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a b s t r a c t 

As electric vehicle penetration increases, charging is expected to have a significant impact on the grid. Electric 
vehicle charging stations will greatly affect a building site’s power demand, especially with the onset of fast 
charging with power levels as high as 350 kW per charger. Here, we assess how electric vehicle charging sta- 
tions would impact a retail big box grocery store, exploring numerous station sizes, charging power levels, and 
utilization factors in various climate zones and seasons. We measure the effect of charging by assessing changes 
in monthly peak power demand, electricity usage, and annual electricity bill, computed using three distinct rate 
structures. We find that an electric vehicle station has the potential to dwarf a big box building’s power demand 
if behind the same meter, increasing monthly peak power demand at the site by over 250%. Cold-climate areas 
paired with rate structures incorporating high demand charges are most susceptible for significant changes to the 
annual electricity bill, with increases as high as 88%. 
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Passenger electric vehicles (EVs) can improve local air quality and
ecarbonize the transportation sector [ 1 , 2 ] but currently account for
ess than one percent of all cars in circulation worldwide. However, this
s quickly changing. In 2010, about 17,000 EVs were on the world’s
oads; in 2019, there were about 7.2 million [1] . Continued growth is
xpected: California banned the sale of new gas-powered passenger cars
tarting in 2035 [3] and 17 countries have announced the phase-out of
as-powered vehicles through 2050 [1] . As the adoption of EVs grows,
o must that of charging stations, or electric vehicle supply equipment
EVSE). From 2016 to 2020, the number of public and private EV charg-
ng ports grew from 34,000 to over 85,000 [4] . 

Most charging is currently performed at owners’ residences, where
ehicles are parked and charged overnight [5–7] , but this is expected to
hift toward public options. In the European Union, the share of home
harging is predicted to decline from approximately 75% in 2020 to
0% by 2030 [8] as more middle- and lower-income households with-
ut home-charging options purchase EVs. Renters, who make up an in-
reasing percentage of the U.S. population [ 9 , 10 ], cannot home charge
s rental-property owners have little incentive to invest in EVSE [ 11 , 12 ].
nability to charge is one of the main barriers to purchasing EVs [ 13 , 14 ],
aking nonresidential EVSE development critical to not only accommo-
ate long-distance travel [15] but also provide opportunities for those
ho cannot reliably charge at home [ 5 , 16 ]. 
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A large proportion of nonresidential EVSE is on existing retail sites
 4 , 7 , 17 ], particularly supermarkets [18] . Americans are already refuel-
ng traditional gas-powered vehicles at supermarkets more frequently,
ncluding Kroger, Costco, and Sam’s Club [19] . Because refueling times
re longer for EVs than gas-powered vehicles [16] , having the oppor-
unity to shop while refueling is particularly desirable. Charging sta-
ion service providers such as Electrify America, EVgo, ChargePoint, and
esla have already installed stations at various Walmart and Target lo-
ations, among other retail sites [4] . Incentives for retailers to develop
VSE exist, as 89% of EV drivers typically make a purchase while charg-
ng at a retail location [20] . 

Many anticipate extreme fast charging power levels to accommodate
he desire for short dwell times while charging away from the home
r workplace [21] . Research funded by the U.S. Department of Energy
DOE) aims to decrease the typical charge time to 10 min or less by
ncreasing power levels up to 400 kW [22] . Original equipment manu-
acturers (OEMs) are producing vehicles that can accept higher power
evels, including the Tesla Model 3 (accepting 250 kW) [23] and the
orsche Taycan (accepting 350 kW) [24] . Fast charging networks in-
luding Electrify America and EVgo have both deployed 350-kW charg-
rs [ 25 , 26 ] and new ChargePoint technology can deliver up to 500 kW
27] . 

