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O Distribution feeders

O Microgrids

O Campuses, communities, community choice aggregations.




0 Distributed, real-time, and network-cognizant operation
0 Large-scale distributed energy resource (DER) coordination to acknowledge
customer and operator objectives.
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A real-time, distributed, and plug-and-play optimization platform that\

coordinates the operation of massive numbers of DERs to ensure
voltage and power quality, to maximize social welfare, and to emulate

virtual power plants.
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Real-time optimization of a single cell in an
autonomous energy system
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echnical Approach

Distribution feeder f Transmission system
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Technical Approach

Distribution feeder f Transmission system
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Maximize customers’ an
utility/aggregator objectlves
- Inertial response
- Primary frequency response
- Secondary frequency response

- Follow dispatch signals.
Respect electrical limits (e.g., voltage regulation)
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° AP, :Dwa]v—l—MfAde
-

Primary Inertial
response  response
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Primary Inertial
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Inertial and Frequency Response

QO Proposed approach (details follow in the presentation by Sairaj Dhople):
Q Optimization model and algorithmsto compute coefficients
Q Ensure givenaggregate response

O Accommodate fairness or economic indicators.
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Technical Approach

Distribution feeder f Transmission system
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utility/aggregator objectlves
- Inertial response
- Primary frequency response
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Real-Time Voltage Regulation and Dispatch
Signals Following

Reserve provisioning
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Real-Time Voltage Regulation and Dispatch
Signals Following

Reserve provisioning
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Real-Time Voltage Regulation and Dispatch
Signals Following

Reserve provisioning
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Real-Time Voltage Regulation and Dispatch
Signals Following

Reserve provisioning
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Real-Time Optimal Trajectories

Controllable power set points

Voltages

Uncontrollable power set points
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Real-Time Optimal Trajectories

a Continuous-time optimal power min co(y(u;t);t) + Z ci(u;;t)
flow (OPF) {u;} p

subjectto u; € U;(t) Vi
g(u,y(u;t);t) <0
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Real-Time Optimal Trajectories

a Continuous-time OPF 1{1111; co(y(u;t);t) + E ci(u;;t)
u; .
1

subjectto u; € U;(t) Vi
g(u,y(u;t);t) <0
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Real-Time Optimal Trajectories

a Continuous-time OPF min co(y(u;t);t) + Z ci(u;;t)
{ui} -

subjectto u; € U;(t) Vi
g(u,y(u;t);t) <0

0 Example:

y(t) = Hu(t) + Dw(t) ly (s ) — ytareet(#)]|12 — v < 0
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Real-Time Optimal Trajectories

{u;}
subjectto u; € U;(t) Vi
g(u,y(u;t);t) <0

—

a Continuous-time OPF min co(y(u;t);t) + Z ci(u;;t)
i

Time [s]

\ﬁl . DI )\i . @

CHANGING WHAT'S POSSIBLE



Batch Optimization

min ¢ (y® () + 3 " (u;)

{ui} ;
(k%) subjectto u; € U™ Vi
n ®) (u, y® (1)) < 0
ST g (u,y"" (u)) <
v
4 )

Time [s]

0 Series of time-invariant optimization problems: impractical in real time
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Feed-Forward Online Optimization

min ¢{” (y® () + Y ¥ (w;)

{u:} ;
ulk+1) :C(u(k)) @ subject to u; Eb{,b-(k) V1
I (k) u, (k) (1)) < 0
ST g (u,y""(u)) <
v
4 )

Time [s]

0 Online algorithm to track optimal solutions (Dontchev et al. 2013; Simonetto-Leus
2014)
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Feed-Forward Online Optimization

min ¢ (") (w) + 3 e (w)
ulk+1) — C(u(k:)) @ subject to u; Eb{,b-(k) Vi
| &) (v, y*® (u)) <0
ST g (u,y"(u)) <
v
e \

Time [s]

0 Feed-forward; time-scale separation; needs expression y¥)(u) = Hu + Dw*)
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Feedback Online Optimization

min i (y® (w) + 7 i (w)
ugkﬂ) :Ci(ugk),y(k)), Vi subjectto u; € b{i(k) Vi
‘ l ®) (4, y® (1)) < 0
S/H g (u,y" (u)) <
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Trip Planner

a Multiperiod optimization problem, rolling horizon, multicase

O Base case: maximize customer/aggregator objectives

O Subject to: voltage constraint, hardware constraints.

Q Reserve provisioning:
O Headroom for power at substation

Q Fair reserve provisioning participation.
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Trip Planner
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Trip Planner
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Validation and Demonstration

QO PHIL at NREL:
O Real feeder from SCE territory, ~7-MW peak load

O Hundreds of DERs; at least 100 physical DERs at power.

O CHIL at SCE:

O Substation model with multiple feeders: 50-MW peak, 350-GWh yearly
energy

O Hundreds of DERs.

Q Field deployments:
O Stone Edge Farm microgrid

O Holy Cross Energy Basalt Vista Affordable Housing Project
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Test case overview

U

Peak load of ~7 MW

Real load data

Real irradiance data
Summer/Peak day
Winter/Min day

ocoooo0p00p

Feeder located in California, within SCE territory
366 single-phase points of connection
Residential, commercial, and industrial customers

Mix of delta and wye connections
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Considered DERs

Q PV systems (string and microinverters), batteries, EVs, controllable load
Q Total DER capacity:

a PV:~8.5 MW

a Batt: ~1 MW .
0 Results in renewable energy penetration (annual energy basis) of ~51%

@ Over 100 controlled powered devices (via PHIL)
Q 10 additional CHIL devices

O Over 100 controlled simulated devices § |
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Rack # Devices Simulated Device

CHIL 50 (3) Batteries — 14/12, 23/35, 150/150 kW/kWh

(2) PV —100 and 1500 kW

PHIL & CHIL Setup Overview

Physical Device

BBB Microcontroller

PHIL-1 16 PV Inverters — 199 kW total
Batt Inverters — 60.6 kW total
Loads - varying

(1) 3 kW sPV, (1) 3 kW sPV, (12) 320 W uPV
(1) 5 kW / 10 kWh Li-ion Batt
(1) 12 kVA load bank with profile

PHIL-2 16 PV Inverters — 1000 kW total
Batt Inverters — 237 kW total
Loads - varying

(1) 5 kW sPV, (1) 3.8 kW sPV, (12) 320 W uPV
(1) 5 kW / 10 kWh Li-ion Batt
(1) 12 kVA load bank with profile

PHIL-3 16 PV Inverters — 481 kW total
Batt Inverters — 114 kW total
Loads - varying

(1) 5 kW sPV, (1) 3.8 kW sPV, (12) 320 W uPV
(1) 5 kW / 10 kWh Li-ion Batt
(1) 12 kVA load bank with profile

PHIL-4 16 PV Inverters — 185 kW total
Batt Inverters — 47 kW total
Loads - varying

(1) 3 kW sPV, (1) 5 kW sPV, (12) 320 W uPV
(1) 5 kW / 10 kWh Li-ion Batt
(1) 62 kVA load bank with profile

PHIL-5 15 PV Inverters — 791 kW total
Loads - varying

(1) 3 kW sPV, (1) 5 kW sPV, (12) 320 W uPV
(1) 62 kVA load bank with profile

PHIL-6 16 PV Inverters — 62 kW total
Batt Inverters — 17 kW total
Loads - varying

(1) 3 kW sPV, (1) 5 kW sPV, (12) 320 W uPV
(1) 5 kW / 10 kWh Li-ion Batt
(1) 62 kVA load bank with profile

PHIL-EVs 9 Parking Garage — 388 kW

(9) 5 kW Level 2 EVSE with EV

Total 104 + (10)
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Test Case #1

0 Max Load Day
Q Virtual Power Plant

Feeder Head Power (3-ph)
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Virtual Power Plant

Total Substation Power

Active Power (MW)
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Virtual Power Plant

Active Power (kW)

RMS Voltage (pu)

Simulated PV Inverter Response (Controlled Case)
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Virtual Power Plant
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Virtual Power Plant

140 Simulated PV Inverter Response (Controlled Case)
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Virtual Power Plant

PHIL Injection at Bus

800

=
o
(=]

Active Power (kW)
=,

115
— 32
— 82
— 10 7

14:30 14:40

CHIL Injection at Bus

15:00

1200

1000

@
=]
o

Active Power (kW)
(=]
(=]
S

— __/"’\,,/\,AL:_),__/\-mﬂr\f\-———— -

— PV96
PV121

14:10 14:20 14:30 14:40

Parking Garage PHIL Injection

14:50

15:00

Active Power (kw)
= = =
o o o N -
o =} =3 =3 S

S
(=]

14:00

14:10 14:20 14:30 14:40

ClpPGa-e©

CHANGING WHAT'S POSSIBLE

14:50

15:00



irtual Power Plant

Rack #1 Power
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irtual Power Plant

Rack #4 Power
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| Power Plant
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Test Case #2

0 Min Load Day

0 Frequency Response + Virtual Power Plant
Feeder Head Power (3-ph)
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requency Response + Virtua
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Frequency Response + Virtual Power Plant
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Controller-Hardware-in-the-Loop at SCE

0 CHIL experiments at SCE

O PowerFactory model with updates of 1-second in real-time simulation
platforms

O Validate synthetic regulating reserve (voltage regulation and dispatch signal-
following) algorithms

O Model properties:

O ~1,500 single-phase points of interconnection representing
approximately 2,000 customers (a mix of residential, commercial, and
industrial customers)

O ~500 controllable devices are included. Controllable devices are at
both the residential and commercial/utility scales.
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SCE Distribution System Model

* Peak load of ~49 MW and a minimum load of ~15 MW in 2015.
* Sub-A annual net energy delivered in 2015 was ~216 GWh

* To meet the 50% renewable penetration level, ~108 GWh should be provided by DERs.

+ Based on NRELs PVWatts® data, a 1-kW PV system in Santa Ana produces approximately 1,586
kWh annually.

* Sub-A requires at least 68 MW of distributed renewable sources.
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Feeder
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All 4-kV feeders @

Sub-B

Total feeders

Existing and Added Fictitious DERs

Existing data redacted
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| PowerFactory Power Factory Server (192.168.28.52)
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Results of Optimization

Feeder-head active power
(following the load & PV
.. irradiance)
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Control

(Curtailing PV, controlling battery energy storage system [BESS]

s - dispatch and reactive power contriblitjons)

T DER active power

0.4367

0.3210

0.2052

0.0895 -

10.000 10.167 10.333 10.500 10.667
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Q Stone Edge Farm Microgrid

O Extending more than 16 acres in
Sonoma, CA

O ~20 assets:
O PV systems, energy storage
systems, hydrogen electrolyzer,
gas turbine, controllable loads.

Q In collaboration with Heila
Technologies.
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Stone Edge Farm Demonstration

QO System configuration:
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Q 24-hour point of common coupling power flow

tracking:

QA 24-hour point of common coupling power flow without control:
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Stone Edge Farm Demonstration

O Voltage regulation

295
Voltage limits +/- 1%

Voltage limits +/- 2%

Node 1 average voltage
Node 2 average voltage
Node 4 average voltage
Node 5 average voltage

Line-neutral voltage [Volts]
8 X 3
(4] o (4)]

|

&
=]
I

255" 2

Time [hours]

15

Figure 11. Average line-neutral voltage at nodes in the microgrid
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Holy-Cross Energy Demonstration

Basalt Vista Affordable Housing Project

* Habitat for Humanity, Pitkin County, Basalt School District Home Equipped with Controllable Loads

* 27 homes for teachers and local workforces. * Rooftop solar

* Designed to ZNE building with all electric construction * Energy storage |
» Adjacent to Basalt High School * Mobility charging (EVSE)

* 4 selected for HCE’s field deployment Comfort (Hot Water + HVAC)
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Basalt Vista Case Study

Holy-Cross Energy Demonstration

Project Goal: Demonstrate the ability for a distribution utility to control and
dispatch Distributed Energy Resources (DERs) to provide value to the grid as well

as to the individual consumer.

Microgrid controllers coupled with DER

* Flexible

* VPP at All Levels

* Feeder, Community or Individual
Buildings

ADMS: Simple Management and Visibility of
DER
Studied High Penetration of DERs

Interoperability of different “Systems”

Resilient Soft Microgrid

GUrpPG-@
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Holy-Cross Energy Demonstration

Distributed Control of DERs

=

0

Advanced Distribution Management System (ADMS)

Fully integrated:

* Supervisory Control And Data Acquisition (SCADA)

* Qutage Management System (OMS)

* Distribution Energy Resource Management System (DERMS)

Enhanced Situational Awareness for:

* Load Flow and State Estimation

* Vehicle Location

* Switching Validation Basalt Vista

* OQutage and Restoration Information from AMI

* Also runs applications, including: Analog Points watts 'n a Box
« CVR - conservation voltage reduction R0 T riRe S

* VVO - volt/var optimization 240.61 Voltage Y ph
Amps

ki

Optimization Status

* FLISR —fault location, isolation and service restoration
Peak Time Mgmt
Power Factor
. . . S Storm Watch
One easy-to-use graphical interface provided by Survalent

Phase Angle

(existing HCE partner)

2 2 N B
S NPISRS
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Holy-Cross Energy Demonstration

3 Day Test at BV
Optimal Power Flow

Optimal Power Flow (OPF)

OPF Test Duration

2
e
1] . =
= = = =2 2 2 = = = =S =2 2 =22 222222222
= o = < L L g o o oo oo oo oo oo L o o o o
C o Q@ Qo
888888888 8888 sg8lzsessssgssggsss
8 a R 23883 BERAIRLIRBUREISTSFRISE
I B e B B B U @ @ g & g [T I T = = = =
-10
-15
-20

= Normal = OPF

Power at Transformer set to 0 Watts throughput. System set to aggregated optimization.
PV set to charge batteries than to grid. Option to curtail PV to create a true 0 Watts load profile.
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Holy-Cross Energy Demonstration

Learnings from the Grid Edge
e Stay focused on the Big 3 — PV, EV, and BESS

* Some members show willingness to allow utility control of DERs

. Ba_'étery Storage may provide voltage and frequency support to a high penetration
gri
* Distributed resources can help manage overall cost of service for members

* DER will have agreater value if they work together in small groups to
provide VPP and Microgrids

* Cost of capital can have a material impact on project viability

Optimal Power Flow (OPF)

Peak Lead Management

OPF Test Duration

i
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Holy-Cross Energy Demonstration

More Learnings

* Only need to control a subset of DER in a high penetration system
* Coordination & Computations is best left at the grid edge
* There is a need for multiple and redundant communication systems

Voltage Profile

O High PV
10671 4 High PV, With Control

Distance from the Substation (km)
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List of Achievements

O More than 20 publications
QO More than 20 presentations to conferences, universities, and industry

O Record of inventions, patent applications (one issued)

Table 1: List of projects applied NODES RT-OPF algorithms

ARPA-E NODES Lab demo: DERMS implemented in Beaglebone, Voltage regulation, VPP
SCE feeder (51% PV penetration) and frequency response
Field demo: DERMS implemented in Heila Edge, Voltage regulation and
Stone Edge Farm (100% DER penetration) VPP

Holy-Cross Energy High Impact Lab demo: DERMS implemented in Heila Edge, Voltage regulation and

Project HCE feeder (15.5% PV penetration) Customer Bill Reduction
Field demo: DERMS implemented in Heila Edge, Voltage regulation, VPP
HCE community (100% DER penetration) and Customer Bill

Reduction

SETO ENERGISE ECO-IDEA Lab demo: DERMS implemented in PC, Xcel Voltage regulation
Energy feeders with 20,000 nodes (200% PV
penetration)

SETO ENERGISE GO-Solar Lab demo: DERMS implemented in PC, HECO Voltage regulation
feeders with 2,500 nodes (50% PV penetration)

SETO ENERGISE SolarExpert Lab demo: DERMS implemented in PC, IEEE Voltage regulation
8,500 node system (45.4% PV penetration)

LDRD Autonomous Energy Systems Lab demo: DERMS implemented in PC, San Voltage regulation and
Francisco bay area synthetic model, > 100,000 VPP
nodes system (100% PV penetration)
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Technology to Market Path and |IAB

QO IPGroup sponsored participation to Energy I-Corps.

Q Link: https://energy.gov/eere/technology-to-market/energy-i-corps.

7 ENERGY
““ I'CORPS

A A
AAAA US Department Of Energy

O Activities: "Comprehensive training and each conduct at least 100
customer discovery interviews with industry. Once they have completed
the training, participants have secured the necessary industry
connections and insights to ready their energy technologies for the
market, and gained an industry engagement framework to apply to
future research and share with fellow researchers.”
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https://energy.gov/eere/technology-to-market/energy-i-corps

echnology to Market Path and |IAB

Customer segments:
Q Investor-owned utilities, cooperatives, and municipalities
O Microgrid operators

Q Operators of soft microgrids.

Strategy:

Q Licensing
Q Startup.
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echnology to Market Path and |IAB

0 Grub funding was obtained via participation from IP-Group.

0 Techno-economic analysis performed under this funding.

-NERGY
& I-CORPS

AAA .
AAAA" US. Department Of Energy
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echnology to Market Path and |IAB

California Independent System Operator
PJM
GE Grid Solutions
Emobtech
Schneider Electric
SIEMENS
Centrica
E.On
SunPower
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What's Next Today?

QO Project presentations (Sairaj Dhople and Na Li)
Q Technology commercialization opportunities (Erin Beaumont)
Q Invited talks (Sonja Glavaski and Michael McMaster)

Q PHIL demonstration at NREL (Blake Lundstrom).

THANK YOU!

National Renewable Energy Laboratory
Southern California Edison
California Institute of Technology
University of Minnesota
Harvard University
University of Colorado, Boulder
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NREL/PR-5D00-78742

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for
the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by the U.S. Department of
Energy Advanced Research Projects Agency - Energy (ARPA-E). The views expressed in the article do not necessarily represent the
views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this work, or allow others to do so, for U.S. Government purposes.

Gl 'DIJ\.?“'!S‘

CHANGING WHAT'S POSSIBLE



	Real-Time Optimization and Control�of Next-Generation Distribution Infrastructure
	Project Summary
	Project Summary
	Project Summary
	Project Summary

	Team
	Technical Approach
	Technical Approach
	Technical Approach

	Inertial and Frequency Response
	Inertial and Frequency Response
	Inertial and Frequency Response
	Inertial and Frequency Response

	Technical Approach
	Real-Time Voltage Regulation and Dispatch Signals Following
	Real-Time Voltage Regulation and Dispatch Signals Following
	Real-Time Voltage Regulation and Dispatch Signals Following
	Real-Time Voltage Regulation and Dispatch Signals Following
	Real-Time Optimal Trajectories
	Real-Time Optimal Trajectories
	Real-Time Optimal Trajectories
	Real-Time Optimal Trajectories
	Real-Time Optimal Trajectories

	Batch Optimization
	Feed-Forward Online Optimization
	Feed-Forward Online Optimization
	Feedback Online Optimization

	Trip Planner
	Trip Planner
	Trip Planner

	Validation and Demonstration
	Power Hardware-in-the-loop at NREL
	Power Hardware-in-the-loop at NREL

	PHIL & CHIL Setup Overview
	PHIL & CHIL Setup Overview

	Test Case #1
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant
	Virtual Power Plant

	Test Case #2
	Frequency Response + Virtual Power Plant
	Frequency Response + Virtual Power Plant
	Frequency Response + Virtual Power Plant
	Controller-Hardware-in-the-Loop at SCE
	SCE Distribution System Model
	Existing and Added Fictitious DERs
	SCE’s CHIL Architecture
	Results of Optimization
	Distributed Energy Resource Real-Time Control

	Stone Edge Farm Demonstration
	Stone Edge Farm Demonstration
	Stone Edge Farm Demonstration
	Stone Edge Farm Demonstration

	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration
	Holy-Cross Energy Demonstration

	List of Achievements
	Technology to Market Path and IAB
	Technology to Market Path and IAB
	Technology to Market Path and IAB
	Technology to Market Path and IAB

	What’s Next Today?

