

Opportunities for Solar Industrial Process Heat in the United States

Colin McMillan, Carrie Schoeneberger, Parthiv Kurup, and Jingyi Zhang

February 3, 2021

NREL/PR-6A20-79083

Agenda

- 1. Analysis framing
- 2. Industrial process heat (IPH)
- 3. Solar generation
- 4. Opportunities for solar for IPH
- 5. Conclusions and future research
- 6. Q&A

Colin McMillan, NREL

Jingyi Zhang, Northwestern University

Parthiv Kurup, NREL

Carrie Schoeneberger, Northwestern University

Colin McMillan, NREL

Robert Margolis, NREL Eric Masanet, Northwestern University/UC Santa Barbara William Xi, NREL

Analysis Framing

Analysis Introduction

- Industrial process heat (IPH) is the transfer of heat to a material within a production process by convection, conduction, or radiation
- The potential to use of solar technologies (solar thermal and PV) for meeting IPH in the United States is an understudied and important topic
- The motivating research questions are:
 - 1. What are the geographic, temporal, and operational characteristics of IPH demand in the United States?
 - 2. What is the county-by-county **opportunity** to meet IPH demand with solar technologies?

Solar Process Heat Installations (2019) Adapted from Schoeneberger et al. (2020)

Why Industrial Process Heat (IPH)?

- IPH is a major use of energy in the United States
 - Industry is second-largest user of energy, behind transportation sector
 - IPH is the majority of fuel energy use by industry, equivalent to ~40% of transportation sector and ~28% of residential and commercial buildings combined
- Nearly all IPH energy is provided by fuel combustion
 - Mostly fossil fuels

Why Solar for IPH?

Solar technologies are well-matched to the temperature demands of IPH in the U.S.

But, what about temporal and geographic characteristics of IPH demands?

End Use

Solar supply

Heating

Analysis Framework and Approach

Overall approach is to characterize hourly IPH loads and match them with the appropriate hourly supply of solar heat.

Opportunity for SIPH is defined as the fraction of process heat demand that can be provided by solar technologies, given available solar resources and land area

Includes	Excludes					
 ✓ County-average solar resource ✓ County total land availability 	Site-level analysisEconomic considerations					
 ✓ IPH unit process detail, including temperature, heat media, and boiler type 	 Battery storage Multiple varieties of a single solar technology type 					
 Hourly heat load and solar generation Uncertainty ranges of typical operating schedules 	Emerging solar technologiesHawaii, Alaska, and Puerto Rico					

Analysis Contributions

- Analysis is a first, key step to exploring how solar IPH technologies could be relevant for U.S. industries
- Expand solar for IPH to include PV-connected electrotechnologies
- Results are useful at the national, state, and local levels
- Publicly-available resources for continued analysis
 - Data sets on IPH characterization, load shapes
 - Interactive results viewer
 - Open-source code

https://www.nrel.gov/analysis/solar-industrial-process-heat.html

Industrial Process Heat

IPH Data Disaggregation

IPH Characteristic	Existing Detail	New Disaggregation
Geographic	County (NREL), Census Region (EIA MECS)	County
Temporal	Annual	Hourly
Operational – Temperature	None	Process temperature
Operational – Process	General end use (e.g., conventional boiler, process heating)	General end use with equipment efficiencies and capacities

Matching Solar Technologies with IPH Applications

Conventional IPH Technologies and Applications	Solar Technologies			7 solar "technology
Conventional boiler, CHP; hot water (<90°C)	Flat plate collector (v	v/ water storage)	(1)	packages"
Conventional boiler CHP process beat	Parabolic trough colle thermal energy	ector (w/wo 6-hr y storage)	(2)	
conventional bolier, ern, process neur	Linear Fresnel, direct steam generation			
Conventional boiler, CHP; hot water (<90°C)	Ambient heat pump (HP) (w/ water storage)		(4)	
Conventional boiler (steam and hot water)	Electric boiler		(5)	Conventional IPH
Conventional boiler, CHP, process heat	Resistance heater	PV	(6)	technology and applicati
Conventional boiler, CHP, process heat	Waste heat recovery HP (WPRHP)		(7)	Solar technology