The majority of studies that explore the effects of EV charging on the
rid focus on residential charging [ 2 , 28–34 ] but encourage considering
he effects nonresidential charging (i.e., public direct current [DC] fast
gust 2021 
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Fig. 1. Modeling method, where various 
building and EV parameters are altered to 
create numerous building and EV station de- 
mand profiles. These are then combined to 
explore the possible effects of EV stations on 
an existing building site’s electricity usage, 
power demand, and annual electricity bill. 
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harging stations [2] ). Current work regarding nonresidential charging
valuates the negative effects of additional loads on distribution sys-
ems (i.e., harmonic distortion and voltage quality issues [ 35 , 36 ]) and
ssesses benefits of controlled EV charging [37–39] , price-based charg-
ng strategies [40–42] , and vehicle-to-grid modes [ 43 , 44 ]. A few stud-
es have presented characteristics of nonresidential charging for light-,
edium-, and heavy-duty vehicles [ 18 , 39 , 45 ], but few also compare

hese to characteristics of existing building loads. 
Meanwhile, many papers explore how building loads, which account

or over 70% of the electricity consumption in the United States, can
e shifted or shaved to improve grid operation [46–51] ; however, this
trongly depends on the load at the building meter, which could change
ignificantly with the addition of DC fast charging. One relevant study
nalyzes the integration of EVs, retail buildings, and photovoltaics (PV)
52] , but for a 50-kW two-port station in one location (Washington,
.C.). Another study demonstrates an optimization framework for a clus-

er of EV stations and commercial buildings in one location (San Fran-
isco, California) [53] . In addition, whereas the location and seasonal
ffects of electric load profiles of commercial office buildings [ 54 , 55 ]
nd dormitories [56] have been assessed, to date, there is no adequate
esearch in the literature considering retail big box grocery stores (big
ox stores). Due to this lack of data, research comparing the electricity
se of big box stores and EV stations is nearly nonexistent. 

Here, we show the impact that nonresidential charging of various
ower levels has on the electric load profile of an illustrative big box
tore, such as a Walmart Supercenter or Kroger Marketplace, quanti-
ying how EV charging of customers with light-duty passenger vehicles
mpacts a site’s monthly electricity usage, peak power demand, and elec-
ricity bill. We explore different scenarios for the EV and building load
rofiles. Combining these profiles, we analyze effects of charging on
onthly electricity and peak power demand and apply various utility

ate structures to quantify the impact of time-of-use (TOU) energy rates
nd demand charges on the annual electricity bill. 

ynthetic demand profile generation 

Fig. 1 depicts our modeling method, which combines building and
V station demand profiles to explore the impacts of charging on a build-
ng’s monthly electricity use and peak power demand. We also explore
mpacts on a building’s annual electricity bill, knowing that energy-
elated charges, which correspond to the total electricity consumption
ver a month, and demand-related charges, which correspond to the
eak power demand over the course of a month, both impact an elec-
ricity bill and vary in weight based on the utility tariff. 

enerating building demand profiles 

To obtain realistic building demand profiles, we develop an Energy-
lus [57] building energy model of a big box store in Centennial, Col-
rado, according to the as-built architectural, mechanical, and electrical
rawings. We then calibrate this model to 5 years of detailed submetered
ata, ensuring that the model accurately captures the electric power pro-
2 
le of each subsystem including refrigeration, heating, ventilation, air
onditioning (AC), lighting, and plug loads. Inputs such as building ori-
ntation and configuration, glass-to-wall ratio, envelope constructions,
xternal shading, internal lighting types and schedules, heating and
ooling loads and schedules, and zone temperature set point and sched-
les were used. This model comprises 14 separate zones, including back
ffices, merchandise areas, receiving racks, service deli, interior phar-
acy, and stockrooms. The primary EnergyPlus model characteristics

an be seen in Table 1 . 
To verify that the model is correctly predicting the energy use of

 real building, we compare our modeled electricity use to that from
he actual building in Centennial, Colorado. The measurements included
ubmetering on interior and exterior lighting, equipment, refrigeration,
nd AC. The model was within ± 5% of the measured subsystem annual
nergy usage. More information on model validation can be found in
upplementary Figures 13 and 14. 

We then explore how a big box store’s electric load changes in both
eating- and cooling-dominated climates by simulating the calibrated
nergyPlus model using typical meteorological year (TMY3) weather
ata for four cities: Phoenix, Arizona; Houston, Texas; Denver, Colorado;
nd Minneapolis, Minnesota. Heating and design conditions for these
ities are summarized in Supplementary Table 1. 

Monthly electricity use and peak power demand is highest in July
nd August for all cities studied, as seen in Fig. 2 . In the summer months,
he big box store simulated in Phoenix has the highest electricity usage
 ∼630,000 kWh) and peak power demand ( ∼1140 kW) in a month com-
ared to other cities studied. 

