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Current designs and assessments of microgrids have ignored component reliability, leading to significant errors in 

predicting a microgrid’s performance while islanded. Existing life cycle cost studies on hybrid microgrids —which 

combine photovoltaics (PV), battery storage and networked emergency diesel generators —also have not identified 

all the potential economic opportunities. Reducing the number of emergency diesel generators through reliance on 

PV and battery, retail bill savings, and demand response and wholesale market revenue streams are all important. 

This paper provides a new statistical methodology that calculates the impact of distributed energy reliability and 

variability on a microgrid’s performance and a novel use of the optimization platform REopt to explore multiple 

cost savings and revenue streams. We examine the impacts for microgrids in California, Maryland, and New 

Mexico and show that a hybrid microgrid is a more resilient and cost-effective solution than a diesel-only system. 

Under realistic conditions, a hybrid microgrid can provide higher system reliability when islanded and have 

a lower life cycle cost under multiple market conditions than a traditional diesel generator-based system. The 

improved performance of the hybrid system is resilient to conditions experienced over the last 20 years in solar 

irradiance and sees little degradation in performance immediately after a hurricane. The cost savings to provide 

this more resilient backup power system as compared to a diesel-only microgrid are significant. The net present 

cost for a hybrid microgrid is 19% lower in New Mexico and 35% lower in Maryland than a diesel-only microgrid. 

In California, the net present cost of the hybrid microgrid is negative because, unlike a diesel-only microgrid, a 

hybrid microgrid has lower life cycle costs than the power costs without a microgrid. 
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. Introduction 

Current modeling tools and analyses do not properly account for the

mpact of distributed energy resource (DER) reliability and variability

nd therefore cannot properly estimate a microgrid’s reliability. The pri-

ary driver for deploying a microgrid is the need for energy resiliency,

r, equivalently, providing reliable power when the grid is down. Sec-

ndary value streams such as participation in demand response pro-

rams and energy markets allow a microgrid to be affordable [1] , but

hey are not the driver. While the reliability of a microgrid system to pro-

ide power to critical loads when islanded is dependens on the reliability

nd availability of power from the individual DERs, [2,3] , quantitative

nd realistic assessments of the impact of DER reliability on total system

eliability are absent from the literature. Industry has recognized this

ssue and has highlighted this gap in our ability to assess performance

4] .This paper provides a new approach for treating DER reliability and

ariability impacts on a microgrids islanded performance and explores

or the first time their impacts on cost and performance of hybrid mi-

rogrids that use emergency diesel generators (EDG), photovoltaic solar
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ower (PV), and battery energy storage systems (BESS). We focus on

hese DERs because they are the dominant sources used to provide en-

rgy for backing up critically loads. Historically almost all backup power

as been provided exclusively from EDGs. Recently due to the rapid de-

line in PV and BESS costs they are being considered as a supplement

or exclusively EDG based systems. Although other renewable energy

ources such as wind or hydro power are possible, they are limited in

he application in microgrids because of site constraints. 

Realistic estimates for the reliability of DERs are critical in design-

ng a microgrid. DERs’ reliabilities establish an upper bound for a mi-

rogrid’s probability to provide continuous power while islanded during

 grid outage, because, without sufficient power, the microgrid cannot

upport the critical loads. The reliability of power from a microgrid also

epends on the reliability of the electric distribution and communication

etworks; their vulnerabilities are highly site-specific, dependent on the

ocal level of hardening and cyber protection. In addition, the impact

f the distribution networks are the same for a diesel-only and a hybrid

icrogrid, independent of the number and size of DERs. Thus, in con-

idering the reliability advantages and disadvantages of DER selection,

he distribution conditions can be ignored. DERs also have site-specific
21 
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ulnerabilities. They can be submerged due to local flooding or poten-

ially damaged by extreme weather events as reported for PV systems

5] . These vulnerabilities can be greatly reduced by smart planning and

ngineering [5] . The reliabilities we are concerned with are the inherent

eliabilities of the DERs that are set by the design and maintenance of

he DER and independent of local conditions. 

The impact of realistic reliability estimates for EDG based systems

6] has recently been analyzed for both microgrids and stand-alone

uilding-tied systems [7,8] . That work provides a comprehensive re-

iew of the literature on EDG reliability and its impact on microgrids.

ut no similar analyses exists for hybrid systems that use a mix of PV,

ESS, and EDGs. Existing studies of hybrid microgrids do not explore

he potential for costs savings that can be realized by reducing the num-

er of EDGs through reliance on PV and BESS to meet the critical loads,

nd do not model the impacts of EDG, PV, and BESS reliability or PV

ariability over short (hourly) and long time scales (years). These issues

re critical when a microgrid is supporting national security or health

nd safety critical loads. 

In this paper, we present an approach for conducting a techno-

conomic assessment of hybrid microgrids that use PV, BESS, and EDGs.

he diesel generators in the microgrid are networked to allow parallel

peration and coordinated dispatch for loads interconnected within a fa-

ility’s distribution system. This study provides an approach to selecting

ERs by evaluating their life cycle costs and the resilience of a microgrid

hen islanded. Three case studies are presented that illustrate the im-

act of local electricity markets and solar resources. We briefly review

he literature and highlight some of the findings and limitations of: (1)

xisting public microgrid design software tools, (2) studies on the eco-

omic value of behind-the-meter grid-tied PV and BESS, and (3) studies

n hybrid grid-tied microgrids. 

.1. Public software tools 

Multiple software tools design and optimize microgrid configu-

ations [9] , buy most do not consider the impact of DER reliabil-

ty, and none fully consider both grid-connected and islanded per-

ormance. Three commonly used technical-economic modeling tools:

Eopt [10,11] , developed by the National Renewable Energy Labora-

ory (NREL), Hybrid Optimization Model for Multiple Energy Resources

HOMER) [12] , and Distributed Energy Resource, Customer Adoption

odel (DER-CAM) [13,14] , developed by Lawrence Berkeley National

aboratory, currently do not take into account the reliability of the DERs

hat make up the microgrid. Although they discuss reliability and re-

ilience, none consider DER reliability in determining the microgrid’s

erformance. The Microgrid Design Toolkit (MDT) [15,16] , developed

y Sandia National Laboratory, calculates microgrid performance in an

slanded mode using a Monte Carlo simulation to account for DER relia-

ility. But no default recommendations on how to model the individual

ER reliability are provided. Also, direct Monte Carlo simulations for

are events can be slow to converge and thus difficult to use to assess

verall microgrid reliability. 

.2. Economic value of PV and BESS 

The economics of behind-the-meter PV and BESS has been well stud-

ed. Many studies have assessed and optimized the economics of PV

ystems without storage as a function of building types [17] , utility rate

tructure, ownership options, PV size, and PV costs [18] . Tools are avail-

ble to assess PV costs for site-specific conditions [19] . Work has also

een done to optimize the size and savings of behind-the-meter BESS

or demand savings as a function of tariffs [20] , battery sizing [21] , and

oad profile [22] . More recently, studies have looked at combined PV

nd BESS behind the meter [23] . Tools are available to optimize behind

he meter storage and PV for site-specific conditions [10,11] . 
2 
.3. Grid-Tied hybrid microgrids 

There is a large body of literature on the role and economic value of

ntegrating BESS into grid-tied hybrid microgrids [24] . BESS can reduce

he microgrid’s cost by utilizing renewable generation, peak shaving,

nergy arbitrage, or other market opportunities during nonemergency

eriods. BESS can also exploit intermittent renewable energy while is-

anded. Sizing of BESS is often based on grid-tied economic issues [24–

6] . Little work has been done to quantify the value of resiliency pro-

ided by a hybrid microgrid over a diesel-only system during a grid

utage. Improvements in resiliency due to reduced fuel consumption

hat results in longer islanding times has been examined [27,28] and

as demonstrated the benefit of on-site renewable energy but assumed

ll DERs are 100% reliable. Increasing fuel reserves on-site, for most

ampus-like environments, is straightforward and not costly, and does

ot dramatically change the microgrid’s performance. In all these cases,

he full variability of a solar PV output is not examined, nor is the po-

ential improvement in microgrid reliability. 

The works of Hanna et al. [29,30] and Nelson et al. [31] look at the

ssue of component reliability on microgrid performance. Hanna et al.

ses a novel optimization approach to optimize a microgrid subject to

he reliability of the DERs and the value of lost load. This work is an im-

ortant contribution to the microgrid literature but unfortunately did

ot consider realistic DER reliability estimates and did not model long

uration outages that are rare but have a high impact. Nelson et al. use

 Markovian statistical approach to incorporate component reliability

imilar to our previous work [8] and the work presented here. They treat

he nonperfect reliability of EDGs based on our previous work [7] but

o not explore the reliability of other DERs or their potential variability.

ptimization is focused on grid-connected behavior for a single exam-

le market. The work presented here is consistent with their work but

nalyzes a number of key issues not previously treated, and provides the

ollowing contributions to the literature: 

• A computationally simple method using Markov chains to calculate

the likelihood of the DERs meeting 100% of the critical load and the

mean fraction of lost load 
• The impact of EDG and BESS reliability on the islanded performance

of the microgrid 
• The impact of both short- and long-term variability of the PV on a

microgrid’s islanded performance 
• A novel use of REopt for optimal sizing of a microgrid’s DERs that

takes account of the number of EDGs, and the size of the PV and

BESS 
• A comparison of the resilience of a diesel-only microgrid and a hy-

brid microgrid 
• An assessment of market condition on the relative cost and perfor-

mance of a hybrid microgrid versus a diesel-only microgrid. 

This work demonstrates the importance of taking into account the

eliability and variability of DERs in assessing microgrid systems. Un-

er realistic conditions, a hybrid microgrid can provide higher system

eliability when islanded and have a lower life cycle cost under multi-

le market conditions than a traditional diesel generator-based system.

he approach reported on here allows one to assess the life cycle costs

nd system reliability of a microgrids with multiple DER configurations.

e separately calculate life cycle costs and reliability and depending on

n individual sites goals an optimal system can be chosen. Thus in the

aper we separately describe the system reliability and life cycle cost

ethodologies and results. 

The analysis flow chart used in this work is illustrated by Fig. 1 which

hows the integration of blue-sky (i.e. grid-connected, normal opera-

ions) economics, component reliability data, and a robust resilience

erformance assessment. The initial DER sizing from the blue-sky eco-

omics model incorporates some heuristic constraints for resilience, but

nce the true resilience performance is assessed, iteration can be made
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Fig. 1. The analysis flow chart used in this work which integrates economics, 

component reliability, and resilience performance. 
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Table 1 

Mean reliability metrics and 90% confidence intervals [8] . 

Metric Low Reliability Mean High Reliability 

(90% confidence) Reliability (90% confidence) 

MTTF 1180 hours 1662 hours 2410 hours 

FTS 0.17% 0.13% 0.10% 

Fig. 2. Mean and 90% confidence interval reliabilities for a well-maintained 

EDG for outages up to two weeks [8] . 
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n the economics with adjusted DER sizing constraints if the resilience

erformance is higher or lower than required. 

Section 2 reviews and estimates the reliability of EDGs, PV, and

ESS. Details on the values used are provided in the appendix.

ection 3 discusses the approach for modeling the microgrid’s sys-

em level resilience when islanded independent of cost considerations.

ection 4 presents our approach for using NREL’s REopt TM techno-

conomic optimization model for evaluating the cost-optimal sizing of

V and battery storage. Section 5 provides the conditions and assump-

ions for the three case studies to be presented. Section 6 provides the

ER sizing and relative life cycle costs results for diesel-only and hybrid

icrogrids. Section 7 provides the resilience performance for diesel-only

nd hybrid microgrids. The optimal choice for each site will depend

n the risk tolerance of the site or equivalently the level of reliability

hey require. The trade off between cost and reliability will always be a

ite specific decision based on the site’s mission and financial resources.

astly, we provide a brief discussion is provided on the results of this

tudy, the importance of considering finite reliability and long term vari-

bility when selecting DERs for a microgrid, and additional benefits of

ybrid microgrids. 

. Component reliability 

In this section, we summarize our assumptions for EDG, PV, and BESS

eliability. Additional details are provided in Appendix A . The focus is

n a DER’s reliability during a grid outage when a microgrid must island.

his requires an estimate for three metrics: (1) the probability that the

ER will be operationally available at a given power level when a grid

utage occurs, (2) the probability the DER will start (relevant only if the

ER is in a cold state before the grid outage), and (3) the probability a

ER will operate at a given power capacity over the duration of the grid

utage. Although grid outages can last months, they rarely last longer

han a week or two, which is the focus of this assessment. 

