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Executive Summary 

This report presents a comprehensive set of best practices for working with both modeled and measured U.S. off- 

shore wind resource data sets. We target two key questions in this report. First, what are the best data sources and 

methods for validating modeled wind resource estimates? Second, what are the best methods for vertically extrap- 

olating near-surface wind speed measurements to heights that span the rotor-swept area of modern offshore wind 

turbines? 

These questions are motivated by state-of-the-art advancements in offshore wind measurements. Just a few years 

ago, measurements were limited to those from sparsely scattered coastal weather stations and near-surface buoys. 

Today, an increasing number of buoy-mounted lidars—generally referred to as floating lidars or “flidars”—are being 

deployed in U.S. offshore wind energy lease and Call Areas. These lidars are providing wind speed and direction 

measurement data up to 250 m (meters) that are increasingly being made public. In addition, satellite-based mea- 

surements of near-surface U.S. offshore wind speeds are emerging as a reliable and useful product, providing wind 

resource measurements across the entire U.S. offshore area with decent temporal coverage. 

On the modeling side, advancements in numerical weather prediction models are providing increasingly accurate 

estimates of the wind resource. Notably, the National Renewable Energy Laboratory (NREL) is currently produc- 

ing 20-year, ensemble-based offshore wind resource data sets using the Weather Research and Forecasting (WRF) 

model. NREL’s previous WRF-based data set—the Wind Integration National Data (WIND) Toolkit—was produced 

before the emergence of floating lidar devices and was minimally validated with near-surface buoy data. The oppor- 

tunity now to produce novel modeled data sets, and for the first time properly validate them in U.S. offshore waters, 

necessitates a modern review and recommendation of best practices. 

The first section of this report develops a set of best practices for the validation of modeled offshore wind resource 

data. Several key conclusions are made here and are summarized as follows: 

1. The following four key performance metrics at a minimum should be calculated: the bias (capturing the 

difference in the modeled and observed means), the unbiased or centered root-mean-squared-error (which 

isolates the random error from the model), the Earth mover’s distance (which quantifies the difference between 

two distributions), and the correlation coefficient (which measures the correspondence or “pattern” between 

two data sets). 

2. Models should be validated at measurement height and not at an extrapolated height above the measurements 

(e.g., hub height). Generally, there is too much error in even the best extrapolation methods to meaningfully 

validate models against extrapolated measurements. 

3. Near-surface measurements from buoys or satellite products are not well-suited for wind resource validation 

for two reasons. First, winds near the surface can behave very differently than winds across the rotor-swept 

heights, particularly during the diurnal cycle. Second, model performance metrics can be different near the 

surface than at the rotor-swept heights, and validating near the surface may incorrectly characterize model 

performance at the more relevant rotor-swept heights. 

4. Land-based coastal measurements should generally not be used for offshore model validation for two main 

reasons. First, the coastal wind resource behaves very differently from the offshore wind resource, and vali- 

dating along the coast may incorrectly characterize model performance in the farther offshore wind lease and 

Call Areas. Second, the land-sea boundary produces strong horizontal gradients in wind speed in this area, and 

validating 2-kilometer or greater resolution models becomes highly uncertain given these gradients. 

5. Given the previously mentioned considerations and the lack of offshore meteorological towers in the United 

States, floating lidars remain the only robust data source to perform comprehensive validation of wind speeds 

across rotor-swept heights. 

6. Given the size of expected offshore wind turbine rotor diameters (e.g., 175 m and 240 m for 8-megawatt [MW] 

and 15-MW designs, respectively), the rotor-equivalent wind speed should be calculated and used in place 
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of the hub-height wind speed when performing model validation at floating lidars. Although the differences 

in overall model performance are small between the two, these differences become more substantial under 

conditions of high shear. 

7. Numerical weather prediction models like WRF perform differently depending on atmospheric stability con- 

ditions; therefore, validating in unstable and stable conditions separately can help isolate causes for model 

underperformance. Generally, the bulk Richardson number (RiB) is the best stability metric to separate unsta- 

ble and stable conditions, as it can characterize stability across the rotor-swept heights. However, RiB 

requires 

temperature measurements at two heights that are not available from lidar measurements. Estimates of RiB 

from the a model such as WRF, however, can provide a reasonable substitute. 

8. Evaluating model performance by season and time of day can provide further insight into areas of model 

strength and deficiency. An effective way to disseminate both the seasonal and diurnal cycles is through a 

“12-by-24" performance matrix or heat map. 

9. Finally, evaluating model performance during extreme events (high-shear events, extreme cold, storms, hur- 

ricanes, and so on) provides a gauge in how well a forecast model can predict anomalous events that can 

negatively impact an offshore wind farm. 

The second section of the report considers and validates several methods for the vertical extrapolation of wind 

speeds, including the following: 

1. The conventional logarithmic wind profile 

2. A modified logarithmic wind profile accounting for long-term atmospheric stability and developed by the 

Technical University of Denmark (DTU) 

3. A single-column model developed by NREL that reduces a three-dimensional model such as WRF into a 

single vertical dimension that can be forced at the lower boundary by measurements 

4. A random-forest, machine-learning model developed by NREL that is trained to predict the wind profile from 

near-surface measurements. 

We validate the models using two floating lidars deployed in offshore New Jersey by the New York State Research 

and Development Authority. A comparison of mean observed and modeled wind profiles is shown in Figure A. 

Performance metrics for the time series-based models are shown in Figure B. Overall, the random-forest model is 

substantially more accurate than the other extrapolation models across all performance metrics, stability classes, 

seasons, and time of day. Furthermore, the machine-learning model substantially outperforms the WRF model, 

highlighting the benefit of local observations in producing an accurate wind profile. 

The strong performance of the random-forest model has important implications for future offshore wind resource 

characterization. Critically, in this analysis the model was trained at one floating lidar and then evaluated at the other 

floating lidar 83 kilometers away with minimal degradation of model performance over that distance. Given this 

outcome, the machine-learning approach shows great promise for spatially complete extrapolation of near-surface 

measurements (i.e., from satellites) using a sparse network of floating lidars for training. Future work should lever- 

age additional publicly available floating lidar data (Atlantic Shores Lease Area in New Jersey, Mayflower Lease 

Area in Massachusetts, Humboldt and Morro Bay Call Areas in California) to better understand how model perfor- 

mance deteriorates over distance and how well the model can generalize across a range of atmospheric conditions 

and geographies. Next, applying the machine-learning approach to extrapolate near-surface satellite winds could be a 

potential game-changer in producing accurate wind profile estimates across all U.S. offshore waters. 