For each city, we analyze variances not only in monthly electricity
se and peak power demand but also in the time series load profile (seen
n Supplementary Figures 15–17). In winter months, the time series pro-
les in each city are fairly similar, because the building uses gas rather
han electricity for heating. There are large demands in summer months
o cool the building and provide refrigeration to groceries, especially in
hoenix and Houston due to hotter ambient temperatures [56] . There
re no large electric load changes throughout the course of a week, as
he building systems operate largely the same each day (this particu-
ar store operates 24/7). However, there is great variance throughout
 day: during summertime in Phoenix, power demands are ∼641 kW
n the evening and ∼1.1 MW midday. This relatively consistent diurnal
rend can be attributed to the fact that business hours (e.g., the store
eing open vs. closed) and weather are the main contributors to electric
oad, rather than occupant density. 

enerating electric vehicle station demand profiles 

Because there is little real-world EV station demand data, we ob-
ain synthetic but realistic EV station time series load profiles using an
V station model called the Electric Vehicle Infrastructure, Energy Es-
imation, and Site Optimization Tool (EVI-EnSite) [ 45 , 58 ]. Main inputs
or EVI-EnSite can be seen in Supplementary Table 2. This tool uses
n agent-based modeling approach where the vehicles and station are
efined by a set of representative properties. For a vehicle, these prop-
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Table 1 

EnergyPlus big box store model characteristics. 

Characteristic Value (unit) 

Square footage 19,500 (m 

2 ) 
Aspect ratio 1.7 
Sales floor square footage 14,000 (m 

2 ) 
Floor-to-ceiling height 6.5 (m) 
Wall construction Medium-weight concrete block 
Roof construction R-20 insulation above deck with white ethylene propylene diene monomer rubber (EPDM) exterior 
Lighting power density 8.3 (W/m 

2 ) 
Peak plug load density 10.8 (W/m 

2 ) 
Peak occupant density 30 (m 

2 /occ) 
Percent conditioned Fully heated and cooled 
Rated AC efficiency 3.1–3.4 coefficient of performance (COP), depending on unit type and size ∗ 

∗ The range of COP values are based on the AC nameplate efficiencies, which were 3.1 COP for the three humidity control 
air handling units, whereas the 3- to 20-ton standard rooftop units ranged from 3.3 to 3.5 COP. 

Fig. 2. Monthly (a) electric energy usage by 
city and (b) peak power demand by city. 

Fig. 3. Probability distribution functions of (a) 
arrival time and (b) initial state of charge by 
vehicle type. 
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rties include battery capacity, arrival time, and initial state of charge
SOC). 

Monte Carlo simulations determine when vehicles arrive at the sta-
ion, wait in the queue if there are no available ports to plug into,
lug in if a port is available, charge according to their power accep-
ance curves, and depart the port after their energy demand needs are
et. Monte Carlo simulation is an effective way of propagating the ef-

ect of stochasticity (here, probabilities of arrival time and initial SOC)
hrough a system and investigating the stochasticity in the output. Each
onte Carlo iteration generates vehicle charging event instances that

re slightly different from one another other but follow the underlying
robability distributions. Such differences aggregate over the number of
onte Carlo iterations to provide the final station utilization statistics. 

To obtain appropriate input probability distribution functions for ar-
ival time and initial SOC for the Monte Carlo simulations, we process
esults of Minneapolis, Minnesota, conventional vehicle travel data and
ssume that each vehicle arrives at the station with a relatively low
OC ( < 15%) and leaves the station when its battery is charged to 90%
OC. This is based on a gas station theory, where the majority of ve-
icles arrive to fuel at a near-empty tank (low SOC) and leave with a
ull tank (high SOC). Charging to 100% SOC was not assumed, however,
s this would increase the overall charging time at a station due to use
f a constant-current, constant-voltage (CCCV) charging protocol, where
harging rate declines as the battery nears full capacity [59] . The arrival
3 
ime and initial SOC PDF inputs for the various vehicle types simulated
s seen in Fig. 3 . 

Seen in the arrival time PDF in Fig. 3 a, vehicle arrival peaks between
:00 and 19:00, indicating that most charging occurs midday with bi-
odal peaks before and after typical working hours. Seen in the initial

OC PDF in Fig. 3 b, plug-in hybrid electric vehicles (PHEVs) tend to
rrive at the station with especially low, or even fully depleted, SOC be-
ause users drive the vehicle in the “electric only ” mode first and then
witch to gas. 