Process Heat Technologies: Electrotechnologies

- In addition to modeling boilers and CHP, electrotechnologies were selected based on criteria for technical potential
 - PV+ [ambient HP, electric boiler, resistance heating, and waste heat recovery HP (WHRHP)]
 - Selection based on weighted scoring of technical potential to replace conventional technologies, data sufficiency, and market growth potential

Electrotechnology Screening

Electrotechnologies	Technical Potential for Conventional Fuel Replacement	Weighted Score of Technical Potential	Data Availability	Weighted Score of Modeling Confidence	Market Growth Outlook	Weighted Score of Market Growth Outlook	Overall Score	
Electric boiler	3	6	3	3	3	3	12	
Ambient heat pump	3	6	3	3	2	2	11	
Resistance heating and melting	3	6	3	3	2	2	11	
Waste recovery heat pumps	2	4	3	3	3	3	10	
Induction heating and melting	2	4	3	3	3	3	10	
Infrared processing	2	4	3	3	3	3	10	
Microwave heating and drying	2	4	3	3	3	3	10	
Radio-frequency heating and drying	2	4	3	3	3	3	10	
Direct arc melting	2	2	3	3	3	3	10	
UV (ultraviolet)	1	2	3	3	3	3	8	
Plasma processing	1	2	3	3	2	2	7	
Vacuum melting	1	2	2	2	3	3	7	
Laser processing	1	2	3	3	2	2	7	
Ladle refining	1	2	1	1	1	1	4	

Technical Potential of Replacing Conventional Boilers with e-Boilers

2014	Fossil fuel	827
conventional boiler fuel use	Fossil fuel	827
(TBtu/yr)	Other fuel	932
	Total	1759
Technical potential	Boiler fuel replacement	52%
	TBtu replacement	916

The result assumes single boiler replacement with a maximum e-boiler capacity of 190 MMBtu/hr

Technical potential of waste heat recovery heat pumps (WHRHPs)

	Total
Input work/heat (TWh)	3.60E+01
Waste heat recovery (TBtu)	3.30E+02
Output heat (TBtu)	4.53E+02

Waste heat recovery = Input fuel × waste heat fraction × waste heat not recovered Output heat = Input work or heat × COP -> Input work or heat = waste heat recovery/(COP-1)

Solar Generation

Solar Resource and Land

- Significant solar resource across the US:
 - GHI: Range is 1,000 2,500 kWh/m2/year
 - DNI: Range is 1,450 2,740 kWh/m2/year
- Solar IPH suitability across the US
 - Huge potential for PV for heat
 - For CSP, Southwest, but also across the country due to decreased resource need compared to electricity
- Land availability for SIPH typically in each state is greater than the land needed to meet all the state's demands
 - Modelling using new exclusion criteria

NREL | 18

Solar Technology Packages and Applications

NREL

Solar technology

19

Modelling

- NREL's System Advisor Model (<u>SAM</u>), 2020.11.29
 - Technology parameters defined for the technology package
- NREL's Renewable Energy Potential (<u>reV</u>) Model used to estimate generation by county
 - Detailed spatiotemporal modeling assessment tool that calculates renewable energy capacity, generation, and cost based on geospatial intersection with grid infrastructure and land-use characteristics.
 - Technology package from SAM run on reV, via high performance computing, for every county e.g., ~3000 times
- PV and Heat Pump
 - Models developed by Stephen Meyers
 - Hourly PV-generated electricity (from SAM output and reV JSON) is used to power a heat pump that "lifts" heat from ambient air into water that is stored and subsequently used to heat a process load at its desired temperature

Opportunities for SIPH

Process-level Heat Demand by Industrial Subsector

- Shows how much process-level heat demand each technology could theoretically meet within a given subsector
- Highest potential demand in pulp & paper, chemicals, petroleum, and food

