE > 50%) bins. 

The data in Figure 6 are used directly for the DA operational assumptions. For HA operations, 
we require estimates of hour-ahead load forecast errors. We construct such forecast errors by 
making the conservative assumption, which requires no additional data, that an hour-ahead 
forecast is constructed by assuming that the next hour’s day-ahead forecast error will be the same 
as this hour’s forecast error. This is a form of persistence forecast because we are assuming that a 
current observation (namely, the day-ahead load forecast error) will persist into the future. As 
with other forms of persistence forecast, this can be considered a conservative “forecast to beat”.  

Figure 7 illustrates this hour-ahead load forecast method by plotting study data for an example 
day. The top plot (a) shows how the hour-ahead forecast profile is generally closer than the day-
ahead forecast to the actual load profile. In the bottom plot (b), we can see how this is 
accomplished. When the day-ahead forecast errors are relatively constant for a period of time 
(e.g., during the evening of July 23), the persistence forecast assumption is good and the hour-
ahead forecast errors are much smaller than the day-ahead forecast errors. The hour-ahead 
forecast errors are larger when the day-ahead forecast errors are changing from one hour to the 
next, but overall, the process tends to reduce the magnitude of errors in both directions. 
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Figure 7. Hour-ahead load forecast made by persisting day-ahead forecast errors, illustrated for 

an example day 
Top plot (a) shows actual, day-ahead forecast, and hour-ahead forecast load. Bottom plot (b) shows the resulting 

hour-ahead forecast errors alongside the historical day-ahead forecast errors. 

Because we do not have measured sub-hourly load data, we do not create a data set of sub-hourly 
(e.g., 5-, 10-, or 15-minute) load forecast errors from which to estimate regulation reserve 
requirements for SH operations. Instead, we borrow the assumption from Lew et al. (2013) that 
1% of load should be held for regulation reserve in this case. 

4.4 Solar Forecast Errors 
To construct solar forecast errors, we use the simulated “actual” and clear-sky generation in our 
solar data sets along with the notion of a “clear-sky persistence” forecast as described in Ibanez 
et al. (2012). Although highly conservative in the day-ahead case, we use this method to 
construct both day-ahead and hour-ahead forecasts. Fundamentally, the forecasts are constructed 
by assuming that the current time period’s clear-sky fraction profile, computed by dividing actual 
solar generation by the clear-sky generation, will persist. Similar to the hour-ahead load forecast 
method, this assumption is conservative in the sense that it requires little data and is 
straightforward to compute.  

Figure 8 shows how we construct day-ahead solar forecasts by assuming that tomorrow’s clear-
sky fraction pattern will be the same as today’s pattern. In the example shown, the day-ahead 
forecast errors for July 25 are quite large in the morning and early afternoon, but the day-ahead 
forecast profile for the late afternoon matches the actual profile quite well. Building a day-ahead 
solar generation forecast based on day-ahead weather forecast information would be expected to 
perform much better than this method almost all the time (Zhang et al. 2015). Thus, our results 
for DA operations that use these forecasts should be considered quite conservative from the 
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standpoint of requiring more reserves to cover larger forecast errors than would likely be needed 
if weather-based day-ahead solar forecasts are used instead. Although it is outside the scope of 
this study to precisely quantify the improvements expected from incorporating weather forecasts, 
Section 5.3 provides a sensitivity analysis of DA reserve requirements for GVL if the day-ahead 
solar forecast errors are 50% or 75% smaller than our conservative estimates. 

 
Figure 8. Example day-ahead solar forecast constructed using clear-sky persistence  

The top plot shows clear-sky, actual, and forecasted generation. The bottom plot shows the corresponding actual and 
forecasted clear-sky fraction profiles. 

Hour- and 5-minute-ahead solar forecasts are constructed by assuming that the clear-sky fraction 
in the current hour or 5-minute interval will persist to the next hour or 5-minute interval. The 
former is used for HA and SH operations; the latter only for SH operations. The forecast error 
distributions that result for all three forecast horizons, expressed as a fraction of nameplate PV 
capacity, are shown for three different example PV capacities in Figure 9. As expected, 
normalized solar forecast errors are smaller when the forecast horizon is shorter, the PV capacity 
is larger, or both. In our examples, the forecast horizon appears to make a larger difference than 
amount of PV, and the amount of PV is most influential at the hour-ahead scale.  
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Figure 9. Solar forecast error distributions as a fraction of PV capacity 

Examples for 60 MW, 1.0 GW, and 23.4 GW of PV capacity over day-ahead, hour-ahead, and 5-minute forecast 
horizons are shown. 

4.5 Calculating Reserve Requirements  
Estimates of how much reserve capacity is needed to operate smoothly in the face of load and 
solar forecast errors are calculated for each solar scenario and operational practice type by: 

1. Considering the type of balancing reserves needed 
2. Constructing corresponding forecast error databases and normalizing the resulting 

megawatts if necessary 
3. Binning the forecast errors based on measurable characteristics 
4. Computing percentile statistics per bin over both the positive and negative forecast errors 

separately 
5. Binning the actual load and solar data 
6. Applying the reserve levels computed in Step 4 to the binned data from Step 5. 

This process produces up and down reserve estimates for load and solar separately. Following 
Ibanez et al. (2012), we combine the load and solar requirements into a total reserve requirement 
using the heuristic that the two components are similar to standard deviations taken from 
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independent distributions. Thus, we have total reserve requirements (𝜎𝜎total) computed from load 
(𝜎𝜎load) and solar (𝜎𝜎solar) reserve requirements as: 

 𝜎𝜎total = �𝜎𝜎load
2 + 𝜎𝜎solar

2 .  (2) 

This means that although solar reserve requirements may be significant, they are not directly 
additive with load reserve requirements, which mutes their impact. An example of how this 
arithmetic works in practice is shown in Figure 10. For a simple example, if 𝜎𝜎load = 𝜎𝜎solar = 10 
MW, the total reserve requirement is 14.1 MW, not 20 MW. 

 
Figure 10. Illustration of the geometric sum of load and solar reserves 

4.5.1 Day-Ahead Reserve Requirements 
The process for estimating balancing reserve needs under day-ahead operational practice is 
shown in Figure 11. In this case, the key uncertainties are day-ahead load and solar forecast 
errors.10 The magnitude and distribution of day-ahead load forecast errors are taken directly from 
EIA Form 930 data, but prior to applying that information to the study’s time-synchronized load 
and solar data sets: 

• The EIA-930 actual load data are placed into 10 bins with an equal number of data points 
per bin and arranged from lowest (bin 0) to highest (bin 9) load levels. 

• The forecast errors by percent of actual load are computed and partitioned into 
underestimates and overestimates.  

• The percent of load levels needed for both up and down reserves is calculated per bin by 
covering a certain percentage (e.g., 95%) of both the up and down forecast errors in each 
bin. 

 
10 This type of operational practice is uncommon in the United States. Furthermore, the reserve requirements being 
estimated here are fundamentally different from the reserves that are typically co-optimized in the day-ahead UC of 
most balancing authorities. Most balancing authorities ensure in the UC step that they will have enough reserves to 
balance supply and demand in real-time operations. Therefore, in that case, the reserves committed in the day-ahead 
are of a magnitude sufficient to cover real-time (5-minutes up to hourly) forecast errors. Here we are modeling the 
operations of a balancing authority that does not run SCED at regular intervals between the day-ahead UC and real-
time operations; therefore, the reserves need to be sufficient to cover day-ahead forecast errors. 
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These reserve levels (percent of load for up reserves and down reserves in each load bin) could 
then be applied to our separate time-synchronized load and solar data set. For solar, we used the 
day-ahead clear-sky persistence methodology depicted in Figure 8 to create day-ahead solar 
forecasts, calculated the resulting absolute (MW) forecast errors, and then computed up and 
down reserve requirements for each of 10 clear-sky ramp bins based on covering a certain 
percentage of forecast errors. The resulting megawatt reserve requirements, specified by 
direction (up/down) and clear-sky ramp bin (20 discrete reserve levels for all daylight hours) 
were then applied to all times in the data set based on each data point’s clear-sky ramp bin. 
Because clear-sky ramp is defined as the clear-sky power at this time step minus the previous 
time step’s clear-sky power, this binning process is generally correlated with time of day. In 
other words, morning hours have the most positive clear-sky ramp, whereas evening hours have 
the most negative clear-sky ramp. 

 
Figure 11. Study process for estimating reserve requirements under assumed day-ahead 

operational practices 

Example reserve requirements for load are shown in Figure 12.11 The wide range of estimated 
reserve needs is a direct consequence of the observed historical day-ahead load forecast errors 
shown in Figure 6. Comparing the two levels of strictness—covering 80% or 95% of forecast 
errors, respectively—we see both that this parameter has a large impact on the results and that 
some utilities are impacted more than others, depending on the shapes of their forecast error 
distributions. For example, JEA seems to have a longer-tailed distribution for up reserves, 
especially on the highest load days; we see a similar situation for GVL’s down reserves on low-
load days. 

 
11 Load bin 0 is not shown in this plot because, as the lowest 10% of load, it tends to contain more outliers, many of 
which are likely associated with historical outages, and is therefore more difficult to interpret in a normal operations 
setting. 
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Figure 12. Municipal utility balancing reserve needs to cover day-ahead load forecast errors 
Most municipal utilities do not need to hold this level of reserve in practice because their operations are better 

characterized as hour-ahead, rather than day-ahead. 

Because the day-ahead clear-sky persistence forecast for solar generation does not incorporate 
any weather forecasting information, the forecast errors it produces can be quite large (Figure 9), 
and so we end up with conservative estimates for reserve need. For example, Figure 13 shows 
that reserves to cover 95% of day-ahead solar forecast errors in TAL could range from around 
20% of nameplate capacity to nearly 50%, depending on time of day and amount of PV 
deployed. The smaller amount of PV shown (60 MW, blue bars) requires more reserves as a 
proportion of nameplate capacity, presumably because the weather experienced by that quantity 
of co-located PV (at the Tallahassee airport) is so similar, producing highly correlated forecast 
errors. The larger amount of PV (584 MW, corresponding to about 30% of TAL annual load, 
orange bars) averages out some of those forecasting errors, although estimated reserve need still 
ranges from about 20% (at sunset) to around 40% (during midday hours) of nameplate capacity. 
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Figure 13. Example day-ahead solar reserve requirements based on day-ahead forecast errors, by 

clear-sky ramp bin and for two levels of solar generation in TAL 

 

Figure 14. Example day-ahead solar reserve requirements based on 75% more accurate day-ahead 
forecast errors, by clear-sky ramp bin and for two levels of solar generation in TAL 

However, if a better forecasting method yielded forecast errors 75% smaller than our 
conservative methodology, reserve requirements would similarly be reduced by about 75% 
(Figure 14). In this case, reserve needs for the 30% PV scenario are always less than 10% of 
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nameplate capacity. For the 60 MW scenario, reserves needs in the middle of the day are 
between 10% and 15% of nameplate capacity. 

4.5.2 Hour-Ahead Reserve Requirements 
If in addition to day-ahead forecasts, unit commitment, and dispatch, utilities also adjust load and 
solar forecasts on an hourly basis and use that information to adjust dispatch, then the difference 
between dispatch point and actual demand depends on hour-ahead rather than day-ahead forecast 
errors. The process we use to estimate resulting reserve need is similar (Figure 14), but instead of 
directly using day-ahead load forecast errors, we are able to take advantage of hour-ahead 
information to tighten both load (Figure 7) and solar forecast (Figure 9, middle column 
compared to leftmost column) errors. 

 
Figure 15. Study process for estimating reserve requirements under assumed hour-ahead 

operational practices 

The process used to estimate reserve requirements that cover hour-ahead load forecast errors is 
shown in Figure 15. The main difference in the results compared to the analogous day-ahead 
load reserve requirements (Figure 12) is simply the percent of load that needs to be held in 
reserve—whereas the plot scale for day-ahead reserves went up to ±48% of load, ±18% of load 
is sufficient for up and down reserves to cover 95% of forecast errors in all of these cases. 
Similar to Figure 12, the story is different for different balancing authorities and percent of 
forecast errors covered. If covering only 80% of forecast errors is sufficient for smooth 
operations, reserve needs can be 10% or less of load in all cases. Carrying forward from the day-
ahead load forecast errors, GVL and JEA’s load forecasts again do not appear to be as accurate 
as TAL and FMPP’s, especially at the 95% coverage level. 
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Figure 16. Municipal utility balancing reserve needs to cover hour-ahead load forecast errors 

Note the color scale in this plot compared to Figure 12—hour-ahead uncertainty is generally much smaller than day-
ahead uncertainty because knowledge of how today’s load has compared to the day-ahead forecast thus far provides 

a lot of information about expected behavior in the next hour. 

For the hour-ahead solar reserve estimates, we bin not only on the clear-sky ramp, as we did in 
the day-ahead case, we also bin on the clear-sky fraction in the hour prior to the forecasted hour 
(i.e., at the time the forecast would be made). Because clear-sky fraction is 1 in clear conditions 
and 0 in dark conditions, the lowest bin numbers for that variable correspond to highly overcast 
conditions, whereas the highest bin numbers correspond to clear conditions and near-maximum 
output. As shown in Figure 16, more reserves in both directions (up reserves to cover 
overestimates of solar output and down reserves to make room for unforecasted but available 
solar generation) are generally needed under cloudy, as compared to clear conditions. Our 
conservative forecasting method of clear-sky persistence also leads to more reserve requirements 
in the morning because there is no hour-ahead data available to effectively prime the forecast. 
We start each day’s hour-ahead forecasts with the last daytime clear-sky fraction available (i.e., 
the last clear-sky fraction registered on the previous evening). 
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Figure 17. Estimated reserve needs to cover 80% and 95% of TAL hour-ahead solar forecast errors 

with 584-MW PV (about 30% of annual load), differentiated by up and down reserves 

4.5.3 Sub-Hourly Reserve Requirements 
Finally, sub-hourly reserve needs are estimated per Figure 17. In this case, we assume that two 
different types of balancing reserves are held and operated by the BA: (1) regulation reserves, 
which are resources that follow the AGC signal to balance supply and demand at the 4-second 
scale, and (2) flexibility or ramping reserves, which are held during day-ahead UC and any hour-
ahead or less frequent re-dispatching processes to cover variable generation forecast errors over 
hour timescales, and then dispatched directly at the sub-hourly timescale (e.g., 5–15-minute 
dispatch) to directly address changing load and supply availability forecasts. 
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Figure 18. Study process for estimating reserve requirements under assumed hour-ahead 

operational practices 

In this case, instead of directly estimating load forecast errors at a sub-hourly timescale, we 
assume per Lew et al. (2013) that holding regulation reserves equal to 1% of load will be 
sufficient to cover the load uncertainty portion of regulation reserve/AGC needs. Overall, this 
should be achievable given sufficient BA size, forecasting, and dispatch practices. The solar sub-
hourly uncertainty, which is combined with the 1% of load per Equation 2 to form the overall 
regulation reserve requirement, is estimated by covering a specified percentage of 5-minute-
ahead clear-sky persistence forecast errors binned along the clear-sky ramp and clear-sky 
fraction dimensions (the same binning dimensions as for hour-ahead reserves, such as in Figure 
16). 

Based on the assumption of sub-hourly load and solar forecasts and system re-dispatch, 
flexibility reserves at the hourly level only need to address solar forecast uncertainty at the hour-
ahead timescale; there is no additional load component. Furthermore, the hour-ahead solar 
forecasts described previously are reused here. Although flexibility and regulation reserves are 
dispatched differently (flexibility reserve capacity is explicitly dispatched at the sub-hourly 
intervals, whereas regulation reserve capacity follows the AGC signal), we typically present their 
arithmetic sum together, as a total amount of “balancing reserves.” 

5 Results 
We study the reserve implications of a wide range of PV penetrations for different FRCC BAs 
and combinations thereof through the scenarios composed by selecting one value from each 
column in Table 5. All combinations shown were run for this study; however, the results focus 
on the municipal BAs using select PV penetrations, with all balancing reserves calculated 
assuming 95% coverage of forecast errors and with PV placed at a random selection of 50% of 
each BA’s nodes. These key default focal points and parameter selections are shown in bold in 
the table.  
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Table 4. Scenario Framework for Studying the Impact of PV on Reserve Needs Depending on BA 
Size and Operational Practice 

BAs PV (Approx. 
Available 

Generation as % 
of Annual Load) 

Operational 
Practice 

Percent of 
Forecast Errors 

Covered 

PV Expansion 
Nodes 

GVL Currenta Day-ahead 80% Current & planned 
PV nodes only TAL Plannedb Hour-ahead 95% 

JEA 5% Sub-hourly 99% Randomly 
selected 50% of 

all nodes FMPP 10%   

MUNIS (GVL, TAL, 
JEA, and FMPP) 

15%   

20%    

TEC 25%    

FPC 30%    

FPL 35%    

FRCC (GVL, TAL, 
JEA, FMPP, TEC, 

FPC, FPL) 

40%    

45%    

50%    

a PV capacity operating as of fall 2018 
b Current PV capacity plus deployments expected through 2024 as expected in 2018 

In the remainder of this section, we examine where the BAs are now in terms of estimated 
reserve requirements given near-future, planned PV penetrations and current operational practice 
(Section 5.1). We then explore two options for reducing reserve requirements as solar 
penetrations increase through the particular lens of GVL (Section 5.2), examine the sensitivity of 
our DA results to smaller solar forecast errors (Section 5.3), and revisit the sensitivity of our 
results to the chosen percentage of forecast errors covered (Section 5.4). As explained in 
Appendix B, we found that our analysis results were not sensitive to how PV expansion nodes 
were selected. 

5.1 Current Reserve Requirements Depend on Balancing Authority 
Size and Operational Practices 

Based on the operational survey of FRCC municipal utilities (Section 3), we analyze GVL with 
DA operational practice and TAL, JEA, and FMPP with HA practice. We assume that TEC, 
FPC, and FPL operations are most similar to our SH assumptions. Figure 18 summarizes the 
reserve requirements estimated for each BA under these assumed current practices and PV 
penetrations estimated for 2024.  

The median reserve requirements for these BAs vary greatly: from as low as 1.5% of load for 
FPC and FPL to as high as 25% and 10% of load for GVL and JEA, respectively (Figure 19, top 
panel). In general, reserve requirements as a portion of load decrease with increasing power 
system size and operational frequency, even though larger BAs tend to require more absolute 
megawatts of reserves (Figure 19, bottom panel). Here and in what follows, operational 
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frequency encompasses the frequency of load and solar forecasts, as well as the frequency of 
dispatch.  

Comparing regions that are similar in size—GVL with TAL and FMPP with TEC—we find that 
higher operational frequency leads to lower reserve requirements. Hourly operation in TAL 
results in much lower reserve requirements (with an interquartile range of 5%–6% of load) than 
does day-ahead operations in GVL (with an interquartile range of 19%–31% of load); sub-hourly 
operation in TEC results in lower median reserve requirements (3% of load) as compared to 
hourly operations in FMPP (5% of load). Overall, our findings are in line with others who have 
found that larger BAs have less load variability (Ela, Milligan, and Kirby 2011), access to more 
resources for balancing the system, and smoother VRE time series outputs (Holttinen et al. 2011; 
Ibanez et al. 2012). 

 

 
Figure 19. Up reserves needed to provide regulation and flexibility services with current 

operational practices and at planned PV penetration levels (top panel: as a percentage of load in 
each timestep; bottom panel: in absolute megawatts)  

Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 
region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 

load and solar forecast errors), and estimated PV penetration levels in 2024. 

5.2 Reserve Requirements at Different PV Penetrations 
All BAs face more variability and uncertainty as they integrate more PV into their systems 
(Ibanez et al. 2012; Halamay and Brekken 2010). We illustrate this for our context using three 
selected BAs in Figure 19: as GVL (with DA operations), TAL (with HA operations), and FPL 
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(with SH operations) add more PV—from less than 3% of BA load to about 15% and to about 
30%—the reserve requirements increase both as a percentage of load (top panel) and in absolute 
megawatts (bottom panel). As the penetrations increase, the reserve requirements also increase 
from median values of 53 MW to 138 MW for GVL, 20 MW to 62 MW for TAL, and 220 MW 
to 1,126 MW for FPL. Comparing across regions, we again find that more frequent forecasts and 
dispatch have a significant impact on reducing the required reserves. For example, GVL and 
TAL annual load is similar, around 1.73 TWh and 2.93 TWh, respectively; however, similar PV 
penetrations yield very different levels of estimated reserve need. At PV penetrations around 
30%, GVL’s reserve requirement with day-ahead operations reaches 61% of load (median 
value), whereas TAL’s reserve requirement with hourly operation is only around 16% (median 
value).  

 
Figure 20. Up reserves (top: as a percentage of load in each timestep; bottom: in megawatts) 

needed to provide regulation and flexibility services at current and future PV penetration levels 
Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 

region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 
load and solar forecast errors), and PV penetration levels. 

Both GVL and TAL’s reserve requirements are significantly larger than FPL’s as a percentage of 
load, presumably because of their relative size as compared to FPL. Two potential measures to 
limit the impact of higher solar PV penetrations on small BA reserve requirements are increasing 
operational frequency and coordinating operations with other BAs. 
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5.2.1 Mitigation Option 1: Increase Operational Frequency 
Figure 20 shows the impact of increasing operational frequency for the example of GVL moving 
from day-ahead to hourly operations for forecasting, quick-start unit commitment, and dispatch. 
At around 30% solar PV penetration, moving from day-ahead operation to hourly operation 
reduces the median reserve requirement from about 60% to about 20% as a percentage of load. 
This corresponds to a difference of medians in absolute terms of 87 MW. Although more 
frequent forecasts alone do not necessarily lead to reduced reserve requirements (Neves, Brito, 
and Silva 2016), more frequent forecasts and dispatch can provide multiple benefits, including 
reduced reserve requirements, reduced generator cycling, and the attendant economic savings 
(Milligan et al. 2011, 2015; Ibanez et al. 2012). 

 
Figure 21. Up reserves needed (as a percentage of load in each timestep) to provide regulation 

and flexibility services in GVL at current and future PV penetration levels with day-ahead or hourly 
operation 

Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 
region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 

load and solar forecast errors), and PV penetration levels. 

5.2.2 Mitigation Option 2: Coordinate Operations with Other Balancing 
Authorities 

The second way to reduce reserve requirements is through balancing area coordination, such as 
forming an operating reserve sharing group. In a reserve sharing group, two or more balancing 
authorities collectively maintain, allocate, and supply the operational reserves for each balancing 
authority to maintain system reliability (Makarov et al. 2010; Katz, Denholm, and Cochran 
2015). Forming an operational reserve sharing group by sharing regulation and flexibility 
services among GVL, TAL, JEA, and FMPP (i.e., a fictitious “reserve sharing group”, MUNIS), 
for example, can reduce the reserve requirements for an individual balancing area (Figure 21). In 
this case, the reserve requirement for GVL at around 30% PV penetration is reduced from around 
20% of load to around 10% of load (median values) if GVL is part of MUNIS. This finding is 
consistent with previous studies on the potential benefits of balancing area coordination in the 
western United States (King et al. 2012; Samaan et al. 2017).  

A more subtle point is also evident in Figure 21. Namely, as modeled in this study, sub-hourly 
operations alone would not necessarily reduce overall reserve requirements for GVL. This is 
because the hour-ahead solar uncertainty is the same and covered by both the HA and SH 
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operational practice categories. The only difference in total reserve requirement therefore comes 
down to SH regulation reserve requirements (1% of load combined geometrically with 5-minute 
solar forecast errors) compared to geometrically combining hour-ahead load reserve 
requirements with the aforementioned hour-ahead solar reserve requirements in the HA case. 
However, although total SH balancing reserve requirements are similar to or even larger than HA 
balancing reserve requirements, they are composed of two distinct types of reserve: regulation 
and flexibility, the latter of which tends to be less costly to procure and operate (see Section 2). 

 

 
Figure 22. Up reserves needed (as a percentage of load in each timestep) to provide regulation 

and flexibility services under different PV penetration levels in GVL and MUNIS 
Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 

region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 
load and solar forecast errors), and PV penetration levels. 

5.3 Sensitivity to Accuracy of Day-Ahead Solar Forecast 
As stated earlier, the solar forecast methods used for this analysis are low-data and easy to 
implement, but also conservative because they do not use any weather forecast information. This 
is especially true for our day-ahead solar forecasts—day-ahead solar forecasts informed by day-
ahead weather forecasts would be expected to have significantly lower forecast errors than those 
used in the mainline of this analysis (Zhang et al. 2015). To highlight the potential impact of 
more accurate day-ahead solar forecasts, we present a sensitivity analysis in which our day-ahead 
solar forecast errors were reduced (in both directions) by 50% or 75%. The up reserve results for 
GVL at planned, 16% and 32% PV penetrations are shown in Figure 22. 
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Figure 23. Up reserves needed (as a percentage of load in each timestep) in GVL using day-ahead 
operation with different day-ahead solar forecast accuracies at planned, 16%, and 32% PV 

penetration and covering 95% of load and solar forecast errors 
Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 

region, modeled operational practice, and PV penetration levels. 

As PV penetration increases, higher forecast accuracy leads to significant reductions in DA 
reserve needs. At 32% solar PV penetration, the median reserve need drops from 61% of load 
(138 MW) to 30% of load (61 MW) when forecast errors are reduced by 75%. There are two key 
takeaways from this finding. First, incorporating day-ahead solar forecasts (based on weather 
forecasts) into GVL current operational practice may be sufficient to integrate up to 30% PV. 
Second, moving to hour-ahead operational practice or coordinating with other balancing 
authorities would still be worthwhile, as the reserve needs in those cases (median reserves 
around 20% or 10% of load, respectively) are significantly smaller than our most optimistic case 
for DA operational practice (around 30% for day-ahead clear-sky persistence solar forecast 
errors reduced by 75%).  

5.4 Sensitivity to Percent of Forecast Errors Covered 
There is no consensus on how to set reserve requirements in terms of what percentage of forecast 
errors should be covered. Ortega-Vazquez and Kirschen (2008) provide the conceptual 
framework that reserve quantities should be selected to minimize cost of reserves plus the 
expected societal cost of outages this level of reserves cannot prevent, but the resulting 
calculation is highly system-dependent. Indeed, we find a wide range of assumptions in the 
literature: Krad, Ibanez, and Gao (2016) reviewed reserve methods ranging from a static 
requirement to reserve requirements based on 50%, 70%, 90%, and 95% of hour-ahead load (and 
variable generation) forecast error; Holttinen et al. (2008) note that in the sigma method, the 
multiples of sigmas have been around 6σ for regulation reserves and 2σ–3σ for load following 
reserves and that at 3σ, the reserves could cover 99% of the variations (Holttinen et al. 2012). Ela 
et al. (2010) describe a Minnesota wind study and the Eastern Wind Integration and 
Transmission Study as using similar methods to combine reserve requirements from wind and 
load, but the former multiplied the result by 5 whereas the latter used a factor of 3. Lew et al. 
(2013) use a regulating reserve requirement that is the geometric sum of 1% of load plus 95% of 
the 10-minute forecast errors from wind and PV, and a flexibility reserve requirement equal to 
the geometric sum of 70% of the hour-ahead forecast errors from load, wind, and PV (Ibanez et 
al. 2014). A Swiss case study uses 99.9% based on the “Swissgrid confidence threshold” (Abrell 
et al. 2019). Krad et al. (2016) further summarizes the lack of consensus in the field as: 
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“Reserve strategies are typically developed in response to operating challenges in 
a given footprint, which has led to a lack of industry-wide standards regarding the 
calculation of operating reserve requirements and the effect that variable 
generation (VG) has on them. This is true for both contingency and, especially, 
regulation reserves.” 

Due to this lack of consensus in both research studies and real-world practice, we choose 95% 
forecast error coverage for the majority of results reported in the study, with the caveat that 
should a higher coverage be used, the estimated reserve requirements would increase, and 
conversely, a lower level of coverage results in lower reserve requirements. 

More specifically, the example of FPL (Figure 23) demonstrates this impact and how it varies 
with PV penetration. As PV penetration level increases from around 1% to around 20%, higher 
forecast error coverage leads to more significant increases in reserve needs. These results also 
generally show alignment between our results at 95% coverage and the CEM assumptions 
described in Section 2, which also assumed 95% coverage, because they were based on Ibanez et 
al. (2012). 

 
Figure 24. Up reserves needed (as a percentage of load) in FPL with sub-hourly operation 

covering different percentages of forecast errors at current PV penetration 
Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 

region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 
wind and solar forecast errors), and PV penetration levels. The CEM method covers 95% of solar forecast errors, 10-
minute-ahead errors for regulating reserves, and 1-hour-ahead errors for flexibility reserves. The regulating reserve 

requirements are the geometric combination of the solar requirements and 1% of load (Ibanez et al. 2012). 

To examine the impact of forecast error coverage on reserve requirements more broadly, we 
calculate the reserve requirements for each region at about 30% PV with HA or SH operational 
practice, depending on system size. When the forecast error coverage increases from 80% to 
99%, the reserves required as a percentage of load increases in all BAs and reserve sharing 
groups regardless of their operational practice (Figure 24), though the impact is much greater in 
smaller BAs with hourly operation than in larger BAs with sub-hourly operation (comparing the 
top panel of Figure 24 with the bottom panel).  
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Figure 25. Up reserves needed (as a percentage of load) in smaller BAs with hourly operation (top 
panel) and larger BAs with sub-hourly operation (bottom panel) covering different percentages of 

forecast errors under around 30% PV penetration 
Blue lines show the medians; whiskers extend to the full range of the data. The labels on the x-axis indicate the 

region, modeled operational practice, forecast error coverage (95.0 means covering 95% of the balancing authority’s 
wind and solar forecast errors), and PV penetration levels. 

6 Conclusions 
Previous studies have demonstrated how reserve needs increase with increasing solar 
penetration. However, that body of work is underdeveloped on the question of reserve needs for 
small BAs with increasing amounts of solar generation. By working with Florida BAs of 
different sizes through the FAASSTeR project, the authors came to appreciate this lack of 
actionable, quantitative information as well as the importance of operational practice, given the 
likelihood of smaller BAs operating with less frequent forecasting and dispatch. In this study, we 
explore how both aspects of smaller BAs—less PV capacity across a smaller footprint and 
different operational practices—impact reserve requirements over a range of PV penetrations, 
and how large reserve requirements at high PV penetration can be mitigated. 

Regarding the Florida municipal utilities and how their operational practices may need to change 
as they deploy more solar PV, we conclude the following: 
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• FRCC balancing authorities’ reserve needs currently depend on power system size and 
operational practices. All else equal, smaller balancing authorities and less frequent 
forecasts lead to greater reserve requirements (measured as a fraction of load). 

• Increasing solar deployment increases reserve requirements for all balancing authorities. 
For the same PV penetration, the reserve requirements (measured as a fraction of load) 
are less for larger balancing authorities with more frequent forecasts and dispatch. 

• Moving from day-ahead to hour-ahead load and solar forecasting and system dispatch 
could enable FRCC’s smallest municipal balancing authority, GVL, to incorporate about 
30% solar generation with median reserves around 20% instead of 30% to 60% of load. 
(Median day-ahead reserves of 60% reflect the conservative, low-data solar forecasting 
methodology used in this study, while the 30% lower bound reflects 75% improvement 
on that benchmark, as may be achievable with weather forecast-based solar forecasts.)  

• If all Florida municipal utilities collectively procured operational reserves, this could 
again halve GVL’s reserve requirements at 30% solar generation, reducing the median 
requirements to about 10% of load. For comparison, the median reserve needs of an 
“FRCC” reserve sharing group at 30% PV would be about 6% of load (all else equal). 

• Reserve needs vary greatly depending on how much forecast uncertainty is covered. For 
example, if all Florida municipal utilities collectively procured operational reserves and 
had a PV penetration of about 30%, the median reserve requirements could be anywhere 
from 5.5% to 14% of load assuming the “right” level of uncertainty to cover falls 
between 80% and 99%. This range overlaps with the analogous range for all of FRCC 
analyzed together, which is 3.5% to 9.0% of load. 

Although we did not analyze reserve requirements from a rigorous, BA-specific NERC 
reliability perspective and used conservative, low-data “persistence” forecasts when historical 
data on forecast errors were not available, this analysis demonstrates clear, quantified trends that 
can help guide utility decisions regarding operational changes in support of PV integration. Solar 
forecasting, operational forecast and dispatch frequency, and operational footprint are first-order 
drivers of reserve need with increasing PV capacity. It appears that BAs of all sizes have options 
for integrating more solar with affordable reserve costs relative to current practice.  
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Appendix A. Time Synchronized Load and Solar Data 
Set Details 
The load profiles used in our analysis are historical data from 2007–2012 that were scaled to 
contain an equal amount of load in each year. The full data set, which contains data originally 
reported on FERC Form 714 (FERC 2015), includes load from 2006–2015 and separate profiles 
of net energy for load for the eight BAs listed in Table 2. To avoid load growth from one year to 
the next unduly impacting our results, we first scaled each year’s data to contain the same 
amount of energy as each BA’s 2015 profile. Then, to better align with our starting point of all 
planned PV capacity (current plants plus known PV development plans), we chose 2024 as the 
target model year and multiplied each BA’s load by the growth factor computed from dividing 
each BA’s net energy for load in 2024 (projected) by their net energy for load in 2015 
(historical) as reported in the 2019 Florida electric utilities’ Ten-Year Site Plans (Florida Public 
Service Commission 2019). These key data points and the resulting annual net energy for load 
modeled for each BA are summarized in Table 4. 

Table 5. Annual Net Energy for Load by BA, FERC Form 714, and Ten-Year Site Plans 

Load Region 
EIA 

BA ID 

2015 
FERC 
(TWh) 

2015 Site 
Plan 

(TWh) 

2024 Site 
Plan 

(TWh) 

2024 
Modeled 

(TWh) 

Gainesville Regional Utilities GVL 1.82 2.02 1.92 1.72 

City of Tallahassee TAL 2.77 2.78 2.94 2.93 

JEA JEA 13.90 12.87 13.05 14.09 

Seminole Electric Cooperative, Inc. SEC 14.19 14.10 15.69 15.78 

Florida Municipal Power Agencya FMPP 15.28 17.29 18.18 16.07 

Tampa Electric Company TEC 20.11 20.10 21.50 21.51 

Progress Energy (Florida Power Corp.)b FPC 40.87 42.28 44.81 43.32 

Florida Power & Light Company FPL 122.26 122.76 123.80 123.30 

a The row for the Florida Municipal Power Agency includes OUC and Lakeland Electric load 
b Corresponds to Duke Energy Florida, Inc. 

Solar profiles for 2007–2012 are available on a location-by-location basis from the Renewable 
Resource and Power Data tool (R2PD).12 R2PD is a python interface for pulling Wind 
Integration National Dataset (WIND) Toolkit and Solar Integration National Dataset (SIND) 
Toolkit data from the DR POWER repository13 to produce aggregate, power system modeler-
friendly wind, solar, and weather profiles. In our use of the tool, we provide a list of node 
locations and a separate list of solar capacity to place at each node. R2PD then downloads data 
for a non-overlapping set of SIND sites (which were prescreened for basic feasibility, consist of 
rural and urban sites, and number more than 155,000 across the United States) that are chosen 
based on a nearest-neighbor search in a manner that fulfills the total capacity request while 
respecting the 4-MW maximum capacity of each SIND site. R2PD then aggregates the profiles 
assigned to each node, saving off 5-minute time series of simulated “actual” solar generation and 

 
12 https://github.com/Smart-DS/R2PD  
13 https://egriddata.org/dataset/nrel-renewable-energy-resource-data  

https://github.com/Smart-DS/R2PD
https://egriddata.org/dataset/nrel-renewable-energy-resource-data
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clear-sky solar generation, one data file per node. For our analysis, we then aggregate both the 
actual and clear-sky profiles to the BA level and append the time-synchronized load data. 

The actual and clear-sky solar generation profiles were originally computed using the System 
Advisor Model (SAM) (Blair et al. 2018) and basic specifications for utility-scale fixed-tilt and 
one-axis tracking plants, the former for urban and the latter for rural sites (Table 6). Clear-sky 
generation is simulated based solely on latitude, longitude, date and time information, and plant 
specifications—it is the electricity output that would be expected if every day were perfectly 
sunny, which is a useful benchmark for understanding how actual generation compares to its 
theoretical maximum. Actual generation for historical conditions is simulated with the System 
Advisor Model using data from the National Solar Radiation Database (NSRDB) downscaled 
from 30- to 5-minute resolution using the methods described in Buster et al. (2021). 

Table 6. PV Plant Simulation Specifications 

Utility-scale PV Plant Type Fixed-Tilt One-Axis Tracking 

Locations Urban SIND sites Rural SIND sites 

Tilt Same as site latitude N/A 

Azimuth 0° (South) 0° (South) 

DC-to-AC ratio 1.1 1.1 

Inverter efficiency 96% 96% 

Pre-inverter losses 14% 14% 

Ground coverage ratio 0.4 0.4 

Solar generation is placed near BAs’ transmission nodes. The node locations and categories were 
determined using an NREL database that merges multiple data sources that describe different 
aspects of the current U.S. power system, called GridDB. For this project the three key data 
sources available through GridDB were the Multi-regional Modeling Working Group (MMWG) 
2015/2026 summer power flow case as represented in the Energy Visuals Transmission Atlas;14 
the Energy Visuals FirstRate database;15 and the locations and ownership of current generators, 
planned builds, and retirements as represented in the SNL database (S&P Global 2018) as of 
October 2018. Based on the electrical area definitions in the Transmission Atlas data, combined 
with the FirstRate generator data mapped to those nodes and the up-to-date status and ownership 
information in SNL, we were able to identify nodes associated with each BA either electrically 
or through generation units. We were also able to identify each BA’s load nodes using the 
Transmission Atlas data. This process provided an overall list of the nodes associated with each 
BA, as well as tags indicating the presence of existing or planned PV plants, existing or planned 
generation of any type, upcoming generation retirements, or load. Specific PV expansion sites 
were then selected by specifying which types of nodes (or all) were candidates for placement, 
and what percentage thereof should be randomly selected for inclusion. The ultimate outcome of 
this process is a list of PV expansion nodes, identified by latitude and longitude. As described in 
Appendix B, although there were many options for determining PV expansion nodes, this ended 

 
14 https://www.energyvisuals.com/products/ta.html  
15 https://www.energyvisuals.com/products/firstrate.html  

https://www.energyvisuals.com/products/ta.html
https://www.energyvisuals.com/products/firstrate.html
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up having negligible impact on our results. In what follows, all results were produced by 
randomly selecting 50% of a BA’s nodes for PV expansion. 

GridDB provides locations for all existing and some planned generators. We also added planned 
PV capacity for FMPA and JEA based on personal correspondence. Those additions consisted of 
three 74.5-MW FMPA plants (223.5-MW total capacity) and five 50-MW JEA plants (250-MW 
total capacity). FAASSTeR team members provided us with approximate planned locations and 
we hand-matched those to existing transmission nodes. 

The PV capacity simulated per BA using the full workflow to produce synchronized load and 
solar datasets is summarized in Table 7. 

Table 7. Summary of Modeled BA Annual Load and PV Capacity for Annual PV Generation up to 
50% of Annual Load, in 10% Increments 

EIA 
BA ID 

Annual 
Load 
(TWh) 

Planned 
PV 

Capacity 
(MW) 

PV 
Capacity 
(MW) to 
Reach 

~10% PV 
Generation 

PV 
Capacity 
(MW) to 
Reach 

~20% PV 
Generation 

PV 
Capacity 
(MW) to 
Reach 

~30% PV 
Generation 

PV 
Capacity 
(MW) to 
Reach 

~40% PV 
Generation 

PV 
Capacity 
(MW) to 
Reach 

~50% PV 
Generation 

GVL 2 1 114 228 342 399 513 

TAL 3 60 196 390 584 682 876 

JEA 14 277 951 1,912 2,874 3,355 4,316 

FMPP 16 244 1,041 2,081 3,120 4,160 5,199 

SEC 16 2 987 1,975 2,963 3,951 4,938 

TEC 22 627 1,345 2,709 4,073 5,437 6,801 

FPC 43 304 2,698 5,396 8,094 10,792 13,490 

FPL 123 1,007 7,791 15,621 23,451 31,281 39,112 

MUNIS 35 582 2,297 4,599 6,900 9,201 10,352 

FRCC 223 2,520 14,068 28,173 42,278 56,382 70,487 
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Appendix B. Impact of PV Placement within BAs 
Although our methodology provides options for whether to place PV at relatively few or at many 
nodes across a BA, we found that these parameters had no discernable impact on our reserve 
requirement estimates. This went against our general hypothesis that geographically 
concentrating PV would result in more variability and uncertainty, and therefore higher reserve 
requirements. Although this hypothesis was supported at the inter-BA level (see Figure 4 and 
surrounding text), at the intra-BA level the variability and uncertainty of PV profiles was 
insensitive to our parameters concerning (1) at what types of nodes PV could be placed and (2) at 
what (randomly selected) fraction of those nodes PV would be placed. For example, we 
compared TAL and FPL 30% PV results based on two methods of PV placement: 

1. Installing new PV in the nodes that originally had PV installation 
2. Installing new PV in randomly selected 50% of the nodes in the BA. 

For TAL, option 1 placed PV at 2 nodes, versus 20 nodes for option 2. For FPL, the resulting 
numbers of nodes were 17 and 581, respectively. Despite the number of nodes being quite 
different in the two cases, these options did not have a large impact on the PV profiles, no 
difference was discernable in the variability statistics pulled to create ramping envelopes, and the 
impact on reserve requirements was therefore negligible. It is, however, unclear if this is a robust 
finding or an artifact of our solar data source. Because R2PD satisfies requests for PV capacity 
by pulling profiles for a sufficient number of gridded data sites based on a maximum of 4 
MW/site, requesting profiles for a certain number of megawatts at fewer locations may still 
result in a similar number of profiles being pulled. There may also be significant overlap in 
exactly which sites are pulled, especially because although the SIND sites R2PD pulls from are a 
gridded data set, not all grid locations are actually available. Some were screened out for being 
undevelopable (e.g., park land, too steep, too wet), and others were deemed too expensive to 
develop compared to other locations. Unfortunately, it was beyond the scope of the study to look 
into these details to evaluate whether our finding is at all robust.  

In any case, reserve requirement impacts are not high on the list of concerns when it comes to 
real-world site selection at the BA level. In addition to overall levels of solar irradiance, land 
cost, terrain characteristics, proximity to roads and transmission lines, local weather, and 
environmental and land use factors are all first-order considerations (Pillot et al. 2020; Aydin, 
Kentel, and Duzgun 2013; Al Garni and Awasthi 2017).  
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