We assume that big box store EV stations would predominantly be
sed by store customers with light-duty vehicles and design a “fleet ”
ith a mixture of EVs and hybrids, or plug-in hybrid electric vehicles

PHEVs), that may be realistic in 2025 (Supplementary Table 3). Be-
ause the charging power of an EV is limited by either the power deliv-
red by the port or what the EV’s onboard battery management system
ccepts [60] , we altered each vehicle battery’s charge acceptance curve
or the various power levels ran, such that the advanced battery vehicles
ould accept the full power level provided by the port, but the hybrids
nd less-advanced battery vehicles could not. To obtain this, we assume
 1.5 C-rate for the 50- and 150-kW power levels and 4 C-rate for the
50-kW power levels. 

Several other EVI-EnSite model inputs are difficult to determine
iven the nascency of this technology, so we perform a sensitivity anal-
sis on station design and utilization parameters to see their impact on
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Fig. 4. Time series load profile effect of varying station size and utilization with 150-kW port charging level. 
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he resulting station load profile and monthly electricity usage. The two
tation design parameters are the number of chargers at a station and the
ower levels per charger. In varying the number of chargers at a station,
e compare a two-port station to a six-port station as lower and upper
ounds. Many EVgo fast-charging stations have two ports, and two-port
tations seem to be common at grocery stores [ 5 , 17 ]. A Walmart gas
tation may have between 7 and 16 pumps [ 61 , 62 ], but a 6-port station
as chosen for our analysis because even if EVs did penetrate a signifi-

ant portion of the market, EV owners can also refuel at home or work,
hereas gas-powered vehicles must refuel at gas stations [5–7] . 

In varying the power levels delivered by each charger, various DC
ast-charging power levels were analyzed: 50 kW, 150 kW, and 350 kW.
evel 2 (L2) charging was not considered, as it is most practical in
omes, offices, and hotels where people regularly reside for 4 or more
ours [63] , rather than retail sites with shorter dwell times [21] . There
re some L2 stations at grocery stores [17] , but because this study specif-
cally assesses charging from < 15% SOC to 90% SOC, the average charg-
ng duration would be 3–5 h, causing unrealistic dwell and queue times.
Fairly fast ” charging at 50 kW might be ideal for big box stores in ad-
ition to restaurants and bars, where dwell times are relatively long
compared to corridor charging) due to the nature of the trip. Plans for
50-kW fast charging are evident: most major charging station networks
re now deploying 150-kW chargers, and OEMs including Mercedes,
aguar, Porsche, BMW, and Tesla have announced or produced vehicles
hat can accept 150 kW [ 64 , 65 ]. Finally, 350-kW extreme fast charging
66] was considered because various EV stakeholders are targeting this
ate [ 22 , 24–27 ]. 

Regarding station utilization parameters, we vary the average daily
requency of EV charging events, assessing real-world data to obtain
ossible bounds of the system. Assessing EVgo data, we found that the
usiest station saw an average of 16 events per day per port. However, a
rior study [60] saw an average of two events per day per port at some
ites [5] . For DC fast charging stations throughout five European coun-
ries, one study published average station utilization between 1.1% and
3.6% in 2020, with the top 30 most-utilized stations seeing between
% and 26% [67] . In this paper, where we assume each charging event is
elatively long (using the previously described gas station theory), 15%
tation utilization correlates to ∼16 charging events per port per day for
50 kW stations and ∼3 events per port per day for 50 kW stations. As
he number of charging events per day per port has high variation among
ites, we considered low-, medium-, and high-utilization scenarios rep-
esenting 2, 8, and 16 events per port per day, respectively. Stations may
e initially oversized (or have underutilized ports) to accommodate the
ikely increasing demand with growing EV adoption [14] . 

Fig. 4 shows sample daylong time series results varying station port
ount and station per-port utilization for a 150-kW station. Sensitivity
4 
f port count and utilization for the 50 kW and 350 kW are found in
upplementary Figures 1 and 2, respectively. As previously mentioned,
ow-, medium-, and high-utilization scenarios, representing 2, 8, and
6 events per port per day, respectively, were considered. The average
harging event duration is ∼30 min and peak daily power demand varies
rom 150 kW for the low-utilization, two-port station to 474 kW for
he high-utilization, six-port station. Time series load profiles for a full
eek, displaying the stochastic variation from Monte Carlo simulation,
re found in Supplemental Figures 3–5. 

ombining timeseries data 

Fig. 5 shows results when combining building and EV station demand
rofiles. Here, we demonstrate how the additional demand introduced
y on-site EV charging affects the Phoenix big box store’s demand load
rofile during a sample day in the summer, which was the highest elec-
ricity demand for any of the cities. High demands from building AC are
lready straining electricity systems [56] , so adding new demands from
V charging poses an even larger challenge. 

