
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-5700-78774
April 2021

Demonstrating SolarPILOT's Python
API Through Heliostat Optimal
Aimpoint Strategy Use Case
Preprint
William T. Hamilton,1 Michael J. Wagner,2
and Alexander J. Zolan1

1 National Renewable Energy Laboratory
2 University of Wisconsin-Madison

Presented at the 15th International Conference on Energy Sustainability
(ES2021)
Denver, Colorado
June 16-18, 2021

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-5700-78774
April 2021

Demonstrating SolarPILOT's Python
API Through Heliostat Optimal
Aimpoint Strategy Use Case
Preprint
William T. Hamilton,1 Michael J. Wagner,2
and Alexander J. Zolan1

1 National Renewable Energy Laboratory
2 University of Wisconsin-Madison

Suggested Citation
Hamilton, William T., Michael J. Wagner and Alexander J. Zolan. 2021. Demonstrating
SolarPILOT's Python API Through Heliostat Optimal Aimpoint Strategy Use Case:
Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5700-78774.
https://www.nrel.gov/docs/fy21osti/78774.pdf.

https://www.nrel.gov/docs/fy21osti/78774.pdf

NOTICE

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy
Technologies under award number DE-EE00035930. The U.S. Government retains and the publisher, by accepting
the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S.
Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

DEMONSTRATING SOLARPILOT’S PYTHON API THROUGH HELIOSTAT OPTIMAL
AIMPOINT STRATEGY USE CASE

William T. Hamilton∗
Thermal Energy Systems

National Renewable Energy Laboratory
Golden, Colorado 80401

Email: william.hamilton@nrel.gov

Michael J. Wagner
Department of Mechanical Engineering

University of Wisconsin-Madison
Madison, Wisconsin, 53706

Email: mike.wagner@wisc.edu

Alexander J. Zolan
Thermal Energy Systems

National Renewable Energy Laboratory
Golden, Colorado 80401

Email: alexander.zolan@nrel.gov

ABSTRACT
SolarPILOT is a software package that generates solar field

layouts and characterizes the optical performance of concentrat-
ing solar power (CSP) tower systems. SolarPILOT was devel-
oped by the National Renewable Energy Laboratory (NREL) as a
stand-alone desktop application but has also been incorporated
into NREL’s1 System Advisor Model (SAM) in a simplified for-
mat. Prior means for user interaction with SolarPILOT have
included the application’s graphical interface, the SAM routines
with limited configurability, and through a built-in scripting lan-
guage called “LK.” This paper presents a new, full-featured,
Python-based application programmable interface (API) for So-
larPILOT, which we hereafter refer to as CoPylot.

CoPylot provides access to all SolarPILOT’s capabilities to
generate and characterize power tower CSP systems seamlessly
through Python. Supported capabilities include (i) creating and
destroying a model instance with message reporting tools; (ii)
accessing and setting any SolarPILOT variable including custom
land boundaries for field layouts; (iii) programmatically manag-
ing receiver and heliostat objects with varied attributes for sys-

∗Address all correspondence to this author.
1The Alliance for Sustainable Energy, LLC (Alliance), is the manager and

operator of the National Renewable Energy Laboratory (NREL). Employees of
the Alliance, under Contract No. DE-AC36-08GO28308 with the U.S. Dept. of
Energy, have authored this work. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, worldwide li-
cense to publish or reproduce the published form of this work, or allow others to
do so, for United States Government purposes.

tems with multiple receiver or heliostat types; (iv) generating,
assigning, and modifying solar field layouts including the ability
to set individual heliostat locations, aimpoints, soiling rates, and
reflectivity levels; (v) simulating solar field performance; (vi) re-
turning detailed results describing performance of individual he-
liostats, the aggregate field, and receiver flux distribution; and,
(vii) exporting Python-based model instances to multiple file for-
mats.

CoPylot enables Python users to perform detailed CSP
tower analysis utilizing either the Hermite expansion technique
(analytical) or the SolTrace ray-tracing engine. In addition to
CoPylot’s functionality, Python users have access to the over
100,000 open-source libraries to develop, analyze, optimize, and
visualize power tower CSP research. This enables CSP re-
searchers to perform analysis that was previously not possible
through SolarPILOT’s existing interfaces. This paper discusses
the capabilities of CoPylot and presents a use case wherein we
demonstrate optimal solar field aiming strategies.