.1. EDG Reliability 

A detailed analysis of modern EDG reliabilities has shown that EDG

eliability is dependent on the level of preventive maintenance [6] . If

DGs are to be used, they must be properly maintained in accordance

ith either government [32] or public standards [33] . We consider only

ell-maintained EDGs 1 Empirical data collected for fielded commercial

DGs by the U.S. Army [34] and Navy [35] provides the information

equired to estimate the three reliability metrics for EDGs typically used

n microgrids (10 kW to 2,000 kW). 

The first reliability metric, Operational Availability (OA), captures

he likelihood the EDG is available at the start of a grid outage (the

ormulas for all reliability metrics are provided in Appendix A ). The OA

etric can change based on maintenance schedules, repair times, and

nnual failure rates. The OA of a well-maintained EDG has been shown
1 Well maintained means that at a minimum follows the recommended main- 

enance practices defined in government and commercial guidance. 

m  

t

 

o  

3 
o be very high, 99.98% [8] . This high availability reflects the small

umber of EDG runs per year, and thus the small number of potential

ailures per year that require repairs. EDGs are run almost exclusively

or testing or during a grid outage and therefore rest in a cold state for

ost of the year. Their yearly operation is limited to 200 hours (for

onemergency use) by the Clean Air Act regulations, and most run less

han that. Because of this usage pattern, it is important to include the

otential failure to start (FTS). 

To address runtime failures and the irregular use of EDGs, the EDG is

ssumed to successfully start and carry the load, and then a mean time

o failure (MTTF) is defined that captures failures while the EDG is run-

ing. The MTTF is not dependent on the reliability of the grid or how

ften the EDG is tested. This metric is defined by total runtime and the

umber of failures that occur while running. The mean and 90% confi-

ence intervals for the FTS and the MTTF previously reported [8] based

n the Army’s and Navy’s empirical data are provided in Table 1 . These

eliability metrics are more than an order of magnitude better than seen

n poorly maintained commercial EDGs in this size range [36] . 

We further assume the EDG is in its “useful life period ” [37] and

herefore the runtime failure rate (the inverse of the MTTF) is constant.

hus, the reliability, 𝑅 ( 𝑡 ) , of an EDG at time t during an outage is given

y: 

 ( 𝑡 ) = 𝑂𝐴 (1 − 𝐹 𝑇 𝑆) 𝑒 
− 𝑡 

𝑀𝑇 𝑇 𝐹 (1)

Fig. 2 illustrates the reliability of a single EDG from the start of a

rid outage out to 2 weeks. 

Fig. 2 illustrates the dominant impact of the MTTF on the pre-

icted reliability of an EDG. The OA and FTS impacts are not visible

n Fig. 1 due to the scale of the reliability axis. 

.2. PV Reliability during an outage 

The reliability of a PV system (PV modules, inverters, and balance of

ystem) is defined as the available generation capacity of the PV system,

ot the delivered power. The delivered power is highly variable due

o changes in the local solar irradiance, which affects power output.

he delivered power variability is treated separately. To characterize

V reliability during a grid outage we need to estimate only two of the

etrics (OA and MTTF), because the PV is never in a cold state waiting

o be turned on. 

We are concerned with modern utility-scale PV systems greater than

ne megawatt (MW). In Appendix A , we demonstrate that a utility-scale
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V system’s availability is typically greater than 99% and the capacity

ay decline on the order of 1%. Thus, the PV reliability is high enough

o ignore its impact when modeling a hybrid microgrid system. The in-

requent and modest loss of capacity is small compared to the large vari-

tion of power due to changes in solar irradiance. This conclusion may

ot hold for small residential systems. 

.3. BESS Reliability during an outage 

We are interested only in the performance when a grid outage occurs

nd the microgrid system is in an islanded mode. BESS reliability can

e defined as the likelihood the storage capacity is above a predefined

hreshold (i.e. its ability to be charged to that level) relative to its name-

late value. To quantitatively characterize the BESS reliability during a

rid outage, we need to know both the OA and the MTTF during the grid

utage. The reliability of a BESS depends on both their design and op-

ration. Stationary storage batteries consist of multiple cells, which can

e connected in different configurations [38] . The reliability depends

n the details of the manufacturer’s design and on the operation of the

attery. Its temperature, age, and cycling history (frequency of cycles

nd depth of discharge) can all affect reliability. MTTF estimates have

oth a calendric and cycling dependency [39] . Our goal is to estimate

 reasonable range of reliability values. We use a range of values from

he literature and from commercial BESS manufacturers to identify re-

iability estimates to be used in our case studies. 

A BESS may not be available to support a hybrid microgrid when

n outage occurs due to maintenance or repair activities. Manufacturers

eport availability from 97% to greater than 99% for Li-ion BESS in

W-scale systems [40] . Availability quoted by manufacturers can be

verly optimistic and may be based on limited testing. The case studies

n this work examine a range of OA from 95% to 100% and use 97% as

 representative estimate. 

The probability the BESS stops functioning at a level necessary to

upport a microgrid that is islanded for less than 2 weeks is very small.

he anticipated battery degradation rates for systems is inconsequential

ver a two-week period and can be ignored. Manufacturer’s estimates

or MTTF are over 50,000 hours [41] and calculations [42] made for a 1-

W/500-kW Li-ion battery for frequency regulation application predict

n MTTF of over 8 years ( > 70,000 hours). Thus, if a BESS is available

t the start of a grid outage, we can assume it will remain operational

or the next few weeks. 

. Reliability modeling 

This section describes how to model the expected performance of a

ybrid microgrid during a grid power outage. The approach described

ere has been validated in [43] . The reliability is calculated using

 Markov chain approach independent of the economic optimization,

hich is conducted using REopt, as described in the next section. These

wo approaches can be run sequentially to identify an optimal system.

he hybrid microgrid consists of networked diesel generators, PV pan-

ls, and battery storage. To calculate the expected performance of the

ackup system for a given outage, we first determine the initial proba-

ilities of being in each system state, which is dependent on the number

f working generators and the battery initial state of charge (SOC). The

attery initial state of charge is determined by the economic dispatch

alculated using REopt. We assume that sufficient diesel fuel is available

o operate the EDGs for the duration of the outage. We then iteratively

xecute the following procedure: 

1. Update system state probabilities to reflect chance of generators fail-

ing. 

2. Calculate solar, generator, and battery output for each system state.

3. Subtract system output from critical load to determine amount (if

any) of unmet critical load in each system state. 

4. Use unmet critical load and system state probabilities to calculate

performance metrics. 
4 
5. Use battery output in each system state to update system state prob-

abilities. 

The following subsections describe each step in detail. 

.1. Initial system state and generator failure 

The performance of a microgrid system during an outage depends on

he system configuration, when the outage occurs, and the outage du-

ation. The system configuration is determined by the size and number

f EDGs, along with the PV and battery sizes. Critical load and PV out-

ut varies across the year, so the chance of survival depends on when

n outage occurs. EDGs can fail to start or run during the outage, and

atteries have limited storage capacity, which results in the probability

f outage survival decreasing with outage duration. 

The following five factors describe the system configuration: num-

er of EDGs 𝑁 , EDG maximum capacity 𝐾 𝐺 , solar capacity 𝐾 𝑆 , battery

nverter size 𝐾 𝐼 , and battery effective energy capacity 𝐾 𝐵 . Battery sys-

ems are often kept from fully charging or discharging to decrease bat-

ery degradation. Therefore, the effective energy capacity may only be

 fraction of rated energy capacity. 

The system state is determined by the number of working genera-

ors and battery SOC. The number of EDGs is denoted 𝑛 which ranges

rom 0 to 𝑁 . We discretize the potential battery states of stored energy

nto M+1 bins (to allow the SOC to be included in the Markov chain),

ndexed with 𝑚 ranging from 0 to 𝑀 . The kWh increment of each bin

s denoted ℎ , where ℎ = 𝐾 𝐵 ∕ 𝑀 . Bin 𝑚 denotes 𝑏 = 𝑚 ∗ ℎ kWh of stored

nergy. This discretization may lead to some calculation error, but will

e small for a sufficiently large 𝑀 . In our simulations we set 𝑀 = 200 . 
The probability of the system being in each state is represented by

he 𝑁 + 1 by 𝑀 + 1 matrix 𝐀 ( 𝐭, 𝐝 ) , with element 𝑎 𝑛,𝑚 ( 𝑡, 𝑑) denoting the

robability of the state consisting of 𝑛 working generators and having a

attery charge in bin 𝑚 . In each outage hour, 𝐀 is updated to reflect the

ew probabilities of being in each state. 

Let 𝑞 𝐵 ( 𝑚, 𝑡 ) denote the probability that the battery initial charge falls

nto bin 𝑚 at the beginning of an outage starting at time 𝑡 . This allows

or uncertainty regarding the battery charge at the start of an outage.

he battery SOC will often be given by a known economic dispatch, in

hich case 𝑞 𝐵 ( 𝑚, 𝑡 ) will be 1 for the initial bin and zero for all others. 

Let 𝑞 𝐺 ( 𝑛 ) denote the probability that 𝑛 generators successfully start

t the beginning of the outage. The likelihood of one generator failing

s independent of whether another generator failed, which means 𝑞 𝐺 ( 𝑛 )
s: 

 𝐺 ( 𝑛 ) = 

( 

𝑁 

𝑛 

) 

( 𝑂𝐴 (1 − 𝐹 𝑇 𝑆)) 𝑛 (1 − 𝑂𝐴 (1 − 𝐹 𝑇 𝑆)) 𝑁− 𝑛 (2)

quation (2) is the combinatorics equation for the probability that 𝑛 out

f 𝑁 generators will successfully start. The initial system state probabil-

ties are as follows: 

 ( 𝑡, 0) = 

⎡ ⎢ ⎢ ⎣ 
𝑞 𝐺 (0) 𝑞 𝐵 (0 , 𝑡 ) … 𝑞 𝐺 (0) 𝑞 𝐵 ( 𝑀, 𝑡 ) 

⋮ 𝑞 𝐺 ( 𝑛 ) 𝑞 𝐵 ( 𝑚, 𝑡 ) ⋮ 
𝑞 𝐺 ( 𝑁) 𝑞 𝐵 (0 , 𝑡 ) … 𝑞 𝐺 ( 𝑁 ) 𝑞 𝐵 ( 𝑀 , 𝑡 ) 

⎤ ⎥ ⎥ ⎦ (3)

A generator may be available and start, but then fail to run at some

oint during the outage. We use a constant hourly failure to run prob-

bility, denoted 𝐹 𝑇 𝑅 , which is the inverse of the mean time to failure

hen the generator is running. If 𝑛 generators are running in a given

our, then the likelihood that 𝑘 generators will be running in the next

our is given by 𝑝 ( 𝑛, 𝑘 ) : 

 ( 𝑛, 𝑘 ) = 

( 

𝑛 

𝑘 

) 

(1 − 𝐹 𝑇 𝑅 ) 𝑘 𝐹 𝑇 𝑅 

𝑛 − 𝑘 (4)

et 𝐏 denote the matrix of transition probabilities: 

 = 

⎡ ⎢ ⎢ ⎣ 
𝑝 (0 , 0) … 𝑝 ( 𝑁, 0) 

0 𝑝 ( 𝑛, 𝑘 ) ⋮ 
0 … 𝑝 ( 𝑁 , 𝑁 ) 

⎤ ⎥ ⎥ ⎦ (5)
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t  
n each hour, we update the system state to account for generator fail-

res: 

 ( 𝑡, 𝑑 + 1) = P 𝐀 ( 𝑡, 𝑑) (6)

.2. Microgrid dispatch and unmet critical load 

We denote outage start time as 𝑡 , current outage duration as 𝑑, and

ritical load as 𝐿 ( 𝑡 + 𝑑) . The quantity of solar generation is given by: 

 𝑆 ( 𝑡 + 𝑑) = 𝐾 𝑆 ∗ 𝐹 ( 𝑡 + 𝑑) (7)

here 𝐹 ( 𝑡 + 𝑑) is the solar power factor in hour 𝑡 + 𝑑. 

EDG dispatch is limited by EDG capacity times the number of work-

ng EDGs. The maximum potential output from 𝑛 working EDGs, each

ith a capacity 𝐾 𝐺 , is given by: 

 𝐺 ( 𝑛 ) = 𝐾 𝐺 ∗ 𝑛 (8)

In hours when the PV and EDG are unable to meet critical load, the

attery system can discharge to fill in the gap; in hours where the PV

nd EDGs have excess capacity the battery can recharge. Battery systems

xperience efficiency losses while charging and discharging. The battery

equires 𝑏 ∕ 𝐸 kWh to increase charge by 𝑏 and requires to discharge by

 ∗ 𝐸 to output 𝑏 . When 𝑄 𝑆 ( 𝑡 + 𝑑) + 𝑄 𝐺 ( 𝑛 ) ≤ 𝐿 ( 𝑡 + 𝑑) , then the battery

ischarges 𝑄 

𝐷 
𝐵 

: 

𝑄 

𝐷 
𝐵 
( 𝑡, 𝑑, 𝑏, 𝑛 ) = 

min 
(
𝐸𝑏, 𝐾 𝐼 , 𝐿 ( 𝑡 + 𝑑) − 𝑄 𝑆 ( 𝑡 + 𝑑) − 𝑄 𝐺 ( 𝑛 ) 

) (9) 

quation (9) describes that the battery discharge is the minimum of

tored energy, maximum power output, and the amount of energy re-

uired to meet net critical load. When 𝑄 𝑆 ( 𝑡 + 𝑑) + 𝑄 𝐺 ( 𝑛 ) ≥ 𝐿 ( 𝑡 + 𝑑) , the

attery uses 𝑄 

𝐶 
𝐵 

to charge: 

𝑄 

𝐶 
𝐵 
( 𝑡, 𝑑, 𝑏, 𝑛 ) = 

min 
(
( 𝐾 𝐵 − 𝑏 )∕ 𝐸, 𝐾 𝐼 , ( 𝑄 𝑆 ( 𝑡 + 𝑑 ) + 𝑄 𝐺 ( 𝑛 ) − 𝐿 ( 𝑡 + 𝑑 )) 

) (10) 

quation (10) says the amount of battery charging is the minimum of

he available storage capacity in the battery, maximum power output,

nd excess generation available. 

Unmet critical load is given by 𝑄 𝑈 ( 𝑡, 𝑑, 𝑛, 𝑏 ) : 

𝑄 𝑈 ( 𝑡, 𝑑, 𝑛, 𝑏 ) = 

max (0 , 𝐿 ( 𝑡 + 𝑑) − 𝑄 𝑆 ( 𝑡 + 𝑑) − 𝑄 𝐺 ( 𝑛 ) 
− 𝑄 

𝐷 
𝐵 
( 𝑡, 𝑑, 𝑛, 𝑏 ) + 𝑄 

𝐶 
𝐵 
( 𝑡, 𝑑, 𝑛, 𝑏 )) 

(11) 

herefore, given the current system state in terms of the number of

orking generators 𝑛 and battery SOC 𝑏 , we can determine whether the

ystem will meet critical load for an outage starting in hour 𝑡 for outage

uration 𝑑 or whether the system will need to shed critical load. 

.3. Performance criteria 

We use two performance criteria to determine system reliability for

 given outage duration 𝑑. The first is to determine the likelihood the

icrogrid meets critical load. Let 𝑥 ( 𝑡, 𝑑) denote the probability of critical

oad being met in outage hour 𝑑 of an outage starting at 𝑡 : 

 ( 𝑡, 𝑑) = 

𝑁 ∑
𝑛 =0 

𝑀 ∑
𝑚 =0 

𝑎 𝑛,𝑚 ( 𝑡, 𝑑) 𝟙 𝑄 𝑈 ( 𝑡,𝑑,𝑛,𝑏 )=0 (12)

here 𝑇 denotes the number of time periods and 𝟙 𝑄 𝑈 ( 𝑡,𝑑,𝑛,𝑏 )=0 is 1 when-

ver the system has sufficient generation to meet critical load. In other

ords, sum the elements of the state probability matrix, in which the

ystem meets critical load. 

In the absence of any information on the time during the year out-

ges are likely to occur, one typically assumes outages are equally likely

n each hour of the year, then the probability the microgrid will meet

ritical load in an outage of duration 𝑑, denoted 𝑋( 𝑑) , is: 

 ( 𝑑 ) = 

( 1 
𝑇 

) 𝑇 ∑
𝑡 =1 
𝑥 ( 𝑡, 𝑑) (13)
5 
f outages are expected to be non-uniformly distributed, 𝑋 ( 𝑑 ) can ac-

ount for differences in the chance of an outage occurring in a given hour

y weighting each 𝑥 ( 𝑡, 𝑑) with the probability of an outage occurring in

our 𝑡 . The second performance criteria is the expected percentage of

oad shed in a given outage hour, which is given by 𝑦 ( 𝑡, 𝑑) : 

 ( 𝑡, 𝑑) = 

( 

1 
𝐿 ( 𝑡 + 𝑑) 

) 𝑁 ∑
𝑛 =0 

𝐵 ∑
𝑏 =0 
𝑎 ( 𝑛, 𝑏 ; 𝑡, 𝑑) 𝑄 𝑈 ( 𝑡, 𝑑, 𝑛, 𝑏 ) (14)

 ( 𝑑) gives the expected percentage of load shed in outage hour 𝑑: 

 ( 𝑑) = 

( 1 
𝑇 

) 𝑇 ∑
𝑡 =1 
𝑦 ( 𝑡, 𝑑) (15)

 more reliable system will have a higher 𝑋 ( 𝑑 ) and a lower 𝑌 ( 𝑑) : a
igher probability of survival and a lower expected percentage of load

hed. 

.4. Update battery state 

The battery may charge to store excess generation or discharge to

elp meet critical load. Charging and discharging will change the sys-

em state, which in turn changes the probability of meeting future crit-

cal load. In the state probability matrix 𝐴 ( 𝑡, 𝑑) , the number of work-

ng generators is indicated by the row and the binned battery charge is

ndicated by the column. Therefore, a change in battery charge shifts

robabilities horizontally along a row to a different column. 

The element in 𝑛 , 𝑚 will shift to the 𝑚 ′
𝑛,𝑚 

’th column, where 𝑚 ′ is given

y: 

𝑚 ′
𝑛,𝑚 

= 

𝑚 − 𝑟𝑜𝑢𝑛𝑑 

( 

𝑄 𝐷 
𝐵 
( 𝑡,𝑑,𝑛,𝑚ℎ ) 
𝐸ℎ 

) 

+ 𝑟𝑜𝑢𝑛𝑑 

( 

𝑄 𝐶 
𝐵 
( 𝑡,𝑑,𝑛,𝑚ℎ ) 𝐸 
ℎ 

) 

(16) 

n equation (16) round denotes rounding to the nearest integer.

quation (16) says the battery charge decreases by the number of bins

orth of discharge and increases by the number of bins worth of charg-

ng. We set 𝐴 ′( 𝑡, 𝑑) as an 𝑁 + 1 by 𝑀 + 1 matrix, with each element

efined as follows: 

 

′
𝑛,𝑚 

( 𝑡, 𝑑) = 

𝑀 ∑
𝑖 =0 
𝑎 𝑛,𝑖 ( 𝑡, 𝑑) 𝟙 𝑚 ′

𝑛,𝑖 
= 𝑚 (17)

n other words, we sum all of the state probabilities shifted into the

iven battery bin. Finally, we set 𝐴 ( 𝑡, 𝑑) = 𝐴 ′( 𝑡, 𝑑) . 

. Economic modeling 

This study uses NREL’s REopt techno-economic optimization model

or evaluating the cost-optimal sizing of solar PV and battery storage.

Eopt is a planning tool formulated as a mixed-integer linear program

o optimally size and dispatch the DERs and storage-based assets given

he historical building loads and rate tariffs for a specific site [11,44] .

he optimization model performs hourly economic dispatch for a year

nd uses financial discounting parameters (e.g. discount rate, escala-

ion rates) to determine the life cycle cost of energy over the analysis

eriod (e.g. 20 years). The model has perfect-foresight of the site load

nd energy prices, so the resulting DER investment economics repre-

ents the theoretical potential. The REopt model capabilities leveraged

or this project are shown in Fig. 3 , including consideration of solar PV

nd battery storage for retail electric bill savings opportunities. In this

ork, additional features were developed to consider (1) avoided cost

f the diesel-only microgrid’s EDGs, (2) demand response revenues, and

3) wholesale market revenues. The objective function of the model is

o minimize the life cycle cost of energy, which includes capital invest-

ent, operating and maintenance cost, utility electric bills, and negative

osts such as demand response and wholesale market revenue streams. 

Three site locations across the United States were selected to observe

he variation in economic results based on several unique attributes: (1)
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Fig. 3. The REopt TM techno-economic optimization tool used in this analysis. 

Source: [11] . 
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Table 2 

Financial parameters for life cycle cost analy- 

sis. 

Value Units 

Analysis Period 20 years 

Discount Rate 6% 

General Inflation Rate 2.2% 

Electricity Escalation Rate 2.2% 

Diesel Fuel Escalation Rate 2.2% 

Table 3 

DER and microgrid cost parameters. 

Value Units 

Solar PV 

Capital 1600 $/kW 

Fixed O&M 12 $/kW/yr 

Battery Storage 

Capital, Power 500 $/kW 

Capital, Energy 300 $/kWh 

Capital Power Replacement 250 $/kW 

Capital, Energy Replacement 150 $/kWh 

Fixed O&M 12.5 $/kW/yr 

Variable O&M 0.0003 $/kWh 

EDG 

Capital 750 $/kW 

Fixed O&M 9.3 $/kW/yr 

Microgrid 

Capital 4000 $k 

Fixed O&M 133 $k/yr 
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olar resource, (2) retail electric rate tariff, and (3) opportunities for

emand response and wholesale markets. REopt uses the PVWatts TM 

pplication programming interface (API) [45] within the model to esti-

ate the solar production profile based on typical meteorological year

ata and default performance parameters. The retail electric rate tar-

ffs are based on actual tariffs at the three sites modeled. Research was

onducted to evaluate the demand response and wholesale market op-

ortunities available for each site. The same electric load profile and

ritical load was used for each site. Additional information related to

he three site locations is given in Section 5 . 

.1. Avoided EDG costs 

The diesel-only microgrid is assumed to have an 𝑁 + 1 reliable con-

guration where the peak critical load is between the electric capacity

f 𝑁 − 1 and 𝑁 EDGs. Reducing the number of EDGs by adding PV and

ESS is explored as one of the value streams for a hybrid microgrid.

ecause reducing EDGs has implications for the resilience performance

nd REopt does not explicitly calculate this performance, a heuristic ap-

roach was taken to estimate any additional power and/or energy ca-

acity required by the battery to achieve economic credit for reducing

n EDG. 

In the heuristic, the battery was forced to discharge in the grid-tied

conomic dispatch when the critical load exceeded the capacity of the

 − 1 − 𝑁 EDG Reduced , where 𝑁 EDG Reduced is the decision variable for the

umber of EDGs reduced. This ensured the net critical load could be met

y EDG in case a power outage were to imminently occur. This dispatch

equirement by the battery may or may not result in a larger battery

ize than what REopt would have otherwise sized based on the other

conomic benefits. The actual reliability performance of the microgrid

ith PV, battery, and a reduced number of EDGs is evaluated using

he Markov chain reliability model to compare against the diesel-only

icrogrid. The reliability performance then determines if more, fewer,

r the same number of EDGs should be removed than the result of the

nitial heuristic approach. 

.2. Retail bill savings, demand response and wholesale markets 

The details of the economic modeling methodology, including retail

ill savings, demand response, and wholesale markets are included in

ppendix B . 

.3. Life cycle cost inputs 

Table 2 lists the life cycle cost analysis inputs for the REopt model

ased on financial parameters that would be used for military-based

rojects [40] . 

Table 3 lists the DER and microgrid cost parameters used in the RE-

pt model. The PV capital and O&M cost are based on NREL’s 2019 An-

ual Technology Baseline estimates for commercial-scale systems [46] .

he power and energy portion of battery storage capital cost is calcu-

ated independently. The power-specific cost ($/kW) represents the cost
6 
f the power converter and other power electronics, and the energy-

pecific cost ($/kWh) represents the cost of the battery storage mod-

les. The costs used in this analysis are in line with recent data for

ommercial- and industrial-scale systems [47] . There is also an assumed

eplacement cost of half of the initial power- and energy-specific capital

ost incurred in year 10. 

The estimate for microgrid capital and O&M costs are intended to be

nclusive of the following hardware and software equipment: switchgear

pgrades, information technology (IT) hardware, operational technol-

gy (OT) hardware, market participation software, communications,

onitoring, and metering improvements, and upgraded power con-

rol system (PCS) that meets IEEE, UL, and/or IEC standards. Other

ystem-related equipment and maintenance costs included are founda-

ional work and buildings, engineering, procurement, and construction

EPC), grid interconnection engineering, HVAC systems for DER, land

nd right-of-way preparation and access, shipping, testing and commis-

ioning, and personnel training. These estimates are based on similar

ize microgrids [40] . Items not included in the microgrid costs include

istribution system upgrades and line extensions, substation upgrades,

nd operating permits. 

. Site information 

To illustrate the economic and resilience performance of a hybrid mi-

rogrid as compared to a diesel-only microgrid, we examine three cases

hat explore the diversity of electricity markets in the United States and

olar resources. We use the same electric load profile for each campus.

he diesel-only microgrid has an N+1 reliable configuration at all three

ites. The three sites are located in California, Maryland, and New Mex-

co. They cover a diversity of utility rate structures and local electricity

arket conditions seen across the United States. Table 4 lists the DER

erformance inputs used in the analysis. Performance estimates for solar

V are consistent with REopt defaults [11] which leverage default val-

es used in PVWatts [45] . Battery storage round trip efficiency is based

n estimates from industry experts [40] and this represents a power

onversion efficiency of 96% and battery module round trip efficiency

f 92% (where net round trip efficiency equals 96% × 92% × 96% ). EDG
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Table 4 

DER performance parameters . 

Value Units 

Solar PV 

Production Calculator PVWatts TM 

Resource Dataset TMY3 

Tilt 30.4 deg 

Losses 14% 

DC to AC Ratio 1.1 

Inverter Efficiency 96% 

Balance of System Efficiency 86% 

Annual Degradation 0.5% 

Battery Storage 

Round Trip Efficiency 81.3% 

Minimum State of Charge 20% 

EDG 

Diesel-only Number 15 

Electric Capacity 750 kW 

Heat Rate 12,040 btu/kWh 

Fig. 4. Modeled campus critical load profiles. The horizontal lines indicate the 

number of 750 kW EDG to satisfy conventional N+x reliability. 
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erformance parameters are based on estimates from industry experts

40] . 

.1. Electric load 

A realistic and representative hourly load profile was used to repre-

ent a large campus with a peak hourly load of 20 MW, of which 50%

s deemed to be critical. The load profile was generated by scaling an

xisting hourly campus load profile for a military base [7,8] . The load

rofile is representative of load profiles seen in large universities [48] ,

arge active military installations [49] , midsize airports [50] , and re-

earch hospital complexes. Fig. 4 shows the hourly critical load profile.

he full campus load profile is simply twice this. In our previous work

8] , we examined the sensitivity of a diesel based microgrid’s perfor-

ance to details of the load profiles. We showed that the differences

re modest, less than the variation due to uncertainty in the reliability

etrics of the DERs. Uncertainty or stochastic behavior in the load pro-

le will not have a major impact on the predictions or reliability. Thus,

e consider only a single fixed load profile. 

.2. EDGs 

The diesel-only microgrid is assumed to have fifteen 750-kW EDGs

o serve the critical load during an outage. This is an N+1 reliable con-

guration. Reducing the number of EDGs by adding PV and BESS is

xplored as one of the value streams for a hybrid microgrid. The size of

he EDGs was selected based on engineering estimates. For efficiency in

aintenance and testing, all EDGs were assumed to be the same size.

ncreasing the size of an EDG leads to an increased total capacity and

 higher capital cost. Decreasing their size leads to a larger number of
7 
DGs and an increased O&M cost. Finally, EDGs should not be run un-

er low load. Fully participating in market opportunities requires that

DGs size remain modest. These considerations dictated the selection of

50-kW EDGs. The impact of this selection was considered in calculating

ystem reliability and shown to have little impact on the results. 

.3. PV Resource 

All economic calculations are based on PVWatts and typical meteo-

ological year (TMY) 3 solar resources (as described in Section 4 ) for the

hree locations. These results are also used for determining the reliabil-

ty performance for the hybrid microgrid at the three sites. As discussed

n Section 7 , the impact of solar variability on the reliability of a hy-

rid microgrid while islanded is explored using 20 years of hourly solar

esource data from the National Solar Radiation Database [51] and a

odeled solar profile for a hurricane-induced grid outage at the Mary-

and site. 

.4. Retail electric rates 

Table 5 describes the electric rate tariffs for the three sites. All three

ites have demand charges, and two of the three sites (not the Maryland

ite) have time-of-use energy charges. 

.5. Demand response programs 

The California site has the Capacity Bidding Program (CBP) offered

y the Southern California Edison (SCE) utility for demand response.

he CBP prohibits fossil-based generation, so EDGs cannot participate

52] . The CBP is a capacity-based program that calls on sites to reduce

oad during certain time periods (e.g., 2 p.m. to 6 p.m.), and the value is

ignificantly higher during June through September compared to other

onths. The load baseline from which the load reduction is calculated

s the site’s average load during the same hours from the 10 previous

onevent business days or 4 previous nonevent nonbusiness days. The

inimum load reduction during all event hours in a month multiplied

y the month’s capacity price equates to the awarded capacity payment

or that month. In REopt, the historical event days and hours for 2018

ere used to implement the CBP participation by the battery. 

The New Mexico site’s local utility, El Paso Electric Company, of-

ers a demand response program called the Load Management Program.

his program offers a yearly capacity-based payment for curtailing load.

here is a maximum of four curtailment events per year with a maxi-

um aggregated duration of 15 hours per year [53] . 

The Maryland site is within the PJM ISO region, and PJM offers a

apacity-based demand response program called Capacity Performance;

his is the same public capacity market in which transmission-sited gen-

rators participate. There is a requirement to reduce load for a duration

f up to 12 hours [54] , so the battery storage capacity credit is typically

ased on the energy capacity divided by twelve (unless it has enough

nergy to sustain its rated capacity for more than 12 hours, in which

ase the capacity credit is equal to the power capacity). Table 6 lists the

apacity payments for all three sites’ capacity-based demand response

rograms. 

.6. Wholesale market opportunities 

The most common method of DERs participating in CAISO wholesale

arkets is through the Proxy Demand Response (PDR) model, which

s a CAISO-sponsored demand response program. Sites or DERs partic-

pate in PDR through a registered Scheduling Coordinator, which in-

erfaces directly with the ISO. The available markets under this model

nclude Day-Ahead and Real-Time Energy, as well as Spinning and Non-

pinning Reserve ancillary services [55] . However, the site does not

eceive wholesale market compensation for any power exported to the

rid during participation (they may still receive retail credit for export,
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Table 5 

Electric rate tariff and diesel fuel cost for each site. 

California New Mexico Maryland Units 

Summer On-Peak Energy 0.328 0.128 N/A $/kWh 

Summer Mid-Peak Energy 0.108 N/A 0.088 $/kWh 

Summer Off-Peak Energy 0.062 0.037 N/A $/kWh 

Winter Mid-Peak Energy 0.078 N/A 0.067 $/kWh 

Winter Off-Peak Energy 0.068 0.037 N/A $/kWh 

WAPA Energy 0.058 N/A N/A $/kWh 

WAPA % of energy purchases 50% N/A N/A 

Summer Monthly Demand 8.8 12.8 9.3 $/kW/mo 

Winter Monthly Demand 8.8 21.3 9.3 $/kW/mo 

Monthly Fixed Charges 2110 220 4035 $/mo 

Diesel Price 2.97 2.59 2.74 $/gal 

Table 6 

Capacity-based demand response program prices. 

Value Units 

CBP avg four summer months 13 $/kW/mo 

CBP avg eight non-summer months 1.8 $/kW/mo 

El Paso Electric Co Load Mngmt. 48 $/kW/yr 

PJM Capacity Performance 63 $/kW/yr 
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Table 7 

Optimal PV and battery sizing and avoided EDG results. 

California New Mexico Maryland Units 

Solar PV Size 8200 5000 4000 kW 

Battery Power Size 4300 400 1900 kW 

Battery Energy Size 12,900 1000 3800 kWh 

EDGs Avoided 3 (2,250) 2 (1,500) 2 (1,500) count (kW) 

Table 8 

California site life cycle cost breakdown. 

Pre- Diesel-only Hybrid, Units 

Microgrid Microgrid Wholesale 

Energy 115.865 106.517 89.079 $M 

Demand Charge 26.028 23.814 19.628 $M 

Capital Cost - 12.438 31.476 $M 

Fixed O&M - 3.317 5.144 $M 

Variable O&M - - 0.032 $M 

EDG Fuel - 8.102 4.483 $M 

Demand Response - - (2.328) $M 

Wholesale Markets - - (5.832) $M 

Total Life Cycle 141.893 154.187 141.682 $M 

Net Present Cost - 12.294 (0.211) $M 

Fig. 5. California site life cycle cost breakdown. 
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f offered by the local utility). A new product call PDR-Load Shift Re-

ource (PDR-LSR) was recently added for battery storage in order for

hem to receive credit for charging during negative price hours —the

DR without LSR does not otherwise provide an opportunity for the

nique nature of battery storage to controllably “increase load ” at times

f over-supply/under-demand. However, the PDR-LSR still does not al-

ow for arbitraging wholesale energy other than when the locational

arginal price (LMP) is negative [56] . Battery storage participation in

he PDR-LSR program for both DAM and RTM energy markets and spin-

ing reserve was modeled in this analysis. 

The New Mexico site is in a regulated-utility territory, and there is

o access to wholesale energy or ancillary service markets. 

The Maryland site has access to all of the PJM wholesale markets,

nd this is offered through several PJM demand response programs [57] .

he relevant markets include Day Ahead and Real Time Energy, Syn-

hronous (spinning) Reserve, and Frequency Regulation. The notable

ifference between PJM’s offerings and CAISO’s PDR is the availability

f the Frequency Regulation market. However, the value of frequency

egulation for BTM battery storage is limited because following a reg-

lation down signal may increase the site’s demand charges. Similar to

DR, the site does not receive compensation for energy exported to the

rid, and there is no opportunity to arbitrage wholesale energy with

attery storage because there is no mechanism to ”buy ” power. Battery

torage and EDG participation in both DAM and RTM energy markets

nd spinning reserve was modeled in this analyis, and battery storage

ould also participate in frequency regulation. 

Nonspinning reserve was not included in this analysis because it

ould never be chosen over the spinning reserve market for which EDGs

nd battery storage are capable of providing. Because PV is nondispatch-

ble and reduces the site load similarly each day, PV was assumed to

ot participate in wholesale markets. 

. Sizing and costs results 

The REopt economic optimization results for solar PV and battery

torage sizing are shown in Table 7 (the exact sizing result from the

ptimization model was rounded to the nearest 100 kW [and 100 kWh

or battery energy] and then re-run through the model). The heuristic

ispatch requirement implemented in REopt for battery storage to re-

uce EDGs (described in Section 4.1 ) resulted in an EDG reduction of

wo for the California site and one for the New Mexico and Maryland

ites. The reliability performance model determined that one additional
8 
DG could be removed while still exceeding the diesel-only microgrid

eliability performance, and this is reflected in the EDGs Avoided results

n Table 7 . 

Table 8 and Fig. 5 show the life cycle cost results for the California

ite. The California site has the largest sizing of PV and battery due to sig-

ificant value from retail bill savings, demand response, and wholesale

arkets. The value achieved by the addition of PV and battery is large

nough to offset the added cost of the microgrid, and this is the only site

o have a positive net present value. That is, in this scenario, the hybrid

icrogrid not only has lower total life cycle cost than the EDG-only mi-

rogrid, but the facility realizes lower costs with the hybrid microgrid
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Fig. 6. California site capital cost breakdown in units of $M. 

Fig. 7. California site savings and revenues by value stream type in units of $M. 

Table 9 

New Mexico site life cycle cost breakdown. 

Pre- Diesel-only Hybrid, Units 

Microgrid Microgrid Wholesale 

Energy 66.536 65.643 60.148 $M 

Demand Charge 47.392 40.296 35.899 $M 

Capital Cost - 12.438 19.944 $M 

Fixed O&M - 3.317 4.027 $M 

Variable O&M - - 0.099 $M 

EDG Fuel - 5.159 3.668 $M 

Demand Response - (6.020) (5.284) $M 

Wholesale Markets - - - $M 

Total Life Cycle 113.928 120.832 118.403 $M 

Net Present Cost - 6.904 4.476 $M 

t  

n  

a  

E  

t  

f  

e

 

d  

a  

$  

r  

i  

m  

s  

s  

r

 

T  

s  

t  

s  

T  

t  

h  

t

 

l  

b  

Fig. 8. New Mexico site life cycle cost breakdown. 

Table 10 

Maryland site life cycle cost breakdown. 

Pre- Diesel-only Hybrid, Units 

Microgrid Microgrid Wholesale 

Energy 117.885 117.259 112.936 $M 

Demand Charge 27.532 24.502 22.145 $M 

Capital Cost - 12.438 20.353 $M 

Fixed O&M - 3.317 4.122 $M 

Variable O&M - - 0.011 $M 

EDG Fuel - 2.631 2.051 $M 

Demand Response - (7.839) (7.125) $M 

Wholesale Markets - - (3.491) $M 

Total Life Cycle 145.417 152.307 151.002 $M 

Net Present Cost - 6.891 5.586 $M 

Fig. 9. Maryland site life cycle cost breakdown. 
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han without any microgrid. This site also has the largest difference in

et present cost compared to the diesel-only microgrid of all the sites,

nd this is largely due to PV offsetting the high cost of energy and diesel

DGs being prohibited from participating in demand response. The bat-

ery achieves a significant reduction in demand charges, and the diesel

uel cost is reduced by about half. The large PV and battery size also

nable the most avoided EDGs of all the sites. 

Fig. 6 shows a comparison of the capital cost breakdown between the

iesel-only microgrid and the hybrid microgrid. The PV and battery add

bout $21M in capital cost, while the avoided EDGs reduce just under

2M in capital cost. Fig. 7 shows the breakdown of life cycle savings and

evenues (i.e., negative costs) by value stream type. Energy cost savings

s the largest portion of total savings for both microgrids, but the hybrid

icrogrid increases the savings by just under 200%. Demand charge

avings also increases by about 200%, and revenue from demand re-

ponse and wholesale markets accounts for 20% of all the savings and

evenues. 

The New Mexico site has a large PV size but a modest battery size.

able 9 and Fig. 8 show the life cycle cost results for the New Mexico

ite. The net present cost for the hybrid microgrid is about 35% lower

han to the diesel-only microgrid. The cost reduction comes from energy

avings, demand charge reduction, and reduced diesel fuel consumption.

he EDGs achieve significant demand response revenue, and reducing

he two EDGs results in a reduction of demand response revenue for the

ybrid microgrid. The net benefit of reducing EDGs is still positive with

he reduction of EDG capital cost. 

Table 10 and Fig. 9 show the life cycle cost results for the Mary-

and site. The Maryland site has the smallest PV size of the three sites,

ut it has a large battery size relative to the PV size. The net present
9 
ost for the hybrid microgrid is about 19% lower than the diesel-only

icrogrid. The battery achieves significant revenue from the frequency

egulation market. The breakdown of wholesale revenue is about 60%

rom frequency regulation, 39% from energy, and less than 1% from

pinning reserve. The demand response revenue is reduced compared

o the diesel-only microgrid because of the reduced EDGs. 

Each site has different attributes that favor the economics of PV and

attery storage differently. PV sizing is significant at all three sites, with

he primary value of retail bill savings. Battery storage is sized to varying

egrees at all three sites based on various levels of value stacking op-

ortunities in retail bill savings, demand response, and wholesale mar-

ets (except New Mexico). California has a demand response program

CBP) that is favorable for battery, but the 12-hour runtime requirement

or the capacity-based DR programs at the other two sites limits the

alue. Wholesale markets provides significant revenue for the two sites

n which wholesale markets exit (California and Maryland). At the Mary-

and site, battery benefits from PJM’s frequency regulation market, but
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Fig. 10. Survival probability at Maryland site for outages up to 14 days (336 

hours) for a diesel-only and hybrid microgrid with reduced number of EDGs. 
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Fig. 11. Survival probability at California site for outages up to 14 days (336 

hours) for a diesel-only and hybrid microgrid with reduced number of EDGs. 
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articipation can increase demand charges for behind-the-meter DERs.

hese value streams allow battery to be sized large enough to reduce

DGs and provide additional cost savings to the microgrid. 

. Reliability performance results 

Multiple metrics can be estimated for the performance of a micro-

rid. We focus on survival probability, the likelihood that all critical

oads have power at a given time during an outage. The survival prob-

bility metric provides a stringent criterion where any critical load not

erved is considered a failure. It best illustrates the differences in perfor-

ance as a function of DER selection. Other metrics, such as the mean

raction of lost critical load, have also been calculated and show iden-

ical relative performance between a diesel-only and hybrid microgrid.

ther commonly used reliability indices such as loss of load probability

LOLP) or loss of load expectation (LOLE) can be easily calculated if one

ssumes an annual probability of grid outages frequency and duration.

e focus on survival probability because it is independent of the grid’s

erformance and is dependent only on the microgrid’s performance. The

esiliency of a microgrid system during a long duration outage also de-

ends on the repairability of a failed EDG during the outage. The mean

ime to failure for EDGs is 37 [8] hours, which is already relatively long.

hese results reflect repairs during short outages or testing. During a

ultiday outage, it is unlikely that staff and equipment will be readily

vailable to make the needed repairs. Thus, we treat the EDGs in our

nalysis below as unrepairable for the duration of an outage 

.1. Hybrid and diesel only microgrids 

First, we consider the annual average performance of diesel-only and

ybrid microgrids. These results represent the performance of a micro-

rid, assuming an outage can start with equal probability at any time

uring the year. (Later in this section, we will demonstrate how the per-

ormance of the microgrid varies as a function of the date and time the

utage begins.) Illustrated below is the survival probability assuming

ean reliability for the EDGs and 97% availability for the BESS for the

ptimized hybrid systems as defined in Section 6 . Results are shown for

he Maryland site ( Fig. 10 ) and the California site ( Fig. 11 ). 

Adding cost-effective PV and BESS to the diesel-only microgrid leads

o a more reliable microgrid system. Additional cost savings can be

chieved by removing one or two EDGs while still surpassing the diesel-

nly microgrid’s performance. Removing a single EDG leads to more

han $500,000 reduction in capital costs and approximately $7000 per

ear in O&M costs. In fact, one could remove three EDGs or 20% of the

otal generator capacity and have a performance nearly identical to the

iesel-only microgrid. The diesel-only microgrid was designed with an

+1 reliability in terms on the number EDGs. Removing only one EDG

i.e., reducing the diesel-only microgrid to an N reliability) can be seen
10 
o lead to a significant deficit in performance. Nearly identical results

re found for the New Mexico case, which has roughly the same size PV

ystem as the Maryland site (see Table 11 ). 

The California site, due to greater economic opportunities, has a

arger PV and BESS than either the Maryland or New Mexico sites. Due

o the larger PV and BESS, up to three EDGs can be eliminated (20%

f the generator capacity) while maintaining better survivability per-

ormance than diesel-only microgrid, and a fourth can be eliminated

ithout a significant impact on performance. This is very different than

he reduction seen in going from N+1 reliable to N reliable diesel-only

icrogrid. These results hold true even when one considers the uncer-

ainties in EDG reliability estimates as listed in Table 2 . 

For all three sites the hybrid microgrid with a reduced number of

DGs (two less at the Maryland and Nevada site and three less at the Cal-

fornia site) has a higher mean survival probability for the entire outage

uration. Similar results are found for mean lost load at all three sites.

hese results assumed no constraints on the amount of diesel fuel. The

ybrid microgrids are more fuel-efficient. They consume 23% less fuel

t the California site to 10% less fuel at the Maryland site. Thus any limi-

ation in available diesel fuel would further enhance the performance of

he hybrid microgrid relative to the diesel only microgrid. These results

re for a system of 750-kW networked EDGs. But they hold for EDGs of

ifferent sizes. Larger EDGs will require fewer EDGs to achieve an N+1

onfiguration. For example, a 1,500-kW EDG based diesel-only micro-

rid for a 10MW peak critical load requires only 8 EDGs as compared to

he 15 used for a set of 750-kW EDGs. Although the absolute value of

he survival probability and mean lost load will change slightly the rel-

tive performance advantages of the hybrid system are nearly identical.

t is important to recognize that if we had ignored the EDG reliability, an

+1 as well as an N reliable diesel-only microgrid would be incorrectly

redicted to have a 100% survival probability for the entire 2-week out-

ge. 

Up to this point, we have presented annual average survivability

esults. Variability in the load and the solar resource can increase or

ecrease the likelihood that the DERs can produce sufficient power,

nd, therefore, the survival probability is dependent on when an out-

ge starts. Thus for a given 2-week outage the survival probability is

nlikely to decline monotonically and the impact of EDG reliability is

ven greater when one considers outages during peak load times. Fig. 12

llustrators the performance for a 2-week outage starting at 5 a.m. the

hird week of August at the Maryland site. This is a period of peak crit-

cal load. 

The survival probability does decline over the two weeks for both

ystems but has large decreases correlated with hours of peak load.

hese dips are not seen in the annual average survival probability be-

ause averaging over outage start time removes them. The hybrid system

as much smaller decreases due to the impact of the BESS and PV. This
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Fig. 12. The survival and cumulative probability for a 2-week outage in late 

August at the Maryland site. 

Fig. 13. Survival probability at the Maryland site at two weeks for a diesel only 

(All EDG) and hybrid microgrid with two fewer EDGs as function of the hour in 

the year the outage starts. 

Fig. 14. Survival probability at the California site at two weeks for a diesel only 

(All EDG) and hybrid microgrid with three fewer EDGs as function of the hour 

in the year the outage starts. 
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11 
s an important performance difference when one has critical loads that

annot recover from short-term loss of power. 

Industrial processes are often difficult to start after only an hour out-

ge and the products being manufactures can be a total loss. Outages to

ritical health care functions can lead to loss of life and military oper-

tions can often not recover from outages. To illustrate this we show

n Fig. 11 the probability of a failure to provide power to 100% of the

ritical load having at any time (the cumulative probability). The larger

eceases in the survival probability seen in the diesel-only system leads

o a more rapidly declining cumulative survival probability. Now it is

ikely that not all the critical loads on a campus are sensitive to loss of

ower for only an hour. In that case, a microgrid could shed those loads

o insure the high priority loads are not lost. 

Over the year, the performances at the end of a 2-week outage for

he Maryland and California sites are shown in Fig. 13 and 14 . 
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Fig. 15. Survivability or the probability of meeting 100% of the critical load 

for outages up to 14 days (336 hours) as a function of PV usage when a BESS is 

available 97% of the time. 
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Fig. 16. Survivability or the probability of meeting 100% of the critical load 

for outages up to 14 days (336 hours) as a function of BESS is availability. 

Table 12 

The survival probability statistics for 19 years of solar conditions at a Mary- 

land site. 

System Min P5 P10 Mean P90 P95 

Diesel Only 0.2067 0.7062 0.8738 0.9556 0.9996 0.9996 

Hybrid 0.2717 0.9184 0.9259 0.971 0.9993 0.9999 
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In both locations, the variability in performance for the diesel-only

icrogrid is significantly larger than the optimized hybrid microgrid.

imilar results are found at the New Mexico site. The variability in the

iesel-only microgrid during peak summer loads can have a very low

robability (as low as 21%) for providing sufficient power to the critical

oads even though it has been designed to have a N+1 reliability. This

s expected, as it only requires the loss of two out of fifteen EDGs to

ose the ability to meet the peak critical load. The hybrid microgrid’s

umber of EDGs has been selected to yield a slightly better average

nnual performance, but this also yields a significantly lower variability

n the probability to survive the outages over the year even when one

ccounts for the expected variability in solar power. The much larger

ESS and PV that was allowed due to market conditions in California

hows a dramatic difference in performance variability across the year.

hus providing not only a lower cost and higher average performance

ut a more robust energy resilience at all times. 

Table 11 illustrates the difference in the mean annual performance

nd the fraction of time during the year the system’s ability to support

ll the critical loads drops below 90%. 

The diesel-only microgrid’s performance is independent of location,

s the load profile has been assumed to be the same at all three sites.

he California hybrid microgrid has three fewer EDGs than the diesel

nly, and both the hybrid microgrids at Maryland and New Mexico sites

ave two fewer EDGs. Similar results are found for mean lost load for

ll three sites. 

In assessing a microgrid’s reliability performance, customers should

pecify both the minimum average survival probability for a given out-

ge duration and any constraints on how low that performance can drop

s a function of time of year for each critical load. 

.2. Impact of battery reliability 

Reliability for the new generation of stationary Li-ion BESS is un-

ertain. The largest concern is the fraction of time the BESS will be un-

vailable due to repairs or maintenance activities. The lack of long-term

mpirical data sets makes it difficult to validate any predictions. In the

ystem reliability predictions above, we have taken a conservative ap-

roach by assuming the BESS is available only 97% of the time and that

f not available the PV system cannot contribute while islanded. Equiv-

lently, if the BESS is not available, the microgrid defaults to operate

s a diesel only microgrid. A microgrid can, if designed for it, use PV

esources while islanded without a BESS [58] but most do not. Below

e show the impact of this assumption and the expected change in per-

ormance as a function of BESS availability. Fig. 15 shows the impact on

ybrid microgrid performance if the PV is unavailable when the BESS

s unavailable. The performance of a hybrid microgrid for the Maryland

ase where two EDGs have been eliminated is shown. 

The difference is very minor. After a 2-week outage there is only a

.2% difference in performance, a factor of 4 to 5 times smaller than
12 
he difference between the diesel-only microgrid and these hybrid mi-

rogrids. We have assumed that the BESS is available 97% of the time.

his is less than many vendors quote. The sensitivity of our results to

his assumption is shown in Fig. 16 . The performance of a hybrid mi-

rogrid for the Maryland case where two EDGs have been eliminated

s function of BESS availability ranging from 95% to 100% is shown,

ssuming that the PV is not utilized when the BESS is unavailable. 

Again, these are small differences and demonstrate that trends shown

or the performance differences between an optimized hybrid microgrid

nd a diesel-only microgrid are not sensitive to our assumptions of BESS

vailability. 

.3. Impact of solar variability 

The results presented above are for an assumed solar power profile

hat is typical (TMY3) for the three sites. The hourly variability seen in a

ypical year, as illustrated in Figs. 12 and 13 , lead to less variability in a

ybrid microgrid’s performance than the variability seen in a diesel-only

icrogrid due to changes in the critical load profile. But a TMY solar

rofile does not capture the long-term variability over years that can be

een in solar energy, nor does it account for extreme events such as the

mpact of a hurricane, often the cause of long duration grid outages. 

Long-term variability can be examined by looking at actual solar

rradiance over roughly the last two decades. We examined the impact

t the Maryland site which is expected to have the greatest variability.

ineteen years of local solar irradiance data was used to calculate the

urvival probability and mean lost load for outages starting at every

our in the year. The resulting survival probability statistics at the end

f a 2-week outage are shown in Table 12 . 

The optimized hybrid microgrid that has two fewer EDGs outper-

orms the diesel-only microgrid even when considering nearly two

ecades of solar conditions. 

A larger concern for systems that rely on PV for backup power is

hat happens after an extreme weather event such as a hurricane. Long

uration outages in some part of the world are heavily associated with

urricanes. Outages caused by hurricanes can also have significant cloud

over for the days following the event, which reduces the ability of PV

o contribute as a backup power source. Increased cloudiness caused by

urricanes does decrease the solar irradiance, but only for a few days, far

ess than often assumed. Detailed analysis of the ability of PV to provide

nergy during 18 hurricanes that made landfall in the contiguous United

tates from 2004 to 2017 [59] shows that, prior to landfall and within 3
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Fig. 17. The Global Horizontal Irradiance (GHI) relative to the hour hurricane 

Katrina made landfall in Louisiana (Katrina-LA) and Florida (Katrina-FL). 
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ays after solar irradiance conditions almost always returns to normal.

ig. 17 illustrates the local solar irradiance relative to when Hurricane

atrina made landfall in Florida and Louisiana. 

Solar power production is directly proportional to the global horizon-

al irradiance (GHI) at the PV’s location. There is a significant decrease

n GHI for 24 hours after landfall, but it rises steadily over the next 48

ours. 

Assuming the local PV system survives the hurricane, we examined

he impact of the increased cloudiness on the hybrid microgrid’s survival

robability for a system located in Maryland. We examined an early date

n hurricane season, August 19, at 5 a.m., to model a stressful condition

hen the load is near its summer peak. We assumed that the PV power

utput is reduced to 20% for the first day, 40% for the second day,

nd 70% on day three relative to TMY levels. Even for this stressful

ase, the hybrid microgrid shows an imperceptible change in its survival

robability, which continues to be higher than seen in the diesel-only

ystem. 

. Conclusions 

The design of microgrids often ignores the reliability of the individ-

al DERs and the full set of opportunities to reduce life cycle cost. The

tatistical methodology presented here calculates the impact of realistic

eliability and variability on a microgrid’s performance during an ex-

ended grid outage. Ignoring these reliabilities leads to serious errors in

redicted microgrid performance while islanded. Using REopt, we show

hat the economic impacts of avoided costs from reducing the number

f emergency diesel generators, retail bill savings, and demand response

nd whole-sale market revenue all are important. We have demonstrated

or sites in California, Maryland, and New Mexico that a hybrid micro-

rid (which utilizes a combination of solar power, battery energy stor-

ge, and networked emergency diesel generators) can offer a more cost-

ffective and resilient solution than diesel-only microgrids that rely only

n a network of emergency diesel generators. It is expected that these

esults will hold true at most locations in the United States. The driver

or microgrid deployment is the need for resilient power when the grid

s down. The cost savings to provide this resilient backup power from

 hybrid microgrid as compared to a diesel-only microgrid are signifi-

ant. The net present value for a hybrid microgrid is 19% lower in New

exico and 35% lower in Maryland than the diesel-only microgrid. In

alifornia, the net present value cost of the hybrid microgrid is negative.

he hybrid microgrid has a lower life cycle cost for the campus than the

ower costs without a microgrid. These differences are primarily driven

y the market conditions in the three locations. These economic predic-

ions use realistic capital and O&M costs for all components and real

lectric tariffs and market prices. But they do not consider the poten-

ial need for and costs of the campus’ distribution system upgrades and

ine extensions. These costs are very site-specific and can be significant.

or all three sites the hybrid microgrid, with two or three emergency

iesel generators removed, provides higher system level reliability and
13 
s more resilient than diesel-only system. The mean survival probability

o provide 100% of the required power for all critical loads, assum-

ng an outage can start at any time during the year, is slightly higher

or these hybrid systems than an N+1 reliable diesel-only system and

uch higher than a simple N reliable diesel-only system over a 2-week

utage. The improvement in performance is more dramatic when you

onsider survival probability as a function of when an outage occurs.

his varies due to the load variability and for the hybrid microgrid also

ue to the variability of solar resources. The diesel-only microgrid shows

ar greater variability in its probability of survival performance while is-

anded throughout the year. A diesel-only microgrid drops to below 90%

or 13% of the year, while hybrid microgrids drop below 90% between

% and 7% of the year depending on the battery size and solar resources.

he improved performance of the hybrid system is resilient to changes

een over the last 20 years in solar condition at all three sites and sees lit-

le degradation in performance immediately after a hurricane, assuming

he system survives. Thus, both from a cost and performance perspective

ybrid microgrids should always be considered in designing a microgrid.

oth a hybrid and diesel-only microgrid system offers a much more re-

ilient [7,8] and cost-effective [60] system than a traditional system of

uilding-tied generators. For any microgrid, cyber vulnerabilities and

eaknesses associated with the on-campus distribution system need to

e considered. Cyber vulnerabilities can be addressed by appropriate

yberdefense procedures and distribution system reliability can be im-

roved by appropriate maintenance and mitigation practices. 
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ppendix A. Component Reliability Details 

The results cited in the body of the paper on EDG reliability were de-

ived from empirical data collected for fielded commercial EDGs by the

.S. Army [34] and Navy [35] (see Table A.13 ). This data provides the

nformation required to estimate the three reliability metrics for EDGs

ypically used in microgrids (10 kW to 2,000 kW). 

The first reliability metric, OA, captures the likelihood the EDG is

vailable at the start of a grid outage; this is defined in A.1 . 

𝐴 = 

𝑙 − 𝑡 𝑜𝑙 
(A.1)
𝑙 
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Table A.13 

Empirical data sets used to determine 

EDG reliability. 

Source # EDGs EDG Years of 

Observation 

Army [34] 304 2298 

Navy [35] 239 1280 
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Fig. A.18. PV system with central inverters. 

Table A.14 

PV component failure rates [64] . 

Component 𝝀 Failure Rate 

𝟏𝟎 −𝟔 per hour 

PV modules 0.035 

String connector 0.0056 

String protector 0.063 

DC combiner a 3.14 

Central inverter b 74 

String inverter 15.1 

AC combiner c 0.21 

Transformer 2.01 

a The DC combiner box is assumed 

to have a string module monitor, DC 

switch, terminal screws, fuses, and 

DC cables in series (see [5] ). 
b The inverter reliabilities include 

the DC and AC circuit breakers asso- 

ciated with the inverters. 
c The AC combiner box is assumed 

to have AC cables, fuses, and termi- 

nal blocks in series. 

Fig. A.19. Fault tree model for PV system . 
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here 𝑙 is the EDG lifetime and 𝑡 𝑜𝑙 is time offline due to repairs and

aintenance. The FTS metric is defined as: 

 𝑎𝑖𝑙 𝑢𝑟𝑒𝑡𝑜𝑆𝑡𝑎𝑟𝑡𝑃 𝑟𝑜𝑏𝑎𝑏𝑖𝑙 𝑖𝑡𝑦 ( 𝐹 𝑇 𝑆) = 

𝑛 𝑓𝑡𝑠 

𝑛 𝑎𝑡𝑠 
(A.2)

here 𝑛 𝑓𝑡𝑠 is the number of failures to start and 𝑛 𝑎𝑡𝑠 is the number of

ttempts to starts. 

The MTTF defined that captures failures while the EDG is running is

efined by: 

𝑇 𝑇 𝐹 = 

𝑡 𝑟 

𝑛 𝑟𝑡𝑓 
(A.3)

here 𝑡 𝑟 is the total runtime and 𝑛 𝑟𝑡𝑓 is the number of failures while

unning or run-time failures. Using these definitions and the empirical

ata the values of the EDG reliability metrics provided in the body of

he paper were derived. 

The justification for assuming a PV’s reliability does not need to be

onsidered given the large variability due to changes in solar conditions

s provided below. 

The availability of a PV system at the start of a grid outage depends

n both the rate of system failures and the time it takes to make re-

airs. A system that can be repaired very quickly will still have a high

vailability even if the failure rate is high. One can estimate the avail-

bility by measuring the actual energy yield in the field divided by the

deal energy yield. This is measured in the field as well as stipulated

n contract guarantees [61] . Contractual guaranteed availability is typ-

cally between 97% and 99% but is found as high as 99.5%. Contract

uarantees reflect not what is achieved but what is safe to guarantee

ith high confidence, as well as the value that customers place on the

etric. Empirical data supports a higher value for availability. For ex-

mple, 5 years of data from a 4.6-MW system in Arizona demonstrated

n availability of 99.9%, and surveys of utility-scale PV systems on av-

rage have shown a 99.5% availability [62] . A recent large-scale survey

f PV systems has found that failures in utility-scale systems are low,

nd almost all involve subcomponents that lead to only a partial loss of

ower [63] . This infrequent and modest loss of capacity is small com-

ared to the large variation of power due to changes in solar irradiance

nd leads us to assume that for our modeling purposes the PV system is

00% available. 

To estimate the loss of power during a grid outage, we consider a sim-

lified common PV design using centralized inverters. We do not include

omponents associated with grid connection because we are concerned

ith reliability when islanded. 

The simplified design of a PV system with centralized inverters is

hown in A.18 . 

Where Component 1 is string connectors and protectors (fuses), Com-

onent 2 is the DC combiner box containing a string monitoring unit

nd a DC disconnect, and Component 3 is a transformer. The system

as n strings, each with m modules connected to a central inverter, and

he overall system has P inverters. A similar block diagram can be con-

tructed for PV systems using string inverters. Current estimates for PV

omponent reliability are listed in A.14 [64] . These failures rates are for

ailure of one individual component, not all of them or of the system. 

Given the designs illustrated above, a simple fault tree can

e created for the system. Combining components that are in

eries results in a three-tier tree shown in Fig. A.19 , where

1 = 𝜆transformer , 𝜆2 = 𝜆DC combiner + 𝜆central inverter , and 𝜆3 = 𝑚𝜆module +
string connector + 𝜆string protector . 
14 
Any failure in the fault trees above will lead to a reduction in the

V’s capacity. We define the cumulative probability of a component in

ier 𝑖 to be working at time 𝑡 during an outage as: 

 𝑖 ( 𝑡 ) = 𝑒 − 𝜆𝑖 𝑡 (A.4)

nd the cumulative probability that it fails as: 

 𝑖 ( 𝑡 ) = 1 − 𝑅 𝑖 ( 𝑡 ) (A.5)

or a system of 𝑁 components in parallel, the cumulative probability

hat 𝑘 components are working is: 

 𝑖 ( 𝑘, 𝑁 ) = 

𝑁 ! 
𝑘 !( 𝑁 − 𝑘 )! 

𝑅 

𝑘 
𝑖 
𝐹 𝑁− 𝑘 
𝑖 

(A.6)
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Fig. A.20. PV Fraction of Capacity. 
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Table B.15 

Wholesale market modeling parameters. 

Value Units 

Market rules 

Minimum power 100 kW 

to participate 

Frequency regulation 

Dispatch fraction 0.6 

Duration of energy neutrality 2 hr 

Spinning reserve 

Dispatch fraction of 0.25 

cleared capacity 
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The fraction of power that flows through a given tier 𝑖 if 𝑘 component

ut of 𝑁 are operating is 𝑘 ∕ 𝑁 . Thus, for the central inverter system,

he expected fraction of capacity relative to capacity at the start of the

utage is simply: 

( 𝑡 ) = 𝑅 1 ( 𝑡 ) 𝑅 2 ( 𝑡 ) 𝑅 3 ( 𝑡 ) (A.7)

The fractional power capacity is independent of the number of in-

erters, but it does depend on the length of the string. A similar analysis

an be made for PV systems with string inverters. Fig. A.20 shows the

ean fractional power capacity as a function of outage duration for a

entral inverter system (CI) and a string inverter system (SI) assuming

4 modules per string. 

ppendix B. Economic Modeling Details 

1. Retail bill savings 

The conventional value stream for behind-the-meter DERs is retail

lectric bill savings. The electric rate tariff typically includes both en-

rgy rates ($/kWh) and demand charges ($/kW), and both of these may

ary by season, weekday/weekend, and time of day. Energy cost is cal-

ulated based on the energy consumed (kWh) during the time window(s)

f the energy rate, while demand charges are based on the peak 15-

inute consumption interval of the demand charge time window (REopt

erformed an hourly analysis, so the peak hourly load is used instead).

attery storage is particularly suited for demand charge reduction (i.e.,

eak shaving) if the electric load has short duration spikes in demand

ecause the battery can charge off-peak to reduce those peak periods

ith a relatively small energy requirement. Battery storage can also per-

orm energy arbitrage to reduce energy cost if there is a large difference

etween the off-peak and on-peak energy rate. 

2. Demand response 

Demand response is another common revenue stream for behind-

he-meter DERs, but there are rules and requirements that may limit

he value of participation by different DER types. The purpose of tradi-

ional demand response programs is to reduce demand during grid emer-

ency events or peak system load times that would otherwise result in

utages due to insufficient generation or transmission/distribution fail-

res. These programs are of10 administered through the local utility,

ut some are offered by an ISO. Additionally, wholesale markets, such as

nergy and ancillary services, are accessible by behind-the-meter DERs

n some ISO regions through demand response mechanisms. To distin-

uish between traditional emergency and capacity-based demand re-

ponse programs, the participation in wholesale markets by a demand

esponse mechanism is categorized as wholesale markets , as described in

ection B.3 . 

For participation in demand response and wholesale markets, our

odeling assumes that 80% of the revenue goes to the site, the remain-

ng 20% is taken by entities which enable participation in the programs.
15 
n CAISO, these entities are called Scheduling Coordinators. In PJM,

hese entities are called Curtailment Service Providers. 

3. Wholesale markets 

Wholesale market participation opportunities were also added to

he REopt model in this work, and this section describes the modeling

ethodology. The market rules listed in Table B.15 represent parameters

sed for all markets. 

3.1. Energy 

There are two different wholesale energy markets: day-ahead market

DAM) and real-time market (RTM). The DAM is bid into by EDGs the

ay before they are dispatched, and the RTM is typically bid and cleared

bout an hour before the EDGs are dispatched. The demand side of the

arket (including electricity purchases by a battery) also submits bids

o purchase energy in these markets. The RTM is required to correct the

ifference between forecasted supply and demand, which are transacted

n the DAM. 

The basis of selling energy in the DAM and RTM for retail customers

s by reducing load relative to the average site load during the same

ours on the previous 5 (PJM [57] ) to 10 (CAISO [65] ) days. The pre-

ious days included in the average are similar in terms of weekday ver-

us weekend and only include nonparticipating hours. Because PV is

ondispatchable and it reduces the site load similarly each day, PV was

ssumed to not participate in the energy market. Battery storage was

ssumed to participate in both DAM and RTM energy markets, so it was

ble to choose the highest price between the two markets during a given

our. 

3.2. Ancillary services 

The three main ISO/RTO-administered ancillary service markets are

requency regulation, spinning reserve, and nonspinning reserve. Fre-

uency regulation is a fast-responding market that maintains the fre-

uency of the electric grid within certain limits, and EDGs are required

o follow a dispatch signal which may change every 2–4 seconds. Some

SO have a single frequency regulation market (e.g., PJM, ISO-NE), and

ome have separate regulation up and down markets (e.g., CAISO, ER-

OT). 

The REopt model uses an hourly time interval for the dispatch, so

educed-order parameters were implemented for evaluating the require-

ents of following the frequency regulation signal. The dispatch frac-

ion is defined for reduced-order modeling as the fraction of the cleared

ower capacity that actually dispatches to follow the frequency regula-

ion signal in a given hour. As an example, using a dispatch fraction of

.6, if 100 kW is cleared in the market, the energy throughput into and

ut of the battery is 60 kWh. This allows for the accounting of energy

ost due to inefficiency of the battery that needs to be made up by charg-

ng outside of the participating window. Eq. B.1 defines the energy loss

 𝐸 𝐿𝑜𝑠𝑠 ( 𝑡 ) ) during a given hour of participation in frequency regulation

p and down. 

 𝐿𝑜𝑠𝑠 ( 𝑡 ) = 

𝑃 𝑅𝑈,𝑎𝑣𝑔 ( 𝑡 ) 
𝜂

− 

𝑃 𝑅𝐷,𝑎𝑣𝑔 ( 𝑡 ) 
𝜂

(B.1)

𝑜𝑢𝑡 𝑖𝑛 
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here 𝑃 𝑅𝑈,𝑎𝑣𝑔 ( 𝑡 ) and 𝑃 𝑅𝐷,𝑎𝑣𝑔 ( 𝑡 ) is the average power dispatched from

nd to the battery for regulation up and down respectively, and 𝜂𝑖𝑛 and

𝑜𝑢𝑡 is the efficiency into and out of the battery, respectively. We can

efine the Dispatch Fraction using the average dispatched power 𝑃 𝑎𝑣𝑔 ( 𝑡 )
elative to the cleared capacity 𝐶( 𝑡 ) in regulation up and down as: 

𝑖𝑠𝑝𝑎𝑡𝑐 ℎ𝐹 𝑟𝑎𝑐 𝑡𝑖𝑜𝑛 = 

𝑃 𝑎𝑣𝑔 ( 𝑡 ) 
𝐶( 𝑡 ) 

(B.2)

or the PJM market, the frequency regulation is a single market (not

eparated into up and down markets), so 𝐶 𝑅𝑈 ( 𝑡 ) = 𝐶 𝑅𝐷 ( 𝑡 ) = 𝐶( 𝑡 ) and the

egulation signal is conditionally symmetric, so 𝑃 𝑅𝑈,𝑎𝑣𝑔 ( 𝑡 ) = 𝑃 𝑅𝐷,𝑎𝑣𝑔 ( 𝑡 ) =
𝑃 𝑎𝑣𝑔 ( 𝑡 ) 

|||. Eq. B.1 therefore can be reformulated as: 

 𝐿𝑜𝑠𝑠 ( 𝑡 ) = 𝐶( 𝑡 ) 
[ 

1 
𝜂𝑜𝑢𝑡 

− 𝜂𝑖𝑛 

] 
𝐷𝑖𝑠𝑝𝑎𝑡𝑐 ℎ𝐹 𝑟𝑎𝑐 𝑡𝑖𝑜𝑛 (B.3)

The second parameter for frequency regulation is the duration of en-

rgy neutrality , which is the number of hours over which the frequency

egulation signal has equivalent energy dispatched to up and down reg-

lation. This parameter ensures the battery has enough energy capacity

o follow a continuous full power up or down signal in the worst-case

cenario. Table B.15 shows the value used for this analysis. Eq. B.4 is

he constraint on the maximum regulation up capacity based on the

uration of energy neutrality (D.E.N.) , the battery’s current stored energy

 𝐸 𝑠𝑡𝑜𝑟𝑒𝑑 ( 𝑡 ) ), and its minimum energy state ( 𝐸 𝑚𝑖𝑛 ). Eq. B.5 is the constraint

n the maximum regulation down capacity based on the battery’s cur-

ent stored energy ( 𝐸 𝑠𝑡𝑜𝑟𝑒𝑑 ( 𝑡 ) ) and its maximum energy capacity ( 𝐸 𝑚𝑎𝑥 ).

or a single frequency regulation market, the single cleared capacity

( 𝑡 ) is constrained by both Eq. B.4 and Eq. B.5 . 

 𝑅𝑈 ( 𝑡 ) < = ( 𝐸 𝑠𝑡𝑜𝑟𝑒𝑑 ( 𝑡 ) − 𝐸 𝑚𝑖𝑛 ) 
𝐷.𝐸.𝑁 

2 
(B.4)

 𝑅𝐷 ( 𝑡 ) < = ( 𝐸 𝑚𝑎𝑥 − 𝐸 𝑠𝑡𝑜𝑟𝑒𝑑 ( 𝑡 )) 
𝐷.𝐸.𝑁. 

2 
(B.5)

Spinning reserve is a market that compensates a generator for the

apability to be dispatched and ramp up to its cleared capacity within

0–30 minutes, and it needs to be able to maintain that capacity for

bout an hour. Generators are often cleared in the market and receive

ayment without actually being dispatched. Nonspinning reserve is sim-

lar to spinning reserve except that the asset has more time to respond

o a dispatch signal (1 h or more), and the compensation is lower than

pinning reserve accordingly. The dispatch assumption for spinning re-

erve is 25% of the participating capacity in each hour to account for

nergy requirements of the battery and fuel cost of the EDG, as shown

n Table B.15 . Nonspinning reserve was not included because it would

ever be chosen over the spinning reserve market for which EDGs and

attery storage are capable of providing. 

eferences 

[1] Stadler M , Cardoso G , Mashayekh S , Forget T , DeForest N , Agarwal A , et al. Value

streams in microgrids: a literature review. Applied energy 2016;162:980–9 . 

[2] Gamarra C , Guerrero JM . Computational optimization techniques applied to

microgrids planning: a review. Renewable and Sustainable Energy Reviews

2015;48:413–25 . 

[3] Hare J , Shi X , Gupta S , Bazzi A . Fault diagnostics in smart micro-grids: a survey.

Renewable and Sustainable Energy Reviews 2016;60:1114–24 . 

[4] Jones RB . How Reliable Is Your Microgrid? An insurer’s perspective on risk drivers

for distributed resources. July: Public Utilities Fortnightly; 2015 . 

[5] Elsworth J , Geet OV . Solar photovoltaics in severe weather: cost considerations for

storm hardening PV systems for resilience. NREL/TP-7A40-75804 2020 . 

[6] Marqusee J , Jenket D . Reliability of emergency and standby diesel generators: im-

pact on energy resiliency solutions. Applied energy 2020;286(11491):8 . 

[7] Marqusee J , Ericson S , Jenket D . Emergency Diesel Generator Reliability and Instal-

lation Energy Security. National Renewable Energy Laboratory; 2020 . 

[8] Marqusee J , Ericson S , Jenket D . Impact of emergency diesel generator reliability on

microgrids and building-tied systems. Applied energy 2021;285(116437) . 

[9] Fenga W , Jina MB , Liua X , Baoa YC , Marnaya C , Yaod C , et al. A review of microgrid

development in the united states – a decade of progress on policies, demonstrations,

controls, and software tools. Applied energy 2018;228:1656–68 . 

10] NREL. REopt: Renewable Energy Integration and Optimization. 2020a. URL

https://reopt.nrel.gov/ . 
16 
11] Cutler D , Olis D , Elgqvist E , Li X , Laws N , DiOrio N , Walker A , Anderson K . REopt:

A Platform for Energy System Integration and Optimization. NREL; 2017 . 