A station with two 50-kW ports makes little difference to a big box
tore’s demand profile, but a station with six 350-kW ports can have elec-
ric demands greater than the building. The six-port, 350-kW (per-port)
tation’s peak demand depends on when the vehicles arrive to charge:
f all vehicles were to charge at once, up to 2.1 MW of electricity would
e required for the EV station alone. The number of ports at a station
an greatly affect the peak power demand at a station, which is likely
hy utilities are developing rate structures to discourage installing large

tations with underutilized ports and would prefer that a station owner
aits to increase the port count at a station when the per-port utilization

ncreases [68] . 

mpact on monthly electricity usage and peak power demand 

We complete EnergyPlus simulations for each building and EV sce-
ario, adding the EV station time series profile as an exterior equipment
oad to the big box store site. During each month of simulation, we
ecord when peak electricity demand was greatest, the time at which
hat demand occurred, and the component breakdown of what led to
hat peak demand. Fig. 6 shows the highest electricity demand for each
onth for different big box store locations, keeping the EV station pa-

ameters constant (two ports, low utilization, 150 kW per port). 
Phoenix has the highest peak power demands of all cities simulated,

argely due to high cooling ( > 415 kW) and refrigeration ( > 278 kW)
emands. Comparatively, Minneapolis cooling and refrigeration loads
eak at 314 kW and 262 kW, respectively. Assuming the EV station
nd building are behind the same meter for the building simulated in
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Fig. 5. Comparing Phoenix “summer ” time 
series load profile to EV “high utilization ” sce- 
nario. 

Fig. 6. Component breakdown for monthly peak power demand at 1-minute 
intervals for two-port, low-utilization, 150-kW-per-port station for big box store 
simulated in four cities (Phoenix, Houston, Denver, and Minneapolis). 
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hoenix, this two-port, 150-kW-per-port station accounts for an average
f 21% of monthly peak demand throughout a simulated year —as low as
0% in June and as high as 32% in February. The effects of the EV station
n peak demand are exacerbated in cold climates: in Minneapolis, the
V station accounts for an average of 25% of peak demand throughout a
imulated year —as low as 13% in August and as high as 35% in January.
ecause the building uses gas rather than electricity for heating, an EV
tation accounts for a similar percentage of monthly peak demand in
inter regardless of city. 

Fig. 7 shows the effects of changing EV station parameters, fixing
he location of the building to Phoenix. We vary port power level and
tation utilization, comparing low- and high-utilization scenarios for a
wo-port station. 

A two-port, 50-kW-per-port, low-utilization station does not largely
ontribute to the peak power demand of a big box store in Phoenix;
ssuming the EV station and building are on the same meter, the EV
tation accounts for an average of 5% of peak demand throughout a
imulated year. In months when AC loads are particularly high (e.g.,
ugust), the peak demand of the month happens to occur when no EVs
re charging at the station. Alternatively, a six-port, 350-kW-per-port,
igh-utilization station dominates demand, contributing to an average
f 70% of peak demand throughout a year and a maximum of 78% in
ecember when there are little cooling loads. Therefore, as both the
tilization and power levels of an EV station increase, there is a higher
robability of a significantly higher peak load. 