NOMENCLATURE
API Application Programmable Interface
CSP Concentrating Solar Power
DLL Dynamic-Link Library
GUI Graphical User Interface
HALOS Heliostat and Layout Optimization Software
LK Language Kit
MILP Mixed-Integer Linear Program

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1

NREL National Renewable Energy Laboratory
SAM System Advisor Model

INTRODUCTION
Power tower concentrating solar power (CSP) systems con-

sist of a solar field, or a field containing hundreds or thousands
of heliostats, or devices that track the sun and contain individual
mirrored surfaces that reflect incoming solar irradiation onto a re-
ceiver. Analysis of power tower CSP systems requires a detailed
representation and characterization of the field’s geometric lay-
out and optical performance. One method to generate and evalu-
ate a solar field is to use the National Renewable Energy Labora-
tory’s (NREL’s) SolarPILOT software [1]. However, in previous
releases, SolarPILOT offers limited user interfaces which restrict
the software’s usability and flexibility to perform detailed solar
field analysis conjointly with other CSP researchers’ modeling
efforts.

Within the CSP research community, there exists many soft-
ware programs to analyze optical performance of CSP config-
urations [2, 3]. However, to the authors knowledge an open-
source, Python compatible, computationally efficient software to
perform heliostat layout and field optical performances does not
exist. sbpRay, developed by Schlaich Bergermann Partner, is a
parallelized ray-tracing software that is accessible through a be-
spoke graphical user interface (GUI) or a Python interface [4].
sbpRay is a commercially developed software and not open-
source. In addition, sbp developed a Python wrapper around
SolTrace to predict the optical performance of a bifacial photo-
voltaic system [5, 6]. Tracer and OTSun are open-source Python
libraries that perform Monte Carlo ray tracing and have been val-
idated against other optical performance models [7,8]. However,
ray tracing can be computationally expensive as the optical sys-
tem scale increases, e.g., increasing the number of heliostats.

SolarPILOT is an open source, C++ software tool that gen-
erates solar field layouts and characterizes the optical perfor-
mance of CSP tower systems. SolarPILOT can simulate re-
ceiver flux distributions using two methods: (i) a Hermite ex-
pansion technique (analytical) and (ii) a ray-tracing technique
called SolTraceTM [6]. The Hermite method enables SolarPI-
LOT to accurately simulate large solar fields in a quick and
computationally-efficient manner, while SolTrace provides a ro-
bust Monte-Carlo-based ray-tracing method that allows cross-
comparison of results and analysis of more complex geometries.

SolarPILOT is a well known and frequently used software
in the CSP research community. Previously, SolarPILOT users
were limited to interacting with the software through either the
GUI or Language Kit (LK) application programming interface
(API), shown in Fig. 1 on the left-hand side. The GUI provides
an interactive visual method for users to update variables and ex-
plore results; however, creating multiple cases and performing
large parametric analysis can be cumbersome and time consum-

FIGURE 1. A DIAGRAM PRESENTING USER INTERFACES
FOR SOLARPILOT’S DYNAMIC-LINK LIBRARY (DLL).

ing. The LK-API overcomes these challenges by providing the
ability to create scripts that execute SolarPILOT’s computational
methods. However, LK is a domain-specific language that re-
quires SolarPILOT’s GUI to operate in the background, has a
limited documentation and user support network, and has very
limited capabilities for data analysis and visualization; therefore,
users typically are required to develop a LK script to perform a
specific SolarPILOT analysis and export those results to a more
flexible programming language, e.g., Python [9]. Additionally,
users can utilize SolarPILOT’s computational methods is through
System Advisor Model (SAM), which enables receiver fluid flow
path calculations [10]; however, this interface is even more re-
strictive than the above two methods. To address this problem,
we developed a full-featured, Python-based API for SolarPILOT,
which we hereafter refer to as CoPylot.

In this paper, we present the architecture and capabilities of
CoPylot. We provide a brief description of how users can access
CoPylot. Then, we present a working example using CoPylot
to generate a solar field, simulate performance, and access So-
larPILOT results. Next, we present an aimpoint optimization use
case that utilizes CoPylot to provide solar field layout and char-
acterization of heliostat flux images onto the receiver. Lastly, we
conclude with a summary and extensions of our work.