It is also likely that the single-column and DTU models—which showed relatively poor performance in this study— 

could be greatly improved by using better boundary conditions. Offshore atmospheric stability is strongly driven 

by the air-sea temperature difference but this was not accounted for in the single-column model. Rather, the model 

was forced at the lower boundary only by wind speed and air temperature. Accounting for the air-sea temperature 

difference would likely result in considerable model improvement and will be the focus of future work. The DTU 
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Figure A. Mean observed and modeled wind profiles at the two New York State Energy Research and 

Development Authority (NYSERDA) lidars E05 (left) and E06 (right). The black dotted line shows the ob- 

served profile and the different solid colors show profiles from the different vertical extrapolation models. 

method was designed to use satellite-based measurements of near-surface winds extrapolated to 10 m above sea 

level. In this study, we applied the method to 2-m measurements, which resulted in reduced model accuracy. By 

contrast, using 20-m winds from the floating lidar instead produced an accurate wind profile up to 200 m. Therefore, 

the DTU method should be considered again for the U.S. offshore wind industry when applied exclusively to 10-m 

wind speeds output from satellite models. We note, however, that the model is only capable of producing a long-term 

wind profile, thereby putting it at a disadvantage compared to both the machine-learning and single-column models, 

which are time series-based. 

It is likely that an update to model validation best practices will be required a few years from now. By then, two 

key advancements in characterizing offshore atmospheric conditions are likely to be made. The first is the use of 

buoy-mounted radiometers that will measure vertical profiles of temperature and humidity profiles. These devices 

will allow for unprecedented characterization of offshore atmospheric stability and will provide the opportunity for 

more comprehensive validation of model performance. The second development is the measurement and modeling 

of offshore turbulent intensity, the key atmospheric variable used by the wind industry to quantify atmospheric 

turbulence. Turbulence intensity is now being measured by floating lidars and will soon be output from the WRF 

model. Validating modeled estimates of turbulent intensity will be crucial to aid the emerging offshore wind industry 

in accurately characterizing turbine and wind farm design conditions. 
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Figure B. Rotor-equivalent wind speed performance metrics for the different vertical ex- 

trapolation models. Here, cRMSE denotes the unbiased root-mean-squared error, EMD 

denotes the Earth mover’s distance, and R2 the squared of the correlation coefficient. 
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1 Introduction 

1.1 Measuring and Modeling the Winds Offshore 

This report presents a comprehensive set of best practices for working with both modeled and measured U.S. off- 

shore wind resource data sets. We target two key questions in this report. First, what are the best data sources and 

methods for validating modeled wind resource estimates? Second, what are the best methods for vertically extrap- 

olating near-surface wind speed measurements to heights that span the rotor-swept area of modern offshore wind 

turbines? 

There are several motivations for this report. The first is the rapid development of the U.S. offshore wind indus- 

try. Currently, there is a total of 28.5 gigawatts (GW) of planned capacity in U.S. offshore waters, including 30 

megawatts (MW) operating capacity (Block Island Wind Farm), 6.4 GW of assigned lease areas, 17,440 GW planned 

with developer site control, and an additional 4,600 GW in early planning phases (Musial et al. 2020). These areas 

span multiple bodies of water including the Atlantic and Pacific coasts, Hawaii, and the Great Lakes. 

Accurate characterization of the offshore wind resource is vital for the success of this industry. Generally, char- 

acterization involves a combination of wind measurements providing accurate but single-point localized resource 

characterization and modeled wind estimates that characterize an entire region but require validation against observa- 

tions to understand model strengths and limitations. Numerical weather prediction (NWP) models have historically 

provided the best modeled estimates of the U.S. offshore wind resource. Specifically, the Wind Integration National 

Dataset (WIND) Toolkit, produced by the National Renewable Energy Laboratory (NREL), has provided the best 

publicly available NWP-modeled data set since 2013 (Draxl 2015). Covering the entire continental United States and 

out to 200 nautical miles offshore, the WIND Toolkit provides 2-kilometer (km) and 5-minute time resolution data 

up to 200 meters (m) over the 7-year period from 2007 to 2013, and was produced using the state-of-the-art Weather 

Research and Forecasting (WRF) numerical weather prediction model. 

The WIND Toolkit was minimally validated offshore, however, because of the lack of high-quality observations 

available at the time. Historically, offshore wind observations in the United States have been largely limited to 

near-surface, buoy-based measurements from the National Data Buoy Center, managed by the National Oceanic 

and Atmospheric Administration (National Data Buoy Center 1971). Further, wind profile measurements covering 

the expected rotor-swept heights of modern wind turbines—soon expected to extend up to nearly 300 m above 

sea level—have been critically lacking. Because of this, offshore validation of the WIND Toolkit was limited to a 

handful of buoys with measurements below 5 m above sea level. (Draxl 2015). 

Moving forward to the present day, there have been substantial advancements in U.S. offshore wind measurement 

capabilities. Most notable is the emergence of lidar-based technologies, which allow measurements of winds up 

to about 250 m (Carbon Trust 2018). These lidars may be attached to low-height offshore meteorological towers 

(Woods Hole Oceanographic Institute 2020) but more commonly are mounted on buoys and referred to as floating 

lidars or “flidars.” Validated extensively against meteorological tower measurements, floating lidar devices are 

transforming how the offshore wind resource is measured. It is expected there are over 20 floating lidars currently 

deployed across U.S. offshore wind energy lease and Call Areas. Although most data are owned by wind energy 

developers and kept proprietary, an increasing number are being made freely available to the public (DNV-GL 2020; 

Atlantic Shores Offshore Wind 2020; Mayflower Offshore Wind 2020; Pacific Northwest National Laboratory 2020). 

These floating lidars offer an unprecedented opportunity to robustly validate NWP estimates of the U.S. offshore 

wind resource. 

Another emerging offshore technology is the use of satellites to measure near-surface wind speeds. Here, the 

backscatter of pulsed laser signals sent from the satellite reflect off the ocean surface. The more calm the water 

(low wind), the more the signal is received back by the satellite. The more rippled the water (higher winds), the more 

scattered the returning signal and the less is received back by the satellite. Based on geophysical transfer functions, 

those signals are then used to produce estimates of the 10-m above-sea-level wind speeds. This technology is in- 

creasingly being used to characterize the wind resource for wind energy purposes (e.g., Badger et al. 2015) and was 
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recently used by NREL and colleagues to characterize the 10-m wind resource in the U.S. Atlantic offshore region 

(Ahsbahs et al. 2020). 

On the modeling front, a series of NWP-related advancements since 2013 have motivated an update to U.S. modeled 

offshore wind resource data sets. As described in Optis et al. (2020), the WRF model has been extensively updated 

since 2013, with targeted improvements for wind energy applications in particular. There have also been extensive 

advancements in atmospheric and oceanic products used as boundary conditions to the WRF model, including the 

new ERA5 reanalysis product produced by the European Centre for Medium-Range Weather Forecasts (Hersbach 

et al. 2020) and sea-surface temperature (SST) products (Kaiser-Weiss and Minnett 2012). Because of these ad- 

vancements, NREL is currently producing updated 20-year WRF-based data sets for all U.S. offshore waters and 

is leveraging the advancement in offshore wind measurements to perform more comprehensive validation than was 

possible with the WIND Toolkit back in 2013. 

1.1.1 The Need for Best Practices 

These advancements in offshore wind measurements and modeling, as ground-breaking as they are, come with an 

important caveat: how do we validate NWP-modeled wind estimates in this new technology environment? More 

specifically, the following questions present themselves: 

• What is the relative value of using different measurement data sources for offshore wind validation, including 

floating lidar, satellite-based winds, buoy-measured winds, and even land-based coastal weather stations? 

What are the strengths and limitations of each, and which should be used and why? 

• What are the most important performance metrics to use when validating a modeled wind estimate? 

• Is it sufficient to just validate the hub-height wind speeds, given the increasing diameter of offshore wind 

turbines? 

• How should data be filtered to perform more robust validation? For example, is mean wind sufficient, or 

should other considerations such as time of day, season, or specific atmospheric conditions be considered? 

• Should near-surface measurements be extrapolated vertically (e.g., to hub height) and then validated at this 

more relevant height? If so, what is the best extrapolation method for this application and could any novel 

approaches be leveraged? 

Given the importance of these questions, it is clear that a set of best practices is required to address recent measure- 

ment and modeling advances. The aim of this report is to provide these best practices. We begin in Section 2 by 

exploring and recommending general best practices for validation. Here, we use recent WRF simulations in the U.S. 

Atlantic offshore area to justify and demonstrate these best practices. In Section 3, we consider a range of conven- 

tional and novel methods to vertically extrapolate near-surface winds to heights more relevant to wind energy, such 

as hub height. Based on model performance, we determine whether validation is best performed at the measurement 

location or whether validation at an extrapolated height is acceptable. 
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2 Validating A Modeled Wind Resource 

This section provides a set of recommended practices for the validation of modeled offshore wind speeds. We first 

discuss the best metrics for validation and summarize four key metrics. Next, we present the limits of using near- 

surface, land-based coastal wind measurements for validation and conclude that buoy-based floating lidar measure- 

ments provide the only robust and comprehensive data source for model validation. We then present arguments as to 

why the rotor-equivalent wind speed (REWS) is a better variable than the hub-height wind for validation. Finally, we 

discuss the importance of validating on diurnal and monthly timescales, validating separately based on atmospheric 

stability conditions, and validating specific extreme events. 

2.1 Data 

Throughout this section, we present best practices by validating recent WRF simulations performed by NREL in the 

U.S. Atlantic offshore region. These simulations cover the period September 2019 through August 2020. The key 

WRF model attributes are summarized in Table 1. 

Table 1. Key Attributes of the WRF Model Used in This Study

 

Feature Specification

 

WRF version 4.2.1 

Nesting 6 km, 2 km 

Output time resolution 5 minutes 

Vertical levels 61 

Near-surface-level heights (m) 12, 34, 52, 69, 86, 107, 134, 165, 200 

Atmospheric nudging Spectral nudging on 6-km domain, applied every 

6 hours 

Planetary boundary layer scheme Mellor-Yamada-Nakanishi-Niino 

Microphysics Ferrier 

Longwave radiation Rapid radiative transfer model 

Shortwave radiation Rapid radiative transfer model 

Topographic database Global multiresolution terrain elevation data 

from the U.S. Geological Survey and National 

Geospatial-Intelligence Agency 

Land-use data Moderate Resolution Imaging Spectroradiometer 

30s 

Cumulus parameterization Kain-Fritsch

 

For this validation exercise, we use the data from the New York State Energy Research and Development Authority 

(NYSERDA) E05 and E06 floating lidars as the basis for our measurements. In addition to lidar-based wind mea- 

surements, the buoys also measure key near-surface atmospheric variables. A summary of the data fields available 

are provided in Table 2. The location of the buoys is shown in Figure 1. 

2.2 Key Metrics for Validation 

When properly quantifying the error in a modeled wind resource estimate it is important to understand how and why 

a model might be underperforming. For time series analysis, model error can generally be decomposed into bias and 

random error . The bias quantifies how different the mean modeled result is from the observed result, whereas the 

random error quantifies the variations of the model around the mean. 

Metrics such as the root-mean-squared-error (RMSE) and mean absolute error (MAE) include both the bias and 

random components of error. To attribute model error to bias and random error separately, RMSE or MAE can be 
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Table 2. Key Atmospheric Variables from NYSERDA Buoy/Lidars Used in This Analysis

 

Variable Vertical Coverage

 

Wind speed 2 m and then 20 m to 200 m in 

20-m increments 

Wind direction 2 m and then 20 m to 200 m in 

20-m increments 

Air temperature 2 m 

Air pressure 2 m 

SST Ocean surface

 

Figure 1. Active floating lidar deployments in the North Atlantic with publicly available data, 

as of November 2020. Wind energy lease areas are shown in white and Call Areas in grey. 

decomposed into a bias component and what is called the “centered” or “unbiased” component of RMSE or MAE. 

Taylor 2001 demonstrated this separation for RMSE and bias by showing the relation between their squares: 

RMSE2 = Bias2 + cRMSE2 (2.1) 

where cRMSE is the unbiased RMSE. The bias component is calculated as: 

Bias =

 

p −

 

o (2.2) 

where p are the modeled estimates and o are the observations and the bar denotes the mean. The RMSE component 

is calculated as: 
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RMSE = 

[ 

1

 

N 

N 

∑ 

n = 1 

( pn 

− on)
2 

]1 / 2 

(2.3) 

where N is the number of data points. It can be shown then that the cRMSE is calculated as 

cRMSE = 

[ 

1

 

N 

N 

∑ 

n = 1 

[( pn 

−

 

p ) − ( on 

−

 

o )]2 

]1 / 2 

(2.4) 

Another key performance metric is the correlation coefficient, R , which measures the “correspondence” or “pattern” 

between two variables. It is defined as: 

R = 

1

 

N 

∑
N 

n = 1 ( pn 

−

 

p ) − ( on 

−

 

o )

 

σp 

σo 

(2.5) 

where σp 

and σo 

are the standard deviations of the predictions and observations, respectively. The correlation coef- 

ficient, R , reaches a maximum value of 1, indicative of perfect correlation, and a minimum value of -1, indicative of 

perfect negative correlation. Usually the square of the correlation coefficient is used, R2, which has maximum and 

minimum values of 1 and 0, respectively, which becomes more useful for characterizing relationships when there are 

multiple independent variables. 