Whether or not the monthly peak power demand correlates to when
Vs are charging depends on what time the vehicles arrive to charge.
5 
ased on the input arrival time probability distribution function ( Fig. 3 ),
ur simulations predict many EVs to arrive at the same time that build-
ng AC loads are the highest, between 12:00 and 20:00 (Supplementary
igure 17). There are limited public data regarding when the greatest
evels of public charging at big box stores may occur, but current stud-
es tend to suggest that peak hours of grocery stores are between 12:00
nd 18:00 [69–71] . Incentives could be designed such that EVs charge
ore in the morning during peak solar irradiance (assuming plentiful

olar photovoltaics) or in the evening when traditional building loads
re lower in efforts to lower monthly peak electricity demand. For ex-
mple, the power demand for a big box store in Phoenix during summer
onths varies from > 1.1 MW midday to 641 kW at night, creating a
aily delta of 481 kW (see Supplementary Figures 15 and 16). Clearly,
f timed properly, this could easily supply capacity for a 350-kW port
ithout increasing monthly peak demand. Perhaps a change in behav-

or (e.g., incentivizing customers to shop in the morning) could alleviate
his scenario. However, the carbon intensity of the grid at midday may
e low due to peak PV generation, so the timing of charging may need
o also consider grid emissions in addition to power demand. 

Fig. 7 breaks out how each end use, including EV charging, impacts
onthly peak demand, showing that EV contributes to peak demands

imilar to that of interior equipment and refrigeration at lower power
evels (50 and 150 kW) but exceeds all components of the building at
ower levels of 350 kW per port. Due to the level of detail in components
ausing demand (i.e., cooling, lights, refrigeration), it was difficult to
emonstrate all station parameters and station utilization levels studied.
herefore, we only compare low and high utilization levels for a two-
ort station. 

Fig. 8 compares the percentage increase in peak monthly demand
ith an EV charging station (including all utilization levels, station sizes,
nd power levels studied) to the corresponding percentage increase in
onthly electricity usage for a big box store in Phoenix in summer and
inter months. More detailed comparison can be seen in Supplementary
igures 6–8. 

In all scenarios, the percent increase in monthly electricity demand
s an order of magnitude greater than the percent increase in monthly
lectricity use. This effect is exacerbated in winter months, when build-
ng electricity use is lower due to lower cooling and refrigeration de-
ands. The increase in monthly electricity demand is as low as 9% for

he 50-kW, two-port, low-utilization scenario and as high as 264% for
he 350-kW, six-port, high-utilization scenario. For these cases, how-
ver, the increases in monthly electricity usage are only 1% and 29%,
espectively. DC fast charging, especially at 350-kW power levels, has
he ability to make a significant impact on a site’s peak power demand
ut comparatively little difference to its monthly electricity usage. 

We note that this study assumes that station utilization is indepen-
ent of port power level. It does not capture the fact that many more
harging events are possible with extreme fast charging, especially at
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Fig. 7. Component breakdown for peak power 
demand at 1-minute intervals in Phoenix for a 
two-port station, varying utilization and power 
level. 

Fig. 8. Comparing percent increase in monthly de- 
mand to percent increase in electricity usage due to EV 

charging. 
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evels at or above 350 kW, where each event is around 12 min in dura-
ion (Supplementary Figure 9). This is evident in the queuing analysis
xplored in Supplementary Figures 10 and 11, where two-port, high-
tilization stations of 50-kW, 150-kW, and 350-kW power levels experi-
nced average queue times of 74 min, 16 min, and 1 min, respectively.
deally, no customers would queue more than a few minutes to refuel,
o based on this arrival time distribution, 16 events per port per day is
nly realistic for a two-port, 350-kW station. For a two-port, 150-kW
tation, a medium-utilization station (eight events per port per day) is
ore realistic, with an average wait time of 3 min to charge. For a two-
ort, 50-kW station, however, even a medium-utilization expectation is
nrealistic due to an average queue duration of 12 min. 

mpact on annual electricity bill 

Both electricity use and peak power demand greatly affect electric-
ty bills, which typically comprise fixed charges, energy-related charges
corresponding to the total electricity consumption over a month), and
emand-related charges (corresponding to the peak power demand over
he course of a month). To understand how EV charging can impact a
6 
ig box’s annual electricity bill, we calculate the bill using actual utility
ate tariffs [72] , selecting Denver, Colorado (Xcel Energy); Chicago, Illi-
ois (Commonwealth Edison); and New York, New York (Consolidated
dison), as they are relatively straightforward and illustrative of three
ypes of rate structures. Key descriptions of these tariffs are summarized
n Table 2 . 

There are many nuances between the tariffs, such as when the on-
nd off-peak times occur for rates with TOU components. However, to
implify variances for the analysis, we refer to the Denver Xcel Energy
ate as having “High Demand Charges, ” the Chicago Commonwealth
dison rate as having “Moderate Demand Charges, ” and the New York
ity Consolidated Edison rate as having “No Demand Charges. ” Demand
harges cover the utility’s cost for being able to meet a customer’s high-
st kilowatt usage and have the greatest potential to significantly in-
rease a customer’s costs when adopting EVs [73] , as EV charging events
ave very high power for a relatively short amount of time (especially
hen approaching 350-kW power levels). They are generally based on

he highest level of electricity demand over a 15-minute period in a
illing cycle [74] . This study analyzes and compares 1-minute time se-
ies data for both the building and EV station. However, utility demand
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Table 2 

Key descriptions of the three utility rates studied: Xcel Energy, Commonwealth Edison, and Consolidated Edison. 

Rate Energy Rate (¢/kWh) Demand Charge ($/kW) 

Denver (Xcel Energy) Low TOU (4.27 on peak; 2.96 off peak) High (16.47) 
Chicago (Commonwealth Edison) Moderate non-TOU (7.47 on and off peak) Moderate (6.47) 
New York City (Consolidated Edison) High TOU (14.47 on peak; 1.08 off peak) None 

Fig. 9. Percent changes in annual electricity 
bill from building-only scenario to building and 
electric vehicle station scenario. 
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harges are often on a 15-minute average rolling basis. Thus, there is a
ifference between the peak power demand that utilities must be pre-
ared for (1 min data) and what customers may be billed for based on
urrent 15-minute rolling average demand charges (15-minute average
ata). Supplementary Figure 12 compares the results for 1-minute and
5-minute average data. 

We compute the annual electricity bill for each location, utility rate
ariff, and EV station port power level and compare the “base case ”
ith no EV station to upper and lower bounds for the combined build-

ng and EV station. The upper bound correlates to a high-port, high-
tilization station (6 ports/16 charging events per day per port) and the
ower bound correlates to a low-port, low-utilization station (2 ports/2
harging events per day per port). For all EV scenarios that fall be-
ween these two extremes, the annual electricity bill would fall between
hese bounds. The percent increase in electricity bill from the base case,
uilding-only scenario to that of a meter that includes both the building
nd EVSE is seen in Fig. 9 , including upper and lower bounds for the
mpact of the EV station. 

Annual electricity bills for scenarios incorporating the Xcel Energy
ariff (high demand charges) vary the most with the addition of EVSE,
specially at 350-kW power levels. Contrastingly, Consolidated Edison
no demand charges) sees the smallest increase in annual electricity bill
hen adopting EVSE. Cold-climate areas that have lower AC loads (Min-
eapolis) coupled with Xcel Energy’s tariff are most susceptible to sig-
ificant changes in the annual electricity bill with the addition of EVSE:
he annual electricity bill of a big box store could increase by as much as
8% when adding a 350-kW, six-port, high-utilization station. For con-
ext, this could occur while adding only 29% to the monthly electricity
sage in months where changes are most significant (winter). 
7 
Understanding that demand charges can greatly impact an electric-
ty bill with the addition of DC fast-charging stations, several utilities,
ncluding Xcel Energy, Pacific Gas and Electric, and Southern Califor-
ia Edison, are either reducing or eliminating demand charges on EV-
pecific utility rate tariffs. Many state that demand charges are barriers
o the widespread availability of DC fast-charging stations [ 15 , 68 , 73 ].
ost of these programs are limited term; for example, Southern Cali-

ornia Edison’s new EV rate plan offers a 5-year demand charge holi-
ay, followed by a 5-year demand charge that is 40% below the current
harge. Given the large impact of EV charging on peak demand at build-
ngs, utilities may find it difficult to alter or eliminate demand charges
ithout endangering their bottom lines [15] . 

iscussion 

Future research should consider total cost of ownership of nonres-
dential electric vehicle charging stations. The upfront capital cost of
arious station-related equipment as well as costs of necessary upgrades
o the distribution system should be considered alongside effects on the
nnual electricity bill. One should note that big box store owners may
lso desire longer charging dwell times to encourage customers to shop
onger and spend more money. Seen in Supplementary Figure 9, average
harging duration was 12 min for a 350-kW port, 32 min for a 150-kW
ort, and 50 min for a 50-kW port. In 2018 in the western region of the
nited States, the average time spent by consumers at grocery stores var-

ed between 28 and 34 min [75] . Future research can address if 12 min
harging on 350-kW ports is necessary for a big box store setting, un-
erstanding that it causes greatest increases to a site’s annual electricity
ill and requires higher upfront costs for installation [76] . 
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Additionally, the benefits of load flexibility, behind-the-meter stor-
ge and on-site generation for these sites should be assessed in greater
etail. Flexible loads, on-site solar photovoltaics, energy storage, and
ontrolled electric vehicle charging may mitigate high electricity de-
ands and annual electricity bills caused by DC fast charging. Thermal

nergy storage could displace refrigeration and cooling loads whenever
harging occurs, eliminating load from a chiller or air conditioner for a
hort amount of time. This analysis helps determine to what extent ther-
al energy storage could be helpful. Seen in Fig. 7 , if cooling and refrig-

ration loads could be nonexistent while electric vehicle fast charging is
ccurring, all vehicle charging loads for the 50-kW and 150-kW scenar-
os could be displaced. However, in the 350-kW charging scenarios, this
s not possible because electric vehicle station demands are even greater
han all cooling and refrigeration demands. In these cases, thermal en-
rgy storage and battery storage could be superimposed, discharging
imultaneously to avoid high demand charges from extreme fast charg-
ng, benefiting both the system owner and electric grid. 

onclusions 

As efforts continue to promote transportation electrification, it is im-
ortant to understand the possible effects of electric vehicle charging
n the grid, especially as higher power levels of charging become more
revalent. Even if the total electric vehicle market share remains lim-
ted, clusters of high adoption can greatly affect specific sites, such as
ig box stores in urban areas. While it is important to understand the
ossible effects of fast charging at these retail sites, there is little ade-
uate literature to date regarding the energy demands of nonresidential
C fast charging. Therefore, research comparing the electricity use of
ig box stores and nonresidential DC fast charging stations is sparse. 

In this study, we explore the impacts of charging on a big box store’s
onthly electricity use, peak power demand, and annual electricity bill.
o obtain realistic building demand profiles, we develop an EnergyPlus
uilding energy model of a big box store in Centennial, Colorado, ac-
ording to the as-built architectural, mechanical, and electrical draw-
ngs. We then calibrate this model to 5 years of detailed submetered
ata, ensuring that the model accurately captures the electric power pro-
le of each subsystem, including refrigeration, heating, ventilation, AC,

ighting, and plug loads. To verify that the model is correctly predicting
he energy use of a real building, we compare our modeled electricity
se to that from the actual building in Centennial, Colorado by subme-
ering on interior and exterior lighting, equipment, refrigeration, and
C, finding that the model was within ± 5% of the measured subsystem
nnual energy usage. 

To produce synthetic but realistic electric vehicle station load pro-
les, because there is little real-world station demand data currently
vailable, we use an electric vehicle station model called EVI-EnSite
 45 , 58 ], where Monte Carlo simulations determine when vehicles ar-
ive at the station, wait in the queue if there are no available ports to
lug into, plug in if a port is available, charge according to their power
cceptance curves, and depart the port after their energy demand needs
re met. To obtain appropriate inputs for this model, we process results
f Minneapolis, Minnesota, conventional vehicle travel data and assume
hat each vehicle arrives at the station with a relatively low state of
harge and leaves the station when its battery is charged to 90% state
f charge. 

We find that fast charging can make a significant impact on a site’s
eak power demand (increasing monthly peak power demand at the
ite by over 250% in some cases) but comparatively little difference
o its monthly electricity use. This effect becomes stronger as per-port
ower levels increase. In addition, we find that cold-climate areas (with
ower AC loads) paired with rate structures incorporating high demand
harges are most susceptible for significant changes to the annual elec-
ricity bill, with increases as high as 88%. Understanding that capac-
ty issues are most likely to occur if station loads overlap with existing
uilding demands, we also assess when building and electric vehicle
8 
oads tend to occur. Our model predicts that electric vehicles will arrive
o charge at the same time building AC loads are the highest – in late
fternoon between 12:00 and 18:00. Incentives for vehicles to charge be-
ween 20:00 and 6:00 (at night) when building loads are lowest could
ake a huge impact on monthly peak electricity demand and the need

or upgrades to the distribution system. Daily power demand for a big
ox store in Phoenix during summer months fluctuates greatly, from
 1.12 MW midday to 641 kW at night. This 481-kW delta could supply
nough capacity for a one 350-kW port if controlled appropriately. 
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