Opportunities for SIPH by Technology

Total solar heat potential

- Based on hourly calculations of solar fractions
- Shows total annual heat potential by solar technology in TBtu and as a fraction of total IPH demand for the technology
- Overall, highest solar heat potential with concentrating collector technologies

Solar Heat Potential by Industrial Subsector

- Shows total annual solar heat potential within a few subsectors
- In subsectors with medium temp. steam needs, concentrating collectors have high potentials
- In metals, electric resistance heating has high potential

Frequency of Solar Heat Fully Meeting Process Heat Demand

Note: color

different per

technology

bins are

Percent of the year

> 45 35 - 45

30 - 35

25 - 30

< 25

45 - 5

Parabolic trough collector, no storage

- Based on hourly solar fraction: when the solar fraction is 1 or greater, solar heat can fully meet demand .
- Maps show how often during the year that solar heat is fully meeting demand in the county ۰

Comparison of Summer and Winter Sizing

- To compare the effect of solar system sizing, solar systems were scaled to meet peak load by county in summer (June) and winter (December)
- With winter sizing, solar technologies can meet heat demand more often

Land Use Requirements

- Land use is dependent on total heat load since solar systems were scaled to meet peak load
- More land required for PV electric heating systems

Land use, totals in km²

As a comparison, Connecticut, the third smallest state by area, is 14,357 $\rm km^2$

	FPC	LF DSG	PTC no TES	PTC w/ TES	E-boiler	Resistance	WHR HPs
Summer sizing	221	2,711	4,515	5,463	3,875	4,958	1,130
Winter sizing	521	7,385	14,620	18,960	6,533	8,127	1,911

Fuel Savings

- Amount of fuels displaced for each technology mirrors solar heat potential, with concentrating technologies highest
- Fuels displaced increases in summer months and varies by fuel types for a technology

Summary Comparison of Technologies

- Shows how often during the year a technology fully meets heat demand and for how many counties where it can meet heat demand at least half the year
- Solar systems with thermal energy storage (PTC with TES and FPC) meet demand most often and for the most counties

Conclusions and Future Research

- First national level analysis for the U.S., conducted at the county level
- Solar thermal and PV heat technologies can meet many temperature needs; nearly 25% of 2014 IPH demand
- Most counties have sufficient available land, although site-specific details matter
 - On average only 5% of land is needed
 - However, site assessment for individual facilities is needed to determine economic viability
- **Key insight:** All CONUS states can readily benefit from solar heat technologies, and meet a large portion of their IPH demand
- Key insight: possible for heating technologies to reduce CO₂ emissions by ~15%
- Key insight: thermal energy storage is a key for solar IPH success

0.0

0.0

2.6 1.1 1.5 0.3

0.2 0.0 0.5 0.0 11 0.4

2.4 1.1

Importance of Thermal Energy Storage (TES)

t -	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4 -	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	m -	0.0	0.0	0.0	0.0	
-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N -	0.1	0.0	0.0	0.7	
-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.2	0.1	1.4	1.8	
-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4 -	0.0	0.6	2.1	2.3	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	r4 m -	0.0	0.9	22	23	
-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	~	0.3	15	2.8		
	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.0	0.0	0.0	0.0	0.0	2	0.5	23	32		
2	0.0	0.0	0.1	0.3	0.7	0.8	0.9	0.5	0.1	0.0	0.0	0.0	N	0.7				
	0.1	0.4	0.7	0.8	1.4	1.4	1.6	11	0.6	0.1	0.0	0.0	N	12	30			
	0.5	11	13	1.3	2.0	1.8	2.3	18	13	0.8	0.2	0.1	я	2.0			23	
	12	17	1.9	16	2.3	1.7	2.5	2.0	1.8	15	0.7	0.5	II II	2.0			20	
	1.4	2.2			21	1.7	24	1.9		2.2	11	0.7	h ho				2.0	
	12	19					2.3	19			11	0.5	16 16				22	
1	11	1.6				17	23	17			1.0	0.4	51				22	
1	1.2	1.6					2.2	1.6			11	0.4	14				21	
1	1.3						23	18			13	0.5	E					
	12						2.6	19			13	0.5	11	2.6				
	0.3	11	1.6	17			27	2.0			0.7	0.1	1	2.2	2.8	31		
1	0.0	01	0.8	1.5		15	2.5	1.8	15	0.6	0.0	0.0	8	0.8	1.8	2.4		
	0.0	0.0	0.0	0.4	12	12	16	0.3	0.1	0.0	0.0	0.0	σ -	0.0	0.2	1.4	22	
	0.0	0.0	0.0	0.4	0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.0	00 -	0.0	0.0	0.1	0.9	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	P	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	φ.	0.0	0.0	0.0	0.0	
1	0.0	1	1.0	0.0	1	0.0	0.0	1	0.0	0.0	0.0	0.0	in -	0.0	0.0	0.0	0.0	
	1	2	3	4	5	6 Mo	7 onth	8	9	10	11	12		i	2	3	4	

Parabolic trough collector, no storage

Ville

Parabolic trough collector, with storage

- Comparison of hourly solar fraction, averaged for the month, between PTC with and without TES for Polk County, Iowa
- Large, energy-intensive industries tend to run continuously
- TES extends the hours when solar fully meets demand, leading to more fuel savings and emissions reductions

Future Research

Just the start and more research is needed!

- Higher resolution analysis
 - Location-specific modeling to match the supply and demand e.g., 500m to the site, land available, heat transport, specific site load demands and integration
- Increased options for energy storage
 - Thermal batteries e.g., grid tied to pull low-cost renewable electricity
 - Electric batteries to couple with the PV-based systems
- Increased integration efforts for viability
 - Unlike electricity, heat is not as fungible, and needs proper integration
- Facility decision support
 - Solar heat supply side considerations (e.g., different technologies) coupled to the user inputs e.g., load, natural gas use and land

Thank you! Q&A

www.nrel.gov

McMillan, Colin, Carrie Schoeneberger, Jingyi Zhang, Parthiv Kurup, Eric Masanet, Robert Margolis, Steven Meyers, Mike Bannister, Evan Rosenlieb, and William Xi. 2021.*Opportunities for Solar Industrial Process Heat in the United States*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-77760.

https://www.nrel.gov/docs/fy21osti/77760.pdf

Colin.McMillan@nrel.gov

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Backup

Solar Supply

Process Heat Technologies

Solar technology	Characteristics	Applicable end use	Limited to
FPC	Temperature, 90°C Uses: hot water, boiler feedwater preheating	Conventional boiler, CHP	Hot water only
CSP	Temperature, 400°C Uses: steam, direct proc. heat	Conventional boiler, CHP, PH	Process temp <340°C
PV + HP (ambient)	Temperature, <90°C Uses: hot water	Conventional boiler	Hot water only
PV + electric boiler	Uses: steam, hot water	Conventional boiler	Capacity<50MW
PV + resistance	Temperature, 1800°C Uses: furnaces, ovens, kilns	PH, Conventional boiler, CHP	Process temp <1800°C, relevant unit processes and industries
PV + HP (waste heat)	Temperature, 160°C Uses: steam, hot water, hot air	Conventional Boiler, CHP, PH	Relevant unit processes and industries

Land Exclusion Criteria

Data Set	Criteria	Data
Slope	Slopes greater than 3% (for parabolic trough) or 5% (for PV or FPC)	
Urban	Suburban areas	
Areas	Urban areas	
	Open water	Fede
	Woody wetlands	Lanc
Land	Emergent herbaceous wetlands	
Cover	Deciduous forest	
	Evergreen forest	
	Mixed forest	Airp
BLM	Bureau of Land Management areas of critical	Prot
ACEC	environmental concern	Area
	National battlefield	Data
	National conservation area	the l
	National fish hatchery	State
	National monument	
	National park	
Federal	National recreation area	
Lands	National scenic area	
	National wilderness area	
	National wildlife refuge	Nati
	Wild and scenic river	Cons
	Wildlife management area	Ease
	National forest	Data

Data Set	Criteria
	National grassland
Federal	U.S. Air Force Guard land
	U.S. Air Force land
Federal	U.S. Army land
Lands (cont.)	U.S. Army Guard land
	U.S. Coast Guard land
	U.S. Marine Corps land
	U.S. Navy land
	Mixed forest
Airports	Airports
Protected Areas Database of the United States	Status 1: an area having permanent protection from conversion of natural land cover and a mandated management plan in operation to maintain a natural state within which disturbance events (of natural type, frequency, intensity, and legacy) are allowed to proceed without interference or are mimicked through management
	Status 2: an area having permanent protection from conversion of natural land cover and a mandated management plan in operation to maintain a primarily natural state, but which may receive uses or management practices that degrade the quality of existing natural communities, including suppression of natural disturbance.
National	Status 1: managed for biodiversity: disturbance events proceed or are mimicked
Conservation Easement Database	Status 2: managed for biodiversity: disturbance events suppressed

Solar Technology Packages

Technology Package	MW _{th} of Solar Field	MW _{th} at the Heat Exchanger	HTF	Volume of TES/Hours of Storage	Collector/Type	Total Land Area	Aperture Area/ Absorption Area (m²)
Solar water heating-FPC	1.0	~1.27	Glycol	60 m ³	Heliodyne Gobi 410 001	~0.5 acres	2,014 m ²
CSP: oil trough, no TES	1.5	1.00	Therminol-VP-1	0	SkyFuel SkyTrough	~2 acres/ ~8,094 m ²	2,624 m ²
CSP: oil trough, 6 hours of TES	2.5	1.00	Therminol-VP-1	6 hours	SkyFuel SkyTrough	~4 acres/ ~16,187 m ²	5,248 m ²
CSP with DSG LF collector, no TES	1.2	1.00	Water/Steam mix	0	Novatec	~1 acre/ ~3,698 m ²	3,082 m ²
PV DC for connection to resistive heater and eBoiler	1.2	NA	NA	NA	Standard module from PVWATTs Calculator with fixed open rack	In SAM output	In SAM output

For PV AC, the same solar field is used, but 1 MWe is used as the system size. DC : AC inverter ratio = 1.2

Defined as ~1 MW systems; scaled by sizing to winter peak and summer peak, system footprint, and available land area

SAM Technology Parameters Examples

Indirect Heating - Direct Steam Generation Linear Fresnel Collectors

in the second D	System Parameters		1					
Location and Resource	System nameplate size	1200	kWdc					
System Design	Module type	Standard		~				
	DC to AC ratio	1.2						
	Rated inverter size	1,000.00	kWac					
	Inverter efficiency	96	%					
	Orientation							
	Azimuth Till	A	rray type F	ixed open rack		-		
	N=0		Tilt	20	degrees degrees			
	270		Azimuth	180				
	3 60	Ground coverage ratio		0.4				
				-				
	Soiling	2 %		Connections	0.5	1%		
	Shading	3 % Ligh	t-induced	degradation	1.5	%		
	Snow	0 %		Nameplate	3	26		
	Mismatch	2 %		Age	0	26		
	Wiring	2 %		Availability	3	26		
	Enable user specified losses	User-specif	fied total s	ystem losses	14	3		
			Total s	ystem losses	14.08	1%		
	Shading							
	Edit shading losses Edit	shading	Ope	n 3D shade cal	culator			
	-Curtailment and Availability							
	Curtailment and availability losses reduce the system output to represent system outages or other events.							

Simulate 2

Direct Heating - Direct Steam Generation Linear Fresnel Collectors

IPH Linear (steam), No financial	Design Point Parameters					
ocation and Resource	Solar Field			Heat Sink		
Destas	Design point DNI	950	W/m ³	Heat sink power	1	MW:
ystem Design	Target solar multiple	1.2		Heat sink inlet pressure	20.0	bar
olar Field	Target receiver thermal power	1.20	MWt	Heat sink fractional pressure drop	0.010	
	Field inlet temperature	100	*C			
Collector and Receiver	Field outlet steam quality	0.75				
	System Availability and Curtailment			91		
	Curtailment and availability losses reduce the system output to represent system outages o other events.	Ed	dit losses	Constant loss: 4.0 % Hourly losses: None Custom periods: None		

H Linear (stram), No financial	System Configuration						
cation and Resource	Design Point DN	.950	W/m/	Field inlet temperature	100.0 °C		
	Target solar multiple	1.20		Heat sink inlet pressure	20.0 bar		
stem Design	Target receiver thermal power	1.20	MWt	Field outlet steam quality	0.75		
lar Field	Solar Field Design Point						
	Single loop aperture	3081.6	m2	Actual number of loops	1		
ector and Receiver	Loop optical efficiency	0.74613		Actual aperture	2m 5.1000		
	Loop thermal efficiency	0.977567		Actual solar multiple	2,13531		
	Total loop conversion efficiency	0.729392		Actual field thermal output	2.13531 MWt		
	Total required aperture, SM+1	1443.16	m2				
	Required number of loops, SM=1	1					
	Solar Field Parameters			Steam Design Conditions			
	Number of modules in boiler section	6		Cold header	pressure drop fraction	0.01	
	Solar elevation for collector nighttime stow	10	deg	Boller	pressure drop fraction	0.075	
	Solar elevation for collector morning deploy	10	deg	Average design point hot header	pressure drop fraction	0.025	
	Stow wind speed	20	m/s	Total se	slar field pressure drop	22	bàr
	Collector azimuth angle	0.4	deg	Freeze	protection temperature	10	Ċ
	Design point ambient temperature	42	c		Field pump efficiency	0.85	
	Tracking power	0.20	W/m2				
	Piping thermal loss coefficient	0.0015	W/K-m2-aper				
	Mirror Washing			Plant Heat Capacity			
	Water usage per wash	0.02	L/m2,ap	Thermal inertia ner unit area of	colar field	27 kt//.m2	
	Washes per year	12			2010 1000	and being one	
	Land Area						
	Solar field area 0.76148 acre	Non-sola	ar field land arei	a multiplier 12 Total	land area 0.913	1776 acres	
	20						

Unit Process Calculations

Technical potential of Resistance Heating and Melting

Calculating Process Heat Demand

Results Backup

Opportunities: Calculation Framework

Opportunity (% fossil fuel replaced) = $\sum \frac{energy \ provided \ to \ process \ by \ solar \ tech_{county,hour}}{energy \ provided \ to \ process \ by \ solar \ tech_{county,hour}}$

energy required for process heat_{county hour}

Comparison of summer and winter sizing

• Solar technologies meet demand more often with systems sized to meet peak load in winter

CO₂ emissions savings

 CO₂ emissions were calculated based on fuel savings and CO₂ emissions factors by fuel type

CO₂ emissions savings (million metric tons)

	FPC	LF DSG	PTC no TES	PTC w/ TES	E-boiler	Resistance	WHR HPs
Summer sizing	26.6	70.3	95.8	136.4	18.3	20.9	4.7
Winter sizing	32.2	75.4	106.2	137.4	18.1	18.7	5.3

U.S. energy-related CO₂ emissions from industry in 2014

 1500 million metric tons

Land Use Requirements

Land use as percentage of available land

Hourly process temperatures and solar supplied temperatures

- Colors indicate the temperature difference between the minimum required process temperature in Bee County, TX and the solar supplied heat for an FPC hot water heating system
- FPC achieves the required process temperature during daytime hours and into the night during summer, due to warmer ambient temperatures and the included storage

Land use as a percentage of available land, histogram of counties

Additional Electricity needed for PV+electrotechnologies when not meeting demand

	Resistance	WHR HPs		
Summor sizing	965	225		
Summer sizing	(944, 975)	(221, 228)		
Winter sizing	642	218		
winter sizing	(613, 659)	(215, 220)		

CHP Calculations

Efficiency variations with partial thermal loads of combustion/ga s turbine CHPs

Efficiency variations with partial thermal load of steam turbine CHPs