A fourth metric that is very useful is the Earth-mover’s distance (EMD), recently popularized for wind energy in the 

making of the New European Wind Atlas (Hahmann et al. 2020). The EMD (also called the Wasserstein distance) 

is a measure of the difference between two distributions. Specifically, the metric is equal to the area between two 

cumulative distribution functions and can be interpreted as the amount of “dirt” needed to move from one probability 

distribution (or pile) to another to make them equal. The key advantage of the EMD metric is that it accounts for 

cases where two distributions may have the same bias but have different shapes, as shown in Figure 2.

 

Figure 2. A comparison of two sample wind speed distributions, taken from Hahmann et al. (2020). The 

two distributions have the same mean but different shapes, which the EMD metric is able to quantify. 

Based on the arguments in this section, we recommend that the four metrics listed in Table 3 should, at a minimum, 

be used to validate modeled estimates of the wind resource. We note that MAE is not included in this list. It always 
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has less magnitude than RMSE given that it penalizes outliers less. However, both metrics trend similarly and in- 

cluding both generally does not reveal new information. We also note that bias and cRMSE can be converted to 

percentage units but we do not made explicit recommendations here for that conversion. There are many ways to 

normalize those errors to get percentages—including the mean, range, and standard deviation of the observations— 

with no clear guidance on which normalization metric is most appropriate. Therefore, no recommendations on 

percentage-based performance metrics are provided in this report. 

Table 3. Recommended Performance Metrics for Modeled Wind Resource Validation

 

Name Abbreviation Description

 

Bias Bias Difference between the mean modeled and 

observed result 

Unbiased RMSE cRMSE The random error component after bias is re- 

moved, describing the differences in model 

variations around the mean 

Square of correlation 

coefficient 

R2 The correspondence or pattern between the 

modeled and observed variable 

Earth-mover’s distance EMD Difference between the probability distributions 

between the modeled and observed variable

 

2.3 Best Measurement Data Source for Validation 

In this section, we discuss the benefits and drawbacks of different wind speed measurement data sources for val- 

idation, including onshore coastal measurements, near-surface buoy measurements, satellite-based products, and 

floating lidar. 

2.3.1 Limits of Near-Surface Measurements 

Near-surface buoy-based measurements of wind speed are common in U.S. waters, mostly maintained and accessed 

through the National Data Buoy Center (National Data Buoy Center 1971). For example, the Optis et al. (2020) 

report on the updated California wind resource data set considered model performance at a range of buoy locations 

(shown in Figure 3). These sites are appealing, given the data is public, often provide multiple years of 10-minute 

or hourly-averaged data, and are spread across a domain and not isolated to specific regions. Finally, the data are 

quality-controlled by the National Oceanic and Atmospheric Administration and are therefore reliable. 

Satellite-based scatterometers retrieve wind speeds at 10 m above sea level and have been used to create a satellite- 

based offshore wind atlas for the U.S. Atlantic offshore area (Ahsbahs et al. 2020). This study demonstrated that 

satellite-based winds can have very low bias overall relative to buoy-based anemometers, but fairly high RMSE 

ranging from 1.3–1.5 ms− 1, depending on the satellite data source. Therefore, in principle, the Ahsbahs et al. (2020) 

wind atlas could be used to validate 10-m modeled wind bias across the U.S. Atlantic but not the other recommended 

performance metrics in Table 3. 

The key question, though, is whether validation at 10 m or lower is meaningful and representative for wind energy 

applications. More specifically, are model performance metrics at 10 m or lower representative of model perfor- 

mance at hub height or at other rotor-swept heights? We explore this question in Figure 4, wherein we compare mean 

wind profiles from the WRF simulations in the North Atlantic against the NYSERDA Buoy E05 floating lidar mea- 

surements. As shown in the figure, the WRF-modeled profile is accurate on average below about 30 m, above which 

the WRF-modeled profile increasingly underestimates wind speeds as height increases. Because of this trend, bias 

at 20 m is slightly positive (0.2 ms− 1) and bias at 200 m is moderately negative (-0.4 ms− 1). Based on validation 
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Figure 3. Observation stations used in Optis et al. (2020) to val- 

idate the new 20-year offshore California wind resource data set 

only at lower heights (e.g., using only buoy measurements), one would conclude that WRF is positively biased at 

this location, despite actually being negatively biased at rotor-swept heights. Furthermore, we see that the cRMSE is 

slightly higher at 200 m (2.0 ms− 1) than 20 m (1.8 ms− 1). So again, validating only at lower heights would provide 

an inaccurate characterization of model performance at rotor-swept heights. 

We continue the 20 m and 200 m comparison in Figure 5, in which the mean modeled and observed diurnal wind 

speed cycles are shown. Looking first at the observed profiles, we see that at 20 m the diurnal cycle does not have 

a clear trend. By contrast, the 200-m cycle is much more pronounced with a minimum around 15:00 UTC and a 

maximum around 00:00 UTC. This comparison alone reveals the limitations of surface-only analyses, which in this 

case would miss the diurnal variations in the actual wind resource. In terms of validation, we see that the modeled 

diurnal cycle shows some amplitude at 20 m, which does not match the observations (RMSE = 0.035 ms− 1). By 

contrast, the modeled cycle is in reasonable agreement with the observed cycle (RMSE =0.028 ms− 1, or a 20% 

improvement). Therefore, validating at 20 m would underestimate model performance at rotor-swept heights and 

would mischaracterize the ability of WRF to capture the diurnal cycle at rotor-swept heights. 

Based on the results in this section, we conclude that validating at lower heights is inappropriate wind energy appli- 

cations. Not only can key performance metrics change substantially with height, but so can the characteristics of the 

wind resource. 

2.3.2 Limits of Onshore Coastal Measurements 

Another common data source for offshore wind resource validation is land-based weather stations located along the 

coastline. These stations generally have measurement heights above those of buoy-based measurements, which could 

provide more meaningful validation at heights more relevant to wind power. 
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Figure 4. Mean WRF-modeled and observed wind speed profiles at NYSERDA Buoy 

E05. Bias and cRMSE metrics for the 10-minute data at 20 m and 200 m are also shown.

 

Figure 5. Mean normalized WRF-modeled and observed diurnal 

wind speeds at 20 m (left) and 200 m (right) at NYSERDA Buoy E05 

However, the land-sea interface at the coastline provides several challenges to conduct meaningful validation of a 

modeled wind resource. First, coastal stations are generally located far from current offshore wind energy lease and 

Call Areas and can have very different wind resource characteristics than those located farther offshore (e.g., more 
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pronounced sea breezes). 

More importantly, large wind speed gradients at the coastline generally prohibit a meaningful validation of modeled 

wind speeds when these models are run at a coarse resolution (e.g., 2-km WRF resolution in the Optis et al. [2020] 

data set). Under these conditions, modeled wind speed from one model grid box to the next can change significantly, 

and the interpolation of modeled wind speeds to the observation station for purposes of validation is highly uncer- 

tain. This phenomenon was documented in Optis et al. (2020) and shown again in Figure 6. The figure focuses on 

three measurement stations along the New Jersey coastline near Atlantic City: the Rutgers University Oyster Creek 

meterological tower (RUOYC) and Coastal Metocean Monitoring station (RUCMM) and a Vindicator floating lidar 

(VIND1) deployed by the Pacific Northwest National Laboratory (PNNL) from 2015 to 2017. The colored and la- 

beled boxes show the mean wind speeds in each 3 km grid cell, as modeled by WRF, during a high wind event on 

October 3, 2015. We see that the coastal RUCMM and RUOYC stations are located in areas where wind speeds in 

adjacent WRF cells can differ by 2 ms− 1. Comparatively, the VIND1 lidar located farther offshore consistently has 

wind speeds of 20 ms− 1 in neighboring cells.

 

Figure 6. Mean daily wind speeds modeled by WRF on October 3, 2015, shown in 3-by-3-km grid cells 

colored and labeled by wind speed. Offshore and coastal wind measurement stations are shown in red. 

For many analyses (e.g., sea breeze events, comparing various spatial resolutions for an NWP model), these coastal 

stations would be valuable reference sites. However, when validating a 2-km spatial resolution NWP model such as 

WRF, the uncertainty associated with interpolating modeled grid-box average wind speeds to a coastal observation 

station is prohibitively high. Therefore, we advise against the use of coastal stations for validation, especially when 

comparing the performance of different models. 
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2.3.3 Floating Lidar Measurements 

Given the limitations of near-surface and coastal measurements, as well as the absence of tall meteorological towers 

in U.S. offshore waters, the remaining data sources for robust model validation are buoy-based floating lidars. As of 

November 2020, there are six active floating lidar deployments in U.S. offshore wind energy areas whose data are 

publicly available. These lidars are listed in Table 4 and shown in Figures 1 and 7 for the Atlantic and California 

offshore areas, respectively. 

Table 4. Active Floating Lidar Deployments in U.S. Offshore Wind 

Energy Areas with Publicly Available Data, as of November 2020

 

Location Organization Time Resolu- 

tion 

Start Date for 

Public Data 

Maximum 

Measurement 

Height 

Data Access

 

Hudson South Call 

Area, New Jersey 

NYSERDA 10 minute 2019-09-04 200 m DNV-GL (2020) 

Hudson North Call 

Area, New Jersey 

NYSERDA 10 minute 2019-08-12 200 m DNV-GL (2020) 

Atlantic Shores, 

New Jersey 

Shell/EDF 10 minute 2020-02-26 250 m Atlantic Shores 

Offshore Wind 

(2020) 

Mayflower, MS Shell/EDPR Daily 2020-04-13 250 m Mayflower Offshore 

Wind 2020 

Humboldt, Califor- 

nia 

PNNL/Bureau 

of Ocean 

Energy 

Management 

(BOEM) 

1 second 2020-10-XX 250 m Pacific Northwest 

National Laboratory 

(2020) 

Morro Bay, Califor- 

nia 

PNNL/BOEM 1 second 2020-10-XX 250 m Pacific Northwest 

National Laboratory 

(2020)

 

Most of these public floating lidar data are at a 10-minute resolution or better, apart from the Mayflower data that 

is provided daily. The recently deployed floating lidars in California by PNNL and BOEM are providing data at a 

1-second and 10-minute resolution. Most data sources provide measurements up to 250 m, except for the NYSERDA 

lidars, which only measure up to 200 m. 

These data sources provide the best means for robust validation of the offshore wind resource, with the ability to 

assess wind shear and wind veer (i.e., change in wind direction with height) across the entire rotor-swept area of 

expected 8- to 12-MW offshore turbines and the majority of the 15-MW wind turbines (Beiter et al. (2020); Table 

5). Furthermore, a growing body of validation exercises are showing strong agreement between lidar-measured and 

anemometer-measured wind speeds, giving confidence to the exclusive use of floating lidar for offshore wind profile 

measurements (Carbon Trust 2018). 

The key limitation to these floating lidars is the sparsity of measurements. A total of six data sources for all U.S. 

offshore waters is relatively small compared to land-based validations stations (e.g., Draxl 2015). There are many 

more floating lidars deployed privately by wind developers in current Atlantic lease areas; however, these data are 

10

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

Figure 7. Active floating lidar deployments offshore California with publicly avail- 

able data, as of November 2020. Wind energy Call Areas are shown in gray. 

considered highly proprietary and not shared publicly. 

2.4 Best Practices for Floating Lidar Validation 

Having established floating lidars as the best data source for validation of modeled wind resource data sets, we now 

turn to best practices for how to use these data for model validation. We focus first on the advantages of REWS over 

hub-height wind speeds, and then discuss the role of atmospheric stability and how validation should account for 

this. We then argue for both seasonal- and diurnal-based validation and finally discuss the importance of validating 

specific extreme events. 

2.4.1 Wind Profiles and Rotor-Equivalent Wind Speed 

Offshore wind turbines will be considerably larger than their land-based counterparts. Recently, Beiter et al. (2020) 

compared four future build-out scenarios for offshore California with floating wind turbine capacities ranging from 

8 MW to 15 MW (Table 5). Rotor diameters are expected to reach nearly 200 m by 2022 and 240 m by 2032, corre- 

sponding to swept height ranges from 30 m to 206 m and 30 m to 270 m, respectively. 
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Table 5. Floating Offshore Wind Turbine Technology As- 

sumptions for the United States by Year (Beiter et al. 2020)

 

2019 2022 2027 2032

 

Rated power (MW) 8 10 12 15 

Rotor diameter (m) 175 196 215 240 

Hub height (m) 118 128 138 150 

Rotor-swept heights 30 m–206 m 30 m–226 m 30 m–246 m 30 m–270 m

 

Large wind turbine performance is influenced by the high vertical wind shear across the rotor (Barthelmie, Shepherd, 

and Pryor 2020) and research has shown that weighting the wind speed over the rotor swept area provides a more 

accurate estimate of kinetic energy passing through the rotor than the simple consideration of hub-height wind 

speeds (Wagner et al. 2014; Redfern et al. 2019). This weighted wind speed is referred to as the rotor-equivalent 

wind speed and is defined as follows: 

REWS = 

( 

Nh 

∑ 

h = 1 

v3 

h 

Ai

 

A 

)1 / 3 

(2.6) 

where nh 

is the number of available measurement or model heights within the rotor layer, vi 

is the wind speed at 

height h , A is the total area swept by the rotor, and Ah 

is the area of the hth segment, calculated according to: 

Ah 

= 

∫ zh + 1 

zh 

c ( z ) dz (2.7) 

where zh 

is the height of the hth segment separation line and: 

c ( z ) = 2 

√

 

R2 − ( z − H )2 (2.8) 

where R is the rotor diameter and H the hub height (Wagner et al. 2014). 

Given that REWS is a better predictor of turbine energy than hub-height wind speed, should modeled REWS be 

validated instead of hub-height wind speed? Are there meaningful performance metric differences between the two 

to justify that change? To explore these questions, we contrast the use of validating hub-height wind speeds and 

REWS using the assumption of a 10-MW wind turbine shown in Table 5. We contrast two cases where validation is 

performed on the full data set and when validation is performed only on a subset of high-wind-shear cases observed 

at the NYSERDA E05 and E06 floating lidars, as documented in Debnath et al. (2020). Comparative mean profiles 

for each case are shown in Figure 8. As shown in the figure, the high-shear events are associated with high wind 

speeds with a mean difference ranging from 40 m to 200 m of about 6 ms− 1. By contrast, the mean profile for the 

entire period of record shows considerably less shear and mean winds. 

Figure 9 contrasts the four key validation metrics for hub-height wind speed and REWS for both the full data and 

high-shear subsets. The results generally show that validating using hub-height wind speed vs. REWS does not have 

considerable impact when considering the full period of record at the lidars, with only slight improvements in model 

performance when validating against REWS. By contrast, for the high-shear cases, there are more meaningful model 

performance improvements using REWS than hub-height wind speeds, especially for the bias and EMD metrics. We 
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Figure 8. Mean modeled and observed wind profiles at NYSERDA Buoy E05 when consider- 

ing the full period of record (black) and the high-shear cases identified in Debnath et al. (2020) 

note that model performance metrics all increase when validating REWS rather than hub height. We do not expect 

this to be a general principle but is more likely specific to the WRF model setup and wind resource characteristics of 

the region. 

Based on the analysis in this section, we encourage the use of REWS over hub-height wind speeds when validating 

offshore model performance. Such an approach will give a more accurate characterization of model performance as 

it pertains to wind energy applications. 

2.4.2 Role of Atmospheric Stability 

A decade of research has established the role that atmospheric stability plays in observed and modeled wind profiles 

(Optis, Monahan, and Bosveld 2014, 2016). In general, atmospheric stability can be separated into unstable and sta- 

ble conditions. Unstable conditions usually occur when warm air sits underneath colder air (e.g., during strong land 

surface heating in summer). The lower density of the warmer air causes it to rise above the cold air, inducing strong 

vertical mixing of momentum and leading to wind profiles that are relatively constant with height. By contrast, stable 

conditions occur when colder air sits underneath warmer air (e.g., during land surface cooling at night). The higher 

density of the underlying colder air suppresses turbulent vertical mixing and produces wind profiles with strong wind 

shear. 

Because of ocean mixing and the high heat capacity of water, the sea surface is generally not subject to the same 

rapid changes in temperature as land and magnitudes of stability are generally less. However, on longer seasonal 

timescales, the SST can change considerably. Furthermore, air coming from land can be advected offshore and lead 

to considerable differences in land-sea temperature. Most interestingly, stable stratification can be induced when 

warmer air flows over a colder sea and lead to phenomena such as high shear and low-level jets (Dörenkämper et 

al. 2015; Debnath et al. 2020). 

Planetary boundary layer schemes in NWP models like WRF can account for unstable and stable conditions very 
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Figure 9. WRF model performance metrics at NYSERDA Buoy E05 

when validating hub-height wind speed (blue) and REWS (orange) 

differently. Therefore, when analyzing model performance offshore, it is important to consider both unstable and 

stable conditions. In many cases, and provided there is sufficient data, these broad stability regimes can be further 

broken down into extreme, moderate, and weakly unstable and stable conditions (Optis, Monahan, and Bosveld 

2014; Optis et al. 2020a). Such breakdown provides more insight into model performance across a range of stability 

regimes. 

There are several metrics used to quantify atmospheric stability and selecting the right one is important. A common 

metric is the Obukhov length, which quantifies the ratio of turbulent momentum and temperature fluxes at a given 

height, usually the surface. The flux Richardson number is similar but also considers the wind and temperature 

gradients. A more simplified and representative metric is the bulk Richardson number, RiB, which quantifies the 

atmospheric stability in a vertical layer based on wind and temperature differences between the top and bottom of 

that layer: 

RiB 

= 

g

 

θv 

∆ z ∆ θv

 

( ∆ U )2 +( ∆ V )2 

(2.9) 

where g is gravitational acceleration, θv 

is absolute virtual potential temperature, ∆ θv 

is the virtual potential tempera- 

ture difference across a layer of thickness, ∆ z , and ∆ U and ∆ V are the changes in horizontal wind components across 

that same layer. Values of RiB 

< 0 represent thermodynamically unstable conditions and RiB 

> 0 represent stable 

conditions, with instability or stability increasing monotonically with the magnitude of RiB. For neutral conditions, 
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RiB 

≈ 0. 

The RiB 

metric has several advantages over other stability metrics. First, it is able to quantify stability over a specific 

height range (e.g., rotor-swept heights of a wind turbine), whereas other metrics are restricted to a single height. 

Therefore, it can provide a more accurate characterization of stability in the context of wind turbine operation. 

Second, it requires only measurements of wind and temperature, which are often measured at meteorological towers 

and are typical output from atmospheric models such as WRF. The flux-based metrics, by contrast, require more 

robust sonic anemometer measurements that are not as widely available. 

The main limitation of RiB 

is that it does not provide a direct measure of turbulence. Rather, it characterizes the 

“likely” turbulence given the wind and temperature gradient in a vertical layer. By contrast, flux-based measurements 

do provide direct measures of turbulence and, if measured at hub height, may be more useful metrics for characteriz- 

ing atmospheric stability experienced by a wind turbine. 

In the U.S. wind offshore environment, however, measurements generally do not exist to calculate any stability 

metric. The lack of temperature measurements at different heights preclude the use of RiB 

while the lack of flux 

measurements at buoys preclude the use of other metrics. To validate separately by stability regime requires that the 

stability metric be calculated from the model being validated. In this case, we use the WRF model and select RiB 

as 

the metric to distinguish the stability regime. 

Figure 10 shows the mean modeled and observed wind profiles under unstable and stable conditions. The observed 

profile shows low shear in unstable conditions and high shear in stable conditions, as we would expect. We fur- 

ther see differing model performance in each stability regime: in unstable conditions, WRF tends to underestimate 

wind speeds and wind shear, whereas in stable conditions WRF overestimates wind speeds but also underestimates 

wind shear. These differences highlight the benefit of validating by stability regime and can lead to more detailed 

investigations on how and why the WRF model may underperform in certain conditions.

 

Figure 10. Mean modeled and observed wind profiles at NYSERDA Buoy E05, 

shown seperately for unstable conditions (left) and stable conditions (right) 

Figure 10 also reveals that unstable conditions are predominant at Buoy E05, occurring 70.5% of the time. We note 

that this frequency is specific to the Atlantic region does not represent other offshore areas. For example, Optis et 
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al. (2020) found that very stable conditions were dominant in offshore California wind energy Call Areas, mainly 

because of strong coastal upwelling of deeper colder water and the resulting induction of stable stratification. 

We further break down model performance by stability regime in Figure 11 using the four key performance metrics 

and validating on REWS. Here, we see that cRMSE is considerably lower in unstable conditions, whereas the bias 

and EMD are lower in stable conditions. The change in the R2 coefficient is generally small, with slight improvement 

in unstable conditions. The figure further illustrates the value in validating by stability regime. In this case, for 

example, an effort to improve WRF model bias in the U.S. Atlantic offshore region should focus on unstable rather 

than stable conditions.

 

Figure 11. Performance metrics for the WRF-modeled REWS separated by stability regime 

Atmospheric stability is largely driven by vertical temperature differences and therefore can vary significantly by 

season and time of day. Examining these trends can be important in understanding at what times of the day or year 

a model may underperform. A useful tool for such investigation is a 12-by-24 matrix that plots the mean of some 

variable over each month and hour of the year (i.e., 12 months × 24 hours). This matrix can be nicely illustrated by a 

heat map, which we use in Figure 12 to characterize the frequency of unstable conditions at Buoy E05 throughout the 

year. The figure shows a strong seasonal trend in atmospheric stability, with 80% to 100% of the data representing 

unstable conditions from August through December, but only 50% to 85% from January through July. Therefore, 

we would expect WRF model bias (which was highest in unstable conditions) to be highest during the latter half of 

the year. We also observe diurnal trends in stability although no clear consistent pattern emerges across the different 

months. 

So far this section has illustrated how modeled wind speeds can perform differently under different stability condi- 

tions. The final step for robust model validation is to quantify how well the model characterizes atmospheric stabil- 

ity. For example, if a model is underestimating wind shear in stable conditions, it may be because it is underestimat- 

ing the magnitude of stability. Unfortunately, the lack of observations in U.S. offshore wind areas that are needed 

to characterize stability make such a validation challenging. The best available approach is to validate near-surface 

stability by leveraging wind and air temperature measurements from buoys in addition to SST. These variables can 

yield calculations of the air-sea temperature difference (itself a useful stability metric) or the RiB 

between the buoy 

measurement height and the surface. These near-surface metrics, although not ideal, can provide some indication of 

atmospheric stability in the air aloft. For example, Debnath et al. (2020) found that the air-sea temperature difference 
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Figure 12. Heat map showing the 12-by-24 frequency of unstable conditions at NYSERDA Buoy E05 

at Buoys E05 and E06 was strongly associated with the occurrence of high shear and low-level-jet events. 

In Figure 13, we validate WRF in its ability to model the air-sea temperature difference. In the left panel, we first 

show that the frequency of unstable conditions modeled at Buoy E05 (as measured by RiB 

between 200 m and the 

surface) is moderately correlated to the frequency of negative air-sea temperature differences modeled by WRF 

(R2 = 0.448). So it is clear that the air-sea temperature difference plays a role in determining atmospheric stability 

between 200 m and the surface, but also highlights the limit of near-surface measurements in fully characterizing 

atmospheric conditions relevant to wind power. The right-most figure compares the modeled and observed air- 

sea temperature difference. In general, the correlation is very strong (R2 = 0.961). We do see that in the region 

in which most of the data are contained (darker green), the WRF model tends to slightly overestimate the air-sea 

temperature difference (total bias of 0.23oC). Overall, we can conclude that the WRF model is representing the 

air-sea temperature difference well. 

2.4.3 Seasonal and Diurnal Variations 

As demonstrated in the previous section, U.S. offshore atmospheric stability varies with season and time of day. 

Given the different relative performance of the WRF model in unstable and stable conditions, it is important to break 

down that performance by season and time of day as well. Such analysis provides useful information on when a 

model would be most accurate and when model performance decreases. 

A diurnal cycle plot of modeled and observed REWS, as shown in Figure 14, can provide an overall indication of 

how well a model is capturing the diurnal cycle. Such a comparison is especially important in the context of offshore 

wind energy meeting diurnally varying electricity loads and understanding how well a model captures that diurnal 

cycle in wind speeds. In Figure 14, the observed REWS shows a moderate diurnal cycle, peaking around 10.5 ms− 1 

and reaching a minimum of around 9.7 ms− 1. By contrast, the WRF model predicts a larger amplitude diurnal cycle 

that reaches a minimum of almost 9.0 ms− 1. Indeed, much of the negative bias in WRF-modeled REWS (Figure 9) 

occurs in the 10:00 UTC to 19:00 UTC, which would correspond to 05:00 to 14:00 local time at Buoy E05. 
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Figure 13. Validation of WRF-modeled air-sea temperature difference. The left panel shows 

the relationship between the frequencies of negative air-sea temperature differences and the 

frequency of unstable conditions. The right panel compares observed and modeled air-sea 

temperature differences on 10-minute timescales. Actual data are in faded blue and the 2- 

D probability distribution of the data is shown in green contours. The dotted black line de- 

notes the 1:1 line and the dotted red lines mark the shift from negative to positive values.

 

Figure 14. Mean diurnal cycles of the modeled and observed REWS at NYSERDA Buoy E05 
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To assess diurnal performance by season, we show the 12-by-24 heat maps in Figure 15 for all four performance 

metrics. The figure reveals key times when the model performs well and when it does not. For example, the large 

negative bias between 10:00 to 19:00 UTC in Figure 14 is especially strong in December and January. Furthermore, 

the small positive bias we saw from 00:00 to 03:00 UTC is largely caused by large positive bias in the summer 

months (especially July), whereas the remaining months trend toward negative bias during this time. Other anoma- 

lies are revealed as well, such as the tendency to have very high cRMSE during the later hours in December and the 

corresponding drop in correlation.

 

Figure 15. Heat maps showing the 12-by-24 performance of WRF-modeled REWS 

2.4.4 Extreme Events 

Finally, we discuss the value in evaluating model performance during targeted extreme events. An exhaustive list of 

extreme events is not considered here but could include storm or hurricane events, extremely cold temperatures, very 

high turbulence, and so on. Here, we focus only on the extreme high-shear events presented earlier in Section 2.4.1 

when discussing the value of REWS. As Debnath et al. (2020) demonstrated, Buoys E05 and E06 experienced nearly 

100 independent high-shear events over a 1-year period of record. These events can considerably impact turbine 

operation through increased loading, fatigue, and so on; therefore, the ability to predict and characterize such events 

through a model such as WRF is important. 
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WRF performance during these extreme shear events was presented earlier in this section (Figure 8 showing the 

mean profile and Figure 9 showing the performance metrics). The fact that WRF underestimates wind shear during 

these events is an important result and could motivate future work to better understand how and why WRF underesti- 

mates the magnitude of these events. 

20

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

3 Novel Extrapolation Methods for US Offshore Wind 

In this section, we evaluate a range of methods for the vertical extrapolation of near-surface wind speed measure- 

ments to model wind profiles across the rotor area of expected offshore wind turbines. This study is motivated by 

two questions: can vertical extrapolation error be made sufficiently low to validate modeled REWS or hub-height 

winds using extrapolated near-surface wind speed measurements? If so, can this extrapolation technique be applied 

to satellite-based near-surface wind speed measurements to produce an observation-based wind atlas for all of U.S. 

offshore waters? 

To address the first question, we evaluate a range of extrapolation methods and validate them using the floating lidar 

data at NYSERDA buoys E05 and E06. We consider both the conventional logarithmic wind profile and a recent 

modified formulation to the logarithmic profile with a long-term stability correction developed by researchers at the 

Technical University of Denmark (DTU) (Badger et al. 2015). We also propose and evaluate more novel methods 

including a single-column model and a machine-learning approach. These four models are validated against offshore 

floating lidar observations using the recommended set of best practices described in the previous section. 

We note that the conventional power law profile is not considered in this analysis. The power law profile requires 

measurements at two heights to calculate the power law coefficient, α . This study is focused on extrapolating near- 

surface winds to rotor-swept heights using only near-surface measurements. Therefore, a second height is not avail- 

able to calculate α . In fact, this two-height requirement makes the power law profile largely impractical for offshore 

wind energy purposes, given the prevalence of single-height measurements from buoys and satellites. 

All time-series-based analysis in this section uses the 10-minute-averaged wind speeds. 

3.1 Extrapolation Methods 

3.1.1 Logarithmic profile 

The logarithmic wind profile is defined as: 

U ( z ) = 

u∗

 

κ 

[ 

ln 

( 

z

 

z0 

) 

− ψm 

( z

 

L 

, 

z0

 

L 

)] 

(3.1) 

where U is the wind speed, κ is the von Kármán constant (normally taken to be 0.4), z is the height above the sur- 

face, u∗ 

is the friction velocity, z0 

is the roughness length, ψm 

is the stability function for momentum that adjusts the 

wind profile depending on atmospheric stability, and L is the Monin-Obukhov length that characterizes atmospheric 

stability. The friction velocity, u∗, requires high-frequency sonic anemometer measurements that are not available 

at the NYSERDA buoys. Instead, we reformulate Eq. 3.1 to use the 2-m wind speeds as a reference measurement, 

allowing the wind profile to be calculated according to: 

U ( z ) = U2 m 

[ 

ln ( z / z0) − ψm ( z / L , z0 

/ L )

 

ln 

(
zre f 

/ z0 

) 

− ψm ( z2 m 

/ L , z0 

/ L ) 

] 

. (3.2) 

Here, we implement the ψm 

formulations from Jiménez et al. 2012, which have become standard correction func- 

tions and are currently used in the WRF mesoscale model surface layer parameterization. 

The calculation of L typically requires measurements of the momentum and turbulent temperature fluxes, which 

are not available from buoy measurements but require more sophisticated sonic anemometers and thermometers 

measuring at high frequency. Instead, we can calculate a “bulk” L based on the bulk Richardson number, RiB: 

RiB 

= 

g

 

θavg 

z2 m( θz2 

− θsur f )

 

U2
z2 m 

(3.3) 
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where z2 m 

is the height 2 m above the surface, g is the acceleration as a result of gravity, θz2 m 

is the potential tem- 

perature at 2 m, θsur f 

is the potential temperature at the surface, and U2 m 

is the 2-m wind speed. Combining the 

Equations 3.2 and 3.3 yields a relationship between L and RiB: 

RiB 

= 

z2 m

 

L 

ln 

(
z2 m

 

z0 

) 

− ψh 

( z2 m
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z0

 

L 

)
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ln 
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z2 m

 

z0 

) 

− ψm 

( z2 m

 

L 

, 

z0

 

L 

)]2 

(3.4) 

where ψh 

is the stability function for temperature, also taken from Jiménez et al. 2012. 

Using Eq. 3.4, we iteratively solve for L given RiB, which combined with Eq. 3.2 allows the calculation of the 

vertical wind profile. 

3.1.2 Long-Term Stability Correction (DTU) 

The second model we considered is a modification of the logarithmic profile that intends to provide a more accurate 

long-term stability correction. This model has been developed over the last decade by DTU (Kelly and Gryning 

2010; Badger et al. 2015) and is herein referred to as the DTU method. The motivation for this model is the fact that 

the logarithmic profile is frequently violated under conditions of stable stratification (Optis, Monahan, and Bosveld 

2014, 2016) and that the logarithmic profile would be inaccurate when applied on a time-series basis (e.g., to 10- 

minute-averaged atmospheric conditions). Instead, the DTU method aims to calculate a single long-term wind profile 

that accounts for the distribution of L values throughout the year to perform a single, long-term stability correction. 

As such, the DTU method is only suitable for long-term wind resource assessment, as it requires at least 1 year of 

data and ideally many years (Kelly and Gryning 2010). 

The stability correction applied to the log extrapolation is height-dependent and computed based on empirical con- 

stants and atmospheric conditions at the site: the percentage of stable vs. unstable conditions; the quadratic mean 

of the kinematic heat flux; the mean, near-surface air temperature; and the time-averaged friction velocity. These 

input parameters are taken from the WRF simulations (described in Section 2.1) and are combined with correction 

functions, ψm, based on similarity theory to compute a vertical profile of the correction function (Figure 16). This 

correction is then added to the log extrapolation to yield a wind speed profile, as in Eq. 3.1, where u∗ 

is usually ob- 

tained from the local measurements and z0 

is computed using the Charnock relationship, z0 

= α u2
∗ 

/ g , with g being 

the acceleration caused by gravity and α = 0 . 0144.

 

Figure 16. Schematic of quantities and calculations involved in the DTU model considered herein 
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The first step in the DTU method is to verify that the probability distribution functions for atmospheric stability are 

a good fit to the empirical distributions. This comparison is given in Figure 17. The theoretical functions shown in 

this figure take into account the percentage of stable vs. unstable conditions at the NYSERDA buoy sites ( nstable 

and 

nunstable), scales of variation for L 

− 1 ( σstable 

and σunstable), and empirical constants ( Cstable 

= 5 and Cunstable 

= 12). 

Note that previous work focusing on other data sets used different values for the C ± constants (e.g., both were set to 

3.0 to extrapolate satellite-derived wind speed measurements in Badger et al. 2015).

 

Figure 17. Empirical vs. theoretical distribution of atmospheric stability for the two buoy sites 

The vertical profile of the stability correction function, ψ , for both buoys is shown in Figure 18. The correction is 

unstable (i.e., positive) below 80 m and stable (i.e., negative) