

MADE3D: Enabling the Next-Generation High-Torque- Density Wind Generators by Additive Design and 3D Printing

Latha Sethuraman\*, Ganesh Vijayakumar, Shreyas Ananthan, Parans Paranthaman, Jonathan Keller, and Ryan King

#### 03/11/2021

Session: Design for Additive Manufacturing 5th Conference for Wind Power Drives CWD 2021

**ATK 2021** 

### **Recent Trends in Large Wind Turbine Projects**

#### New offshore wind project with a trend toward direct-drive generators

- Size and mass bring challenges
- Diameter > 10 m
- Original equipment manufacturers are moving their factories to port locations
- Huge cranes to lift to a 140-m hub height
- High dependence on rare-earth elements
- Generator costs >\$3 million Dutch North Sea





Nacelle mass:

#### The Quest for High-Torque Densities



Reduction in total capital costs when increasing the torque density for the International Energy Agency (IEA) 15-MW reference wind turbine<sup>1</sup>

## Impact on levelized cost of energy (LCOE): 3%–3.5% improvement

There is a need for new approach

- Improving the torque densities by up to 2X can help reduce turbine capital costs by 12%.
- Up to 50% reduction in generator mass alone will be required
- Is this achievable for a radial-flux permanent-magnet machine?
- Design: two-dimensional assumptions on geometry result in excessive use of magnetically active and inactive materials
- Materials: High-grade neodymium-iron-boron (NdFeB) magnets - brittle with expensive critical rare-earth elements, such as dysprosium (Dy)
- Lighter cores will necessitate lightweight alloys with high saturation flux densities and better near-net shaping and mechanical strength
- Manufacturing: Prohibitively time- and laborintensive

<sup>1</sup>Barter, G., Mendoza, N., Sethuraman L., Keller, J., Bennion, K., Kekelia, B., Cousineau, E., Feng, X., Kotecha, R., and Narumanchi, S. 2020. *Advanced next-generation high-efficiency lightweight wind turbine generator analysis*. National Renewable Energy Laboratory. NREL/TP-5000-77516.

#### **Our Solution**





Manufacturing and Additive Design of Electric Machines enabled by 3-Dimensional printing (MADE3D) is a multiyear project sponsored by the U.S. Department of Energy (DOE) aimed at overcoming some of the challenges and kick-starting a new paradigm for on-site manufacturing of high-power-density electric machine designs.

MADE3D-AML leverages advanced multiphysics topology optimization and LCOE toolsets to produce 3Dprintable, high-torquedensity electric machines with low-cost, lightweight materials.

#### **Designs with 3D-printed** stator cores



Photo credit : makeSEA



Photo credit : ORNL

**Enabling technologies** include new materials and advanced printing processes including binder jet additive manufacturing and selective laser melting.

**High-torque-dense** designs enabled by additive manufacturing



**Enables complexity and up to 50% weight reduction** compared to traditional designs



Photo credit : ExOne

### **Advanced Design: Topology Optimization**

- A technique to control material distribution as well as geometrical boundaries
- > 50 design variables (each mesh element is a variable)



Source: Gangl et al. 2016. "Sensitivity-Based Topology and Shape Optimization for Electrical Machines subject to Nonlinear Magnetostatics."

- Designs are too complex
- Largely focused on material removal
- Computationally prohibitive for large structures
  - A single optimization run can take a few days even when distributing over a high-performance-computing cluster with 50–100 nodes.

# MADE3D-Advanced Machine Learning (AML) as the Accelerator



- <u>MADE3D-AML</u> is NREL's new proprietary software for performing multiphysics topology optimization (TO) of electric machines. This tool:
  - Employs deep generative machine learning algorithms
  - $\odot$  Has no limit on design variables
  - $\odot$  Has high robustness in image recognition
  - Can be trained to behave as surrogate models for regression relatively quickly, thereby greatly reducing computational costs
  - $\odot$  Can identify multiple designs that satisfy a criteria.

### Additive Manufacturing Is Gaining Popularity for Small Motors

- Multimaterial processes for magnets, copper windings, and iron core are under development
- Design for additive manufacturing provides new opportunities with weaker magnets<sup>2</sup>





Equipmake's motor utilizing 3D-printed cooling channels and magnets



3D-printed windings by <u>Additive Drives</u>



<sup>2</sup> McGarry et al. 2019. *Optimization of Additively Manufactured Permanent Magnets for Wind Turbine Generators*. <u>2019</u> <u>IEEE International Electric Machines & Drives Conference (IEMDC)</u>. IEEE International Electric Machines & Drives Conference. Examine the magnetic optimization potential for the rotor of <u>the IEA</u> <u>15-</u> <u>MW reference wind turbine generator</u> using additive manufacturing and topology optimization powered by conventional approach and the National Renewable Energy Laboratory's new software, MADE3D-AML.



- Generator rotor active mass: ~58 tons
- Focus: Rotor active regions including the back iron and magnets
- Dimensions and masses
   Rotor core thickness: 63.62 mm
   M<sub>rotorcore</sub>: 34.22 tons
   Magnet thickness: 58.39 mm
   M<sub>mag</sub>: 24.08 tons
   T<sub>mean</sub>/(M<sub>rotorcore</sub> + M<sub>mag</sub>): 351.28 Nm/kg
- Optimization goal: maximize torque/rotor active mass

#### Flux Contour at Rated Torque



Reference 15-MW generator sector (a) technology optimization design domain are bounded in yellow and (b) the magnetic flux density contour at rated torque conditions. The maximum rotor flux loading at rated torque condition was 1.35 Tesla.

#### Approach

• Investigate single-material TO

Material removal: single composition of magnets and steel for the rotor core

#### AND multimaterial TO



Material replacement: two different types of materials for both the magnets and rotor core

#### **O** We use a four-step experimental design approach



#### **Design Space Definition and Scenarios**

| Case #             | Mesh Region                 | Material 1                         | Material 2                                                       |
|--------------------|-----------------------------|------------------------------------|------------------------------------------------------------------|
| 1. Core<br>only    | 12-by-4 grid                | Ferro-silicon<br>alloy<br>Fe-3.0Si | Air<br>Soft magnetic<br>composite<br>(SMC)                       |
| 2. Magnets<br>only | 10-by-6 grid per pole       | Sintered<br>magnet<br>(NdFeB)      | Air<br>Polymer bonded<br>NdFeB<br>magnet with zero<br>dysprosium |
| 3. Core<br>and     |                             | Fe-3.0Si                           | Air/SMC                                                          |
| magnets            |                             | Sintered<br>magnet                 | Air/polymer<br>bonded NdFeB                                      |
|                    | 12-by-4 grid for rotor core | (NdFeB)                            | magnet with zero                                                 |
|                    | TO-DA-D Rug ber bole        |                                    | aysprosium                                                       |

NREL | 11

#### **Data Generation**





- Several patterns of single and multimaterial designs were generated using Latin-hypercube sampling. For N mesh elements, the total number of designs is: 1.1\*(N+1)(N+2)/2
  - Rotor core: 1,348 designs
  - Magnet region: 8,120 designs



#### **Data Generation**





- Each design is evaluated by a transient magnetic FEA
- For rotor core evaluations, meanair gap torque and rotor flux loading were extracted
- For magnet design evaluation, only mean air-gap torque was extracted

Pattern representation inside the machine





### **Conventional Topology Optimization Approach**



- Training data: designs
   with mesh variables,
   torque, mass, rotor flux
   loading
- Build surrogate model:
   construct regression
   models to get best
   fitness between input
   and output
  - Define target torque, mass, and flux density constraints
- Perform TO using
   response surface
   method

### **MADE3D-AML Topology Optimization Approach**



- Use same training data: designs with mesh variables, torque, mass, rotor flux loading
- Build surrogate
   models: update and
   optimize networks in
   MADE3D-AML and train
- Define target
   torque, mass, and
   flux density limits
- Perform topology
   optimization

#### **Computational Efficiency Regression Model vs. MADE3D-AML**

|                        | Conventi           | onal TO       |               | TO using MADE3D-AML |               |               |  |  |  |
|------------------------|--------------------|---------------|---------------|---------------------|---------------|---------------|--|--|--|
| CASES                  | Rotor Core TO      |               | Magnet TO     | Roto                | or Core TO    | Magnet TO     |  |  |  |
|                        | Single<br>material | Multimaterial | Multimaterial | Single<br>material  | Multimaterial | Multimaterial |  |  |  |
| Total<br>Training Size | 1,348              | 1,348         | 8,120         | 1,348               | 1,348         | 8,120         |  |  |  |
| DOE Data<br>Generation | 2 days             | 2 days 2 days |               | 2 days              | 2 days        | 1 week        |  |  |  |
| Training               | 1.5 hours          | 1.5 hours     | >28 hours     | 26 min              | <b>26 min</b> | 26 min        |  |  |  |
| Fitness<br>Evaluation  |                    |               |               | 55 s                | 55 s          | 55 s          |  |  |  |
| Optimization           | 5 hours            | 17 hours      | 30 hours      | <5 min              | <5 min        | <5 min        |  |  |  |

Time for training, fitness evaluation, and optimization is substantially lower with MADE3D-AML. Single-material magnet TO was not pursued because of limitations in training data.

#### Surrogate Models: Accuracy in Predictions Regression Model vs. MADE3D-AML

|                                 | Single mater | ial – rotor co | ore         |           | Torque Predictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|--------------|----------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CASES                           | Torque RMSE  |                |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | Low Mass     | High Mass      | Median Mass | All cases |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Conventional<br>Surrogate Model | 0.513%       | 0.602%         | 0.527%      | 0.531%    | 20.50<br>20.25<br>20.00<br>19.75<br>19.50<br>19.25<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>19.00<br>19.5<br>20.00<br>19.5<br>19.00<br>19.5<br>20.00                                                                                                                          |
| MADE3D-AML                      | 0.15%        | 0.24%          | 0.20%       | 0.202%    | (WW)<br>20.50<br>20.25<br>20.00<br>19.75<br>19.50<br>19.50<br>19.25<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.75<br>19.00<br>19.50<br>19.00<br>19.50<br>19.50<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>19.00<br>19.55<br>20.00<br>20.55<br>19.00<br>19.55<br>20.00<br>20.55<br>19.00<br>19.55<br>20.00<br>20.55<br>19.00<br>19.55<br>20.00<br>20.55 |

Root-mean-square error (RMSE) in torque predictions is halved with the MADE3D-AML model.

### Results of TO: Single-Material Designs – Both Approaches Resulted in ~14-ton Weight Reduction

#### **REGRESSION MODEL (RM)**

**MADE3D-AML** 

|                                                     | Objective f | function f <sub>1</sub> | <b>Objective</b> f | unction f <sub>2</sub> | Objective fu           | unction f3 | •                                                   | Objectiv | e function f1 | Objectiv | e function f2 | <b>Objective</b> | function f3 |         |  |                 |  |     |       |     |
|-----------------------------------------------------|-------------|-------------------------|--------------------|------------------------|------------------------|------------|-----------------------------------------------------|----------|---------------|----------|---------------|------------------|-------------|---------|--|-----------------|--|-----|-------|-----|
| Pattern<br>mat1<br>mat2 (air)                       |             |                         |                    |                        | Pattern<br>mat1<br>air |            |                                                     |          |               |          |               |                  |             |         |  |                 |  |     |       |     |
| Manufacturability                                   | Feas        | ible                    | Feasi              | ble                    | Feasi                  | ble        | Manufacturability                                   | fe       | asible        | fe       | asible        | corner conta     | ct          |         |  |                 |  |     |       |     |
| Pattern representa-<br>tion inside the ma-<br>chine |             |                         |                    |                        |                        |            | Pattern representa-<br>tion inside the ma-<br>chine |          |               |          |               |                  |             |         |  |                 |  |     |       |     |
| M <sub>rotorcore</sub><br>(tons)                    | 20.5        | 527                     | 20.5               | 27                     | 19.9                   | 95         | M <sub>rotorcore</sub><br>(tons)                    | 23.95    |               | 22.81    |               | 19.95            |             |         |  |                 |  |     |       |     |
| T <sub>mean</sub>                                   | RM          | FEA                     | RM                 | FEA                    | RM                     | FEA        |                                                     | AML      | FEA           | AML      | FEA           | AML              | FEA         |         |  |                 |  |     |       |     |
| (MNm)                                               | 20.5        | 20.37                   | 20.45              | 20.36                  | 20.45                  | 20.4       | T <sub>mean</sub> (MNm)                             | 20.5     | 20.468        | 20.4     | 20.469        | 20.06            | 20.4        |         |  |                 |  |     |       |     |
| %                                                   | I           |                         |                    |                        |                        |            |                                                     |          |               | 9        |               |                  |             |         |  |                 |  |     |       |     |
| increase                                            | 29.         | 17                      | 29.0               | 05                     | 30.84                  |            | % increase in                                       |          | <u>I</u>      |          | <u>I</u>      |                  |             |         |  |                 |  |     |       |     |
| in TD                                               |             |                         |                    |                        |                        |            | TD                                                  | 2        | 13            | 2        | 43            | 31               | .3          |         |  |                 |  |     |       |     |
| Wall time to optimization                           | 5 hc        | ours                    | 5 ho               | urs                    | 5 ho                   | urs        | Wall time to optimization                           | < 5 min  |               | < 5 min  |               | < 5 min          |             | < 5 min |  | < 5 min < 5 min |  | min | < 5 ו | min |

### **Results of TO: Single-Material Designs: FEA** Validation



 AML predictions for rotor flux loading closely resemble FEA results

#### Results of TO: Few Additional Designs Identified by MADE3D-AML



#### Multimaterial Designs for Rotor Core – ML Approach Replaced Material in Regions of Lower Magnetic Loading

#### **REGRESSION MODEL (RM)**

MADE3D-AML

| <del>_</del>                                                | Objec      | tive function <i>f</i> | <i>i</i> Objectiv | e function f | 2 <b>Objective</b> | function f3 |                                                 | Objecti  | ve function f1 | Objectiv | e function | $f_2$ <b>O</b> | bjective | function f3 |       |     |
|-------------------------------------------------------------|------------|------------------------|-------------------|--------------|--------------------|-------------|-------------------------------------------------|----------|----------------|----------|------------|----------------|----------|-------------|-------|-----|
| Pattern                                                     |            |                        |                   |              |                    |             | Pattern mat1                                    |          |                |          |            |                |          |             |       |     |
| mat1                                                        |            |                        |                   |              |                    |             | mat2                                            |          |                |          |            |                |          |             |       |     |
| mat2                                                        |            |                        |                   |              |                    |             | Manufacturability                               | feasible |                | feasible |            | feas           | ible     |             |       |     |
| Manufacturability Pattern representation inside the machine | n feasible |                        | feasible          |              | feasible           |             | Pattern<br>representation<br>inside the machine |          |                |          |            |                |          |             |       |     |
| M <sub>rotorcore</sub><br>(tons)                            | 32         | .007                   | 32.5              | 517          | 32.                | 07          | M <sub>rotorcore</sub><br>(tons)                | 33.28    |                | 33.21    |            | 31.9           | )5       |             |       |     |
| T <sub>mean</sub>                                           | RM         | FEA                    | RM                | FEA          | RM                 | FEA         | T <sub>mean</sub>                               | AML      | FEA            | AML      | FEA        | A              | ML       | FEA         |       |     |
| (MNm)                                                       | 20.45      | 20.432                 | 20.46             | 20.44        | 20.454             | 20.45       | (MNm)                                           | 20.48    | 20.47          | 20.48    | 20.47      | 20.4           | 14       | 20.44       |       |     |
| % increase<br>in TD                                         | 3          | .70                    | 2.8               | 52           | 3.69               |             | % increase<br>in TD                             | 1        | .62            | 1.74     |            | 3.84           |          | 4           |       |     |
| Time to optimization                                        | 16.4       | hours                  | 16.5 h            | ours         | 17 ho              | ours        | Wall time to optimization                       | < 5 min  |                | < 5 min  |            | < 5            | min      |             | < 5 r | nin |

#### Results of TO: Few Additional Designs Identified by MADE3D-AML



| M <sub>rotorcore</sub> (tons) | 33.28 | 33.21  | 31.95 |
|-------------------------------|-------|--------|-------|
| Torque<br>(MNm)               | 20.47 | 20.469 | 20.4  |
| % increase in TD              | 1.68  | 1.74   | 3.84  |

### Multimaterial Designs – Magnets: Up to 8.75% **Savings in Costs**

#### **MADE3D-AML**

| REGRESSION MODEL (RM)                                                       |                   |                       |                   |                         |                  |                        | MADE3D-AML                                                                  |              |                               |                     |            |                            |            |                                   |
|-----------------------------------------------------------------------------|-------------------|-----------------------|-------------------|-------------------------|------------------|------------------------|-----------------------------------------------------------------------------|--------------|-------------------------------|---------------------|------------|----------------------------|------------|-----------------------------------|
|                                                                             | Objective fu      | nction f <sub>1</sub> | Objective         | function f <sub>2</sub> | Objective f      | unction f <sub>3</sub> |                                                                             | Objec        | ctive func                    | tion f <sub>1</sub> | Objectiv   | ve function f <sub>2</sub> | Objecti    | ve function <i>f</i> <sub>3</sub> |
| Pattern<br>mat1 'N' pole<br>mat2 'N' pole<br>mat1 'S' pole<br>mat2 'S' pole |                   |                       |                   |                         |                  |                        | Pattern<br>mat1 'N' pole<br>mat2 'N' pole<br>mat1 'S' pole<br>mat2 'S' pole |              |                               |                     |            |                            |            |                                   |
| Manufacturability                                                           | Feasible- FGM     | approach              | Feasible- FG      | M approach              | Feasible- FGI    | M approach             | Manufacturability                                                           | Feasibl      | e-FGM app                     | oroach              | Feasible-F | GM approach                | Feasible-F | GM approach                       |
| Pattern representation in side the machine                                  |                   |                       |                   |                         |                  |                        | Pattern represent<br>tation inside the<br>machine                           |              |                               |                     |            |                            |            |                                   |
| M <sub>mag</sub> (tons)                                                     | 23.77             |                       | 23.71             |                         | 22.98            |                        | M <sub>mag</sub> (tons)                                                     |              | 23                            | .95                 |            | 23.59                      | 22.        | 987                               |
| IVI <sub>mag-mat1</sub> (tons)                                              | 23.06             |                       | 22.8              |                         | 20.46            |                        | M <sub>mag-mat1</sub> (to                                                   | ons)         | 23                            | .68                 | 2          | 22.476                     | 20         | .46                               |
| Material cost<br>savings (%)                                                | 2.49              |                       | 3.23              |                         | 8.75             |                        | Material                                                                    | ons)<br>cost | 0.2                           | 278                 |            | 3.88                       | 2.         | 51<br>75                          |
| Torque<br>estimates                                                         | RM                | A                     | RM                | FEA                     | RM               | FEA                    | Torque estir                                                                | nates        | AML                           | FEA 20.37           | AML        | FEA 20.37                  | AML        | FEA                               |
| (MNm)                                                                       | 20.51 20          | .4                    | 20.5              | 20.38                   | 20.25            | 20.15                  |                                                                             | n TD         | _0 21/                        | 20.57               | 0 205      | <u>20.37</u>               |            | 1 1 3 . 1                         |
| % increase in TD<br>Time to<br>optimization                                 | 0.184<br>32 hours |                       | 0.2<br>32.5 hours |                         | 0.67<br>32 hours |                        | Time<br>optimization                                                        | to<br>n      | <pre>0.314 0 &lt; 5 min</pre> |                     | < 5 min    |                            | < 5 min    |                                   |

#### **Summary**

Overall, a total mass reduction of 15.1 tons was possible from rotor active parts for the 15-MW generator.

- MADE3D-AML demonstrated a significant reduction in computational costs and increase in accuracy in performance predictions.
- Additionally, a wider selection of optimal 3D printable designs was identified.
- Hybrid rotor core: Fe-3.0Si and low-strength SMC present a new opportunity to realize a low-loss, high-strength rotor core.
- Hybrid magnets: The sintered magnet and dysprosium-free, polymer-bonded magnet showed potential to save magnet costs by up to 8.75%.
- $\circ$  We identified an improvement of more than 30% in torque/rotor active mass.
- The results will inspire a new paradigm for design-driven manufacturing with novel material compositions and lightweight, low-cost, high-strength multimaterial geometries that were previously unexplored for direct-drive generators.





**High-torque-dense** 

designs enabled by

Manufacturing and Additive Design of Electric Machines enabled by 3-Dimensional printing (MADE3D) is a multiyear project sponsored by the U.S. Department of Energy (DOE) aimed at overcoming some of the challenges and kick-starting a new paradigm for on-site manufacturing of high-power-density electric machine designs.

**Multimaterial printing** 

MADE3D-AML leverages advanced multiphysics

Additive Design Topology Optimization

**Questions???** 

### For partnership and licensing opportunities, please visit: https://www.labpartnering.org/lab-technologies/ 6ebf5c69-dc94-4393-a2e7-49042e16502d



#### Thank you

www.nrel.gov

NREL/PR-5000-79384

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