12] Homer. Homer energy. 2020. URL https://www.homerenergy.com/ . 

13] LBNL. Distributed Energy Resources - Customer Adoption Model (DER-CAM). 2020.

URL https://building-microgrid.lbl.gov . 

14] Marnay C , Venkataramanan G , Stadler M , Siddiqu AS , Firestone R , Chandran B .

Optimal technology selection and operation of commercial building microgrids. IEEE

Trans Power Systems 2008;23:3 . 

15] SNL. Microgrid design toolkit. 2020. URL https://www.sandia.gov . 

16] Eddy J , Miner N , Stamp J . Sandia’S microgrid design toolkit. The Electricity Journal

2017;30:62–7 . 

17] Zhang J , Knizley A , Cho H . Investigation of existing financial incentive policies for

solar photovoltaic systems in u.s. regions. Energy 2017;5:974–96 . 

18] Davidson C , Gagnon P , Denholm P , Margolis R . Nationwide Analysis of US. Com-

mercial Building Solar Photovoltaic (PV) Breakeven Conditions. National Renewable

Energy Laboratory; 2015 . 

19] NREL. SAM: System Advisor Model. 2020b. URL https://sam.nrel.gov/ . 

20] Fisher MJ , Apt J . Emissions and economics of behind-the-meter electricity storage.

Environmental sciences : an international journal of environmental physiology and

toxicology 2017;51:1094–101 . 

21] Yan X , Zhang X , Chen H , Xu Y , Tan C . Techno-economic and social analysis of energy

storage for commercial buildings. Energy Convers Manage 2014;78:125–36 . 

22] Long M, Simpkins T, Cutler D, Anderson K. A statistical analysis of the economic

drivers of battery energy storage in commercial buildings. North American Power

Symposium (NAPS); 2016. doi: 101109/NAPS20167747918 . 

23] McLaren J, Laws N, Anderson K, DiOrio N, Miller J. Solar-plus-storage eco-

nomics: what works where, and why? The Electricty Journal 2019;32:28–46.

doi: 10.1016/j.tej.2019.01.006 . 

24] Alsaidan I, Alanazi A, Gao W, Wu H, Khodaei A. State-of-the-art in

microgrid-integrated distributed energy storage sizing. Energies 2017;10:1421.

doi: 10.3390/en10091421 . 

25] Santillán-Lemus FD, Minor-Popocatl H, Aguilar-Mejía O. Optimal economic dis-

patch in microgrids with renewable energy sources. Energies 2019;12:181.

doi: 10.3390/en12010181 . 

26] Liu J , Chen Z , Xiang Y . Exploring economic criteria for energy storage system sizing.

Energies 2019;12:2312 . 

27] Anderson K , Laws N , Marr S , Lisell L , Jimenez T , Case T , Li X , Lohmann D , Cutler D .

Quantifying and monetizing renewable energy resiliency. Sustainability 2018;10:4 . 

28] Cook JJ , Hotchkiss E , Li X , Cruce J . Planning for the storm: considering renew-

able energy for critical infrastructure resilience. Journal of Emergency Managements

2020;18 . 

29] Hanna R , Disfani VR , Kleiss Jl . Reliability evaluation for microgrids using cross-en-

tropy monte carlo simulation. In: International I, editor. Conference on Probabilistic

Methods Applied to Power Systems (PMAPS). Boise; 2018. p. 1–6 . 

30] Hanna R , Disfani VR , Haghi HV , Victor DG , Kleissl J . Improving estimates for reli-

ability and cost in microgrid investment planning models. J Renewable Sustainable

Energy 2019;11 . 

31] Nelson J , Johnson NG , Fahy K , Hansen TA . Statistical development of microgrid

resilience during islanding operations. Applied energy 2020;279 . 

32] DoD. Unified Facility Criteria (UFC) UFC 3-540-01: Engine Driven Generator Systems

for Prime and Standby Power Applications; 2017 . URL https://www.wbdg.org 

33] NFPA . 110 Standard for Emergency and Standby Power Systems; 2019 . 

34] Thompson C , Hale PJ , Arno R . Decanting the data: the gold book presents equipment

reliability refreshment. IEEE Transactions on Industry Application 2012;482 . 

35] Fehr SJ. Emergency Diesel-Electric Generator Set Maintenance and Test Pe-

riodicity. s.l. : Doctor of Philosophy (PhD). Old Dominion University; 2017.

doi: 1025777/q2nk-n411 . URL https://digitalcommons.odu.edu/emse_et 

36] Du Y , Burnett J , Chan SM . Reliability of standby generators in hong kong buildings.

IEEE transactions on industry applications 2003;39:6 . 

37] Birolini A . Reliability Engineering Theory and Practice. sl Springer; 2007 . 

38] Chatzinikolaou E , Rogers DJ . A comparison of grid-connected battery energy storage

system designs. IEEE Transactions on Power Electronics 9 2017;32 . 

39] Smith K , Saxon A , Keyser M , Lundstrom B , Cao Z , Ro A . Life prediction model for

grid- connected li-ion battery energy storage system. sl : National Renewable Energy

Laboratory NREL/CP-5400-67102 2017 . 

40] Marqusee J, Olis D, Becker W, Ericson S, Schultz C. The value of battery storage in

military microgrids. ESTCP 2020 . URL https://www.serdp-estcp.org 

41] Altman D. Advanced Phasor-based Control of Energy Storage Microgrids. ESTCP;

2020 . URL https://serdp-estcp.org 

42] Arifujjaman M . A comprehensive power loss, efficiency, reliability and cost calcula-

tion of a 1 MW/500 kwh battery based energy storage system for frequency regula-

tion application. Renewable energy 2014;74:158–69 . 

43] Colonnese A , Lavoi B , Molta P , Nowak K , Takle H , Winkler E , Gonata C . Demon-

strating the benefits of long-duration, low-cost flow battery storage in a renewable

microgrid. Tech. Rep.. ESTCP; 2020 . 

44] Becker W , Miller E , Mishra P , Jain R , Olis D , Li X . Cost reduction of school bus

fleet electrification with optimized charging and distributed energy resources. 2019

North American Power Symposium 2019;978-1-7281-0407-2/19 . 

45] NREL. PVWatts API. 2020c. URL https://developer.nrel.gov/docs/solar/pvwatts/v6/

46] NREL. Annual Technology Baseline. 2019. URL https://atb.nrel.gov . 

47] BloombergNEF. Energy Storage System Costs Survey 2019. 2019. Table 4 . 

48] Ke X , Jiang A , Lu N . Load profile analysis and short-term building load fore-

cast for a university campus. IEEE Power and Energy Society General Meeting 

2016 . 

49] DoD. Annual Energy Management and Resilience Report Fiscal Year 2018; 2019 .

URL https://www.acq.osd.mil 

http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0001
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0002
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0002
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0002
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0003
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0003
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0003
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0003
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0003
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0004
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0004
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0005
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0005
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0005
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0006
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0006
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0006
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0007
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0007
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0007
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0007
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0008
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0008
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0008
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0008
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0009
https://reopt.nrel.gov/
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0011
https://www.homerenergy.com/
https://building-microgrid.lbl.gov
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0014
https://www.sandia.gov
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0016
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0016
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0016
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0016
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0017
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0017
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0017
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0017
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0018
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0018
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0018
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0018
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0018
https://sam.nrel.gov/
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0020
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0020
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0020
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0021
https://doi.org/101109/NAPS20167747918
https://doi.org/10.1016/j.tej.2019.01.006
https://doi.org/10.3390/en10091421
https://doi.org/10.3390/en12010181
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0026
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0026
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0026
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0026
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0027
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0028
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0028
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0028
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0028
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0028
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0029
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0029
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0029
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0029
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0030
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0031
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0031
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0031
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0031
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0031
https://www.wbdg.org
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0033
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0033
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0034
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0034
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0034
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0034
https://doi.org/1025777/q2nk-n411
https://digitalcommons.odu.edu/emse_et
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0036
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0036
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0036
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0036
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0037
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0037
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0038
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0038
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0038
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0039
https://www.serdp-estcp.org
https://serdp-estcp.org
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0042
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0042
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0043
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0044
https://developer.nrel.gov/docs/solar/pvwatts/v6/
https://atb.nrel.gov
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0048
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0048
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0048
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0048
https://www.acq.osd.mil


J. Marqusee, W. Becker and S. Ericson Advances in Applied Energy 3 (2021) 100049 

[  

[

[  

[  

[  

[  

[

[  

[  

 

[  

[  

[  

 

[  

[  

[  

[  
50] Manana A , Ortega S , Manana M . Characterization and analysis of energy demand in

airports. Energies 2017;10 . 

51] NREL. National solar radiation database. 2020d. URL https://nsrdb.nrel.gov/ . 

52] Edison S.C.. Schedule CBP Capacity Bidding Program. 2019. Cal. PUC Sheet No.

65879-E. 

53] El Paso Electric Company. El Paso Electric Company’s 2020 Load Management Pro-

gram. 2020. 

54] CPower. Understanding PJM Capacity Demand Response Changes. 2019. URL

https://cpowerenergymanagement.com . 

55] CAISO. PDR-DERP-NGR Summary Comparison Matrix. 2020. URL

http://www.caiso.com . 

56] CAISO. Energy Storage and Distributed Energy Resources Phase 3. 2018a. 

57] PJM Day-Ahead, Real-Time Market Operations. PJM Manual 11: Energy & Ancillary

Services Market Operations. 2020. 

58] Rezkallah M . Comprehensive controller implementation for wind-PV-Diesel based

standalone microgrid. IEEE transactions on industry applications 2019;55:5416–28 .
17 
59] Cole W , Greer D , Lamb K . The potential for using local PV to meet critical loads

during hurricanes. Solar Energy 2020;205 . 

60] Marqusee J , Schultz C , Robyn D . Power Begins at Home: Assured Energy for U.S.

Military Bases. Noblis; 2017 . 

61] Klise GT , Balfour J . A best practice for developing availability guarantee lan-

guage in photovoltaic (PV) o&m agreements. sl : Sandia National Laboratory

SAND2015-10223 2015 . 

62] Hunt K , Blekicki A , Callery R . Availability of utility-scale photovoltaic power plants.

In: IEEE 42nd Photovoltaic Specialist Conference, 42; 2015 . 

63] Jordan DC , Dirk M , Bill D , Chris B , Teresa . PV Field reliability status-analysis of 100

000 solar systems. Prog Photovolt Res Appl 2020:1–16 . 

64] Baschel S , Koubli E , Roy J , Gottschalg R . Impact of component reliability on large

scale photovoltaic systems’ performance. Energies 2018;11:1579 . 

65] CAISO. California Independent System Operator Corporation Fifth Replacement

FERC Electric Tariff. 2018b. 

http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0050
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0050
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0050
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0050
https://nsrdb.nrel.gov/
https://cpowerenergymanagement.com
http://www.caiso.com
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0058
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0058
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0059
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0059
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0059
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0059
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0060
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0060
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0060
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0060
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0061
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0061
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0061
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0062
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0062
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0062
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0062
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0063
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0064
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0064
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0064
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0064
http://refhub.elsevier.com/S2666-7924(21)00041-X/sbref0064

	Resilience and economics of microgrids with PV, battery storage, and networked diesel generators
	1 Introduction
	1.1 Public software tools
	1.2 Economic value of PV and BESS
	1.3 Grid-Tied hybrid microgrids

	2 Component reliability
	2.1 EDG Reliability
	2.2 PV Reliability during an outage
	2.3 BESS Reliability during an outage

	3 Reliability modeling
	3.1 Initial system state and generator failure
	3.2 Microgrid dispatch and unmet critical load
	3.3 Performance criteria
	3.4 Update battery state

	4 Economic modeling
	4.1 Avoided EDG costs
	4.2 Retail bill savings, demand response and wholesale markets
	4.3 Life cycle cost inputs

	5 Site information
	5.1 Electric load
	5.2 EDGs
	5.3 PV Resource
	5.4 Retail electric rates
	5.5 Demand response programs
	5.6 Wholesale market opportunities

	6 Sizing and costs results
	7 Reliability performance results
	7.1 Hybrid and diesel only microgrids
	7.2 Impact of battery reliability
	7.3 Impact of solar variability

	8 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A Component Reliability Details
	Appendix B Economic Modeling Details
	B1 Retail bill savings
	B2 Demand response
	B3 Wholesale markets
	B3.1 Energy
	B3.2 Ancillary services


	References