COPYLOT DESCRIPTION
CoPylot is a full-featured, Python-based API for SolarPI-

LOT that directly interacts with SolarPILOT’s dynamic-link li-
brary (DLL), shown in Fig. 1 on the right-hand side. CoPy-
lot enables users access to SolarPILOT’s computation engines
seamlessly through the Python scripting interface. This new ca-
pability of SolarPILOT provides a versatile tool to CSP tower
researchers to generate heliostat layouts and characterize field
performance through Python or even embed SolarPILOT into
other research tools. For example, CoPylot could be integrated
into a model investigating optimal receiver design or operations

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2

which is outside of the current scope of SolarPILOT’s capabili-
ties. Additionally, CoPylot users have access to the over 100,000
open-source Python libraries to develop, analysis, optimize, and
visualize CSP tower research.

To develop CoPylot, we create new SolarPILOT C++ source
code to export functions from its DLL. CoPylot accesses the
DLL exported functions utilizing ctypes, a the foreign function
library for Python. CoPylot manipulates Python user inputs to
compatible C data types for interfacing with the C++ SolarPI-
LOT DLL and converts DLL return information to Python spe-
cific data structures; thereby, increasing CoPylot’s usability. In
addition to being accessed by Python through the CoPylot in-
terface, SolarPILOT’s DLL exported functions may be accessed
by other scripting languages, e.g., MATLAB R©, by creating an
API within the specific language to handle data type conversions,
shown in Fig. 1. While we did not create these links within this
work, the development of these APIs would be straightforward
with the existing C++ source code, and could be developed in
future work.

CoPylot enables users to access all of SolarPILOT’s func-
tionality through a Python scripting interface. A brief summary
of CoPylot’s functionality includes:

1. Creating and destroying model instances which includes
callback functionally to propagate messages from SolarPI-
LOT back to Python users

2. Accessing and setting SolarPILOT’s variables including im-
porting custom land boundaries for field layout

3. Managing receiver and heliostat objects with varied at-
tributes for systems with multiple receiver or heliostat types

4. Generating, assigning, and modifying solar field layouts in-
cluding the ability to set individual heliostat locations, aim-
points, soiling rates, and reflectivity level

5. Simulating solar field performance
6. Returning detailed results describing performance of indi-

vidual heliostat performance, the aggregated field, and re-
ceiver flux distribution

7. Exporting the python created SolarPILOT instance to either
a .csv file with all variable values or a SolarPILOT .spt file
enabling the instance to be loaded by SolarPILOT’s GUI

Getting Started with CoPylot
To start using CoPylot, download copylot.py and solarpi-

lot.dll available through the SolarPILOT Github repository. Cur-
rently, CoPylot is accessible through the SolarPILOT copilot
branch within ./deploy/api directory; however, this branch
will be merged into develop in future versions of SolarPILOT.
When this merge occurs, we will provide users detailed instruc-
tions in SolarPILOT’s README describing the process for ac-
cessing CoPylot. Additionally, there is a CoPylot test script
within ./deploy/api that provides example code using the
CoPylot Python class. CoPylot assumes the DLL file exists in

the same folder as copylot.py; if not the case, users will need to
update CoPylot’s path to the DLL file within the CoPylot class.

Model Building with CoPylot
The following is Python code presenting a working example

using CoPylot to generate a solar field, simulate performance,
and access solarPILOT results.

1 from c o p y l o t import CoPylo t
2 cp = CoPylo t () # c r e a t e a CoPylo t c l a s s i n s t a n c e
3 r = cp . d a t a c r e a t e () # c r e a t e a SolarPILOT i n s t a n c e
4 cp . a p i c a l l b a c k c r e a t e (r) # c r e a t e c a l l b a c k
5 cp . d a t a s e t s t r i n g (r ,
6 ‘ ‘ ambien t . 0 . w e a t h e r f i l e ’ ’ ,
7 ${PATH TO WEATHER FILE }) # s e t pa th t o wea ther f i l e
8 p r i n t (cp . g e n e r a t e l a y o u t (r)) # g e n e r a t e l a y o u t
9 f i e l d = cp . g e t l a y o u t i n f o (r) # g e t l a y o u t

10 p r i n t (cp . s i m u l a t e (r)) # s i m u l a t e f i e l d per fo rmance
11 f l u x = cp . g e t f l u x m a p (r) # g e t r e c e i v e r f l u x
12 l a y r e s = cp . d e t a i l r e s u l t s (r) # g e t l a y o u t r e s u l t s
13 summary = cp . s u m m a r y r e s u l t s (r) # g e t s y s t e m summary
14 cp . d a t a f r e e (r) # f r e e SolarPILOT i n s t a n c e

In this example, the solar field is generated and simulated
using SolarPILOT default variable values. The first step when
working with CoPylot is to import the class from copylot.py
and create a class instance. The CoPylot class contains all
of the methods for interacting with SolarPILOT’s DLL. When
data_create() is called, CoPylot creates an api_helper
data structure within the DLL to store a SolarPILOT instance’s
variables, solar field, and results. This method returns a pointer
that is utilized by other CoPylot methods to access the specific
instance of SolarPILOT. As a result of this methodology, the user
can create and manipulate multiple SolarPILOT instances, simul-
taneously, using their unique memory pointers. This enables easy
implementation of parallel computation in the Python interface,
e.g., using the multiprocessing package.

By default, CoPylot callback functionality is disabled to sup-
press console messages when CoPylot is embedded into other
research modeling tools. However, users may enable the call-
back by using api_callback_create(). This method pro-
vides a link between CoPylot and the DLL which allows the
latter to return messages to the Python console. This call-
back can be very useful when working with CoPylot for the
first time as it provides users with detailed error messages for
common mistakes, e.g., trying to set a variable with the wrong
name or data type. To disable the callback, users can call the
api_disable_callback() method.

When CoPylot creates a SolarPILOT instance, it sets
all the variables to their default values except for the
weather file path. We designed CoPylot to exist inde-
pendent of SolarPILOT’s GUI and its installed directory
which includes climate_files containing a collection
of location-specific weather files. As a result, the user
is required to set "ambient.0.weather_file" to a

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3

https://github.com/NREL/SolarPILOT

FIGURE 2. SCREENSHOT OF A INTERACTIVE BOKEH HELIOSTAT FIELD PLOTTING TOOL.

weather file path using the appropriate variable setter method,
data_set_string(), before field generation. This weather
file must conform with the formats described in the SolarPI-
LOT’s documentation. A complete list of SolarPILOT vari-
able names can be found through the LK scripting tool accessed
through SolarPILOT’s GUI (File → New Script → Help). We
plan to improve the variable naming documentation in future
work.

Once the user has updated variable values as desired, they
can run generate_layout() to generate a solar field lay-
out. This method returns a Boolean to specify if the process
was successful. This method is equivalent to pressing the “Gen-
erate New Layout” on the Field Layout page in the SolarPI-
LOT’s GUI. get_layout_info() returns the solar field lay-
out as a Pandas DataFrame which contains each heliostat’s x-
, y-, and z- coordinates as well as a unique ID number, he-
liostat template ID, and layout metric. This method has ad-
ditional keyword functionality which can (i) change the return
format to either dictionary (restype = "dict") or a ma-
trix and header lists (restype = "mat"), and/or (ii) pro-
vide the corner coordinates for each heliostat reflective surface
(get_corners = True).

CoPylot’s simulate() simulates performance using the
stored solar field, specified sun position, and simulation param-
eters (equivalent to pressing the “simulate performance” but-
ton on the Performance Simulation page in the SolarPILOT’s
GUI). Similar to generate_layout(), simulate() re-
turns a Boolean to specify if the method was successful. After

simulation, users can access the receiver flux distribution using
get_fluxmap() which returns a matrix (i.e., list of lists).

CoPylot’s detail_results() provides the detailed
simulations results for each heliostat in a Pandas DataFrame (by
default). This DataFrame contains all of the information typi-
cally found on the Layout Results page in the SolarPILOT GUI.
This method contains all of the keyword arguments described for
get_layout_info(), as well as a way to select specific he-
liostats using a list of heliostat ID numbers (selhel=[]). With
the output of detail_results(), users can analyze and vi-
sualize the solar field performance metrics using any of the avail-
able open-source Python libraries. For example, we created an
interactive Bokeh heliostat field plotting tool that allows users
to: i) change the field performance metric being displayed, ii)
zoom in to and highlight specific heliostats within the field, and
iii) view overall heliostat field statistics and distribution of per-
formance for the specific metric of interest, shown in Fig. 2 [11].
Currently, this Bokeh application has not been released to the
public; however, a version of this application may be released
during future development.

CoPylot’s summary_results() returns a dictionary of
system summary results from each simulation which is equiva-
lent to table presented on System Summary page of the SolarPI-
LOT’s GUI. This table can be printed to console using the key-
word argument save_dict=False. Lastly, when the desired
computation is completed, it is important to free the SolarPILOT
instance allocated memory using data_free(). This will pre-
vent a potential memory leak during multi-threading processes.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

4

The purpose of presenting this working example of CoPylot
is to provide a basic understanding of using CoPylot to create
SolarPILOT instances, generate solar fields, and simulate field
performance. This example is by no means comprehensive and
does not present all of CoPylot’s functionality. For further doc-
umentation, CoPylot’s methods use docstrings to provide users
with details about each method’s purpose, parameters, and re-
turns.

AIMPOINT OPTIMIZATION USE CASE
We demonstrate the usefulness of the CoPylot library to the

CSP community by describing a use case in which the SolarPI-
LOT Python API is used to support an aimpoint optimization tool
that is implemented in Python. The tool, Heliostat and Layout
Optimization Software (HALOS) [12], generates layouts using
SolarPILOT and obtains optimized aimpoint strategies by solv-
ing a mixed-integer linear program. This implementation differs
from other aimpoint strategy optimization methods using integer
programming methods [13, 14] by separating a solar field into
sections whose flux images and aimpoint strategies are optimized
in parallel, then aggregated into a final solution.

Figure 3 describes the procedure HALOS uses to gener-
ate and then solve instances of its optimization model, which
is implemented in Pyomo [15, 16]. If a solar field is provided,
HALOS can call SolarPILOT to obtain the individual heliostat
flux images by simulating with only one heliostat enabled in
the field via modify_heliostats(), simulate(), and
get_fluxmap() methods; these individual images serve as
input to the HALOS aimpoint strategy optimization model. Al-
ternatively, if no solar field is provided but the required informa-
tion to generate a solar field is provided to HALOS, it uses CoPy-
lot to generate a solar field layout via generate_layout(),
then produce the flux images.

The default method of flux characterization in HALOS is
Gaussian when SolarPILOT is not used, and so we compare the
computing times when using SolarPILOT to calculate the flux
images versus using HALOS directly, in which the former uses
the Hermite method to develop a single image after aggregating
different sources of optical error. By utilizing the flux image pro-
cessing library in SolarPILOT via the CoPylot library, HALOS
has direct access to high-fidelity flux characterization methods
without re-implementation of those methods. Additionally, us-
ing CoPylot to generate model instances was about 2-4× faster
than the analogous flux model in HALOS for a collection of four
separate cases, as shown in Table 1; these cases were generated
using a Dell Laptop with an Intel Core i7-8650 CPU and 16GB
RAM. The results demonstrate the computational benefit associ-
ated with using SolarPILOT’s more complex but faster C++ im-
plementation versus performing inverse-Gaussian calculations in
Python.

Input: Flux model
selection, CSP collection

system specifications

Use CoPylot to generate
layout using location,
receiver specifications

Output: aimpoints for
each heliostat, flux
profile on receiver

Input: Flux model
selection, CSP collection

system specifications

Layout
specified by

user?

Use CoPylot to generate
flux maps, using specified

error models

Generate Gaussian
images using HALOS

Use
SolarPILOT

flux images?

Optimize aimpoints via
HALOS integer

programming model

YesNo

NoYes

FIGURE 3. FLOWCHART DESCRIBING HALOS GENERA-
TIONS AND SOLUTION OF PROBLEMS, INCLUDING INTERAC-
TIONS WITH COPYLOT. BLUE BOXES DENOTE TASKS THAT
ARE PERFORMED USING SOLARPILOT VIA THE COPYLOT LI-
BRARY, WHILE GREEN BOXES DENOTE TASKS PERFORMED
DIRECTLY BY HALOS.

TABLE 1. COMPARISON OF COMPUTING TIME USING HA-
LOS WITH AND WITHOUT COPYLOT TO GENERATE FLUX
MAPS TO SERVE AS INPUT TO ITS AIMPOINT OPTIMIZATION
MODEL, FOR A COLLECTION OF FOUR CASES WITH VARYING
GEOMETRIES WITH DAGGETT, CA AS THE SITE LOCATION.
SOLARPILOT GENERATED THE FIELD IN ALL INSTANCES.

Computing Time (s)

Geometry # Heliostats HALOS w/ CoPylot HALOS wo/ CoPylot Improvement factor

Flat 614 37 142 3.84

Flat 3025 185 442 2.39

Cylindrical 681 41 112 2.73

Cylindrical 3442 205 485 2.37

CONCLUSIONS
CoPylot is an open-source, computationally efficient Python

API for SolarPILOT which enables users to generate and sim-
ulate power tower solar field optical performance. In this pa-
per, we presented the architecture and capabilities of CoPylot,
provided users the location to access CoPylot, presented a basic
CoPylot working example, and described an aimpoint optimiza-
tion use case that utilizes CoPylot.

CoPylot provides CSP researchers access to SolarPILOT’s
computational methods within the Python framework. We be-
lieve CoPylot will increase SolarPILOT usability and enables re-
searchers to quickly perform CSP power tower modeling with
minimum overhead using SolarPILOT. In addition, CoPylot
users have access to the over 100,000 open-source Python li-
braries to develop, analyze, optimize, and visualize CSP tower
research.

With the release of CoPylot, we hope CSP researchers find
the API useful and encourage them to provide feedback about
their user experience. In future work, we will provide CoPy-

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

5

lot users access to addition functionality developed within So-
larPILOT. In addition, researchers can develop other language
API’s using the exported DLL functions developed in this work,
thereby increasing SolarPILOT accessibility.

ACKNOWLEDGMENT
The authors would like to acknowledge graduate intern

Kashif Liaqat for beta testing CoPylot. This work was funded
by the United States Department of Energy – Energy Efficiency
and Renewable Energy under award numbers DE-EE00035930.

REFERENCES
[1] Wagner, M. J., and Wendelin, T., 2018. “SolarPILOT: A

power tower solar field layout and characterization tool”.
Solar Energy, 171, pp. 185–196.

[2] Ho, C. K., 2008. Software and codes for analysis of concen-
trating solar power technologies. Tech. Rep. SAND2008-
8053, Sandia National Laboratories.

[3] Li, L., Coventry, J., Bader, R., Pye, J., and Lipiński, W.,
2016. “Optics of solar central receiver systems: A review”.
Optics express, 24(14), pp. A985–A1007.

[4] Gebreiter, D., Weinrebe, G., Wöhrbach, M., Arbes, F.,
Gross, F., and Landman, W., 2019. “sbpRAY – a fast and
versatile tool for the simulation of large scale CSP plants”.
In AIP Conference Proceedings, Vol. 2126, AIP Publishing
LLC, p. 170004.

[5] Gross, F., Luengo, M., Hennings, L., Landman, W., and
Balz, M., 2020. “The impact of tracker structure on bifacial
PV performance”.

[6] Wendelin, T., 2003. “SolTRACE: A new optical modeling
tool for concentrating solar optics”. In International Solar
Energy Conference, Vol. 36762, pp. 253–260.

[7] Wang, Y., Asselineau, C.-A., Coventry, J., and Pye, J.,
2016. “Optical performance of bladed receivers for CSP
systems”. In ASME 2016 10th International Conference
on Energy Sustainability, Vol. 50220, American Society of
Mechanical Engineers, p. V001T04A026.

[8] Cardona, G., and Pujol-Nadal, R., 2020. “OTSun, a python
package for the optical analysis of solar-thermal collectors
and photovoltaic cells with arbitrary geometry”. Plos one,
15(10), p. e0240735.

[9] Python language reference (version 3.9.1).
[10] Blair, N. J., DiOrio, N. A., Freeman, J. M., Gilman, P., Jan-

zou, S., Neises, T. W., and Wagner, M. J., 2018. System ad-
visor model (SAM) general description (version 2017.9.5).
Tech. Rep. NREL/TP–6A20–70414, National Renewable
Energy Laboratory.

[11] Bokeh Development Team, 2018. Bokeh: Python library
for interactive visualization.

[12] Zolan, A., Hamilton, W., Liaqat, K., and Wagner, M., 2021.

Heliostat Layout and Aimpoint Optimization Software (HA-
LOS).

[13] Ashley, T., Carrizosa, E., and Fernández-Cara, E., 2017.
“Optimisation of aiming strategies in solar power tower
plants”. Energy, 137, pp. 285–291.

[14] Kuhnke, S., Richter, P., Kepp, F., Cumpston, J., Koster,
A. M., and Büsing, C., 2020. “Robust optimal aiming
strategies in central receiver systems”. Renewable Energy,
152, pp. 198–207.

[15] Hart, W. E., Watson, J.-P., and Woodruff, D. L., 2011.
“Pyomo: modeling and solving mathematical programs in
python”. Mathematical Programming Computation, 3(3),
pp. 219–260.

[16] Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L.,
Hackebeil, G. A., Nicholson, B. L., and Siirola, J. D.,
2017. Pyomo–optimization modeling in python, second ed.,
Vol. 67. Springer Science & Business Media.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

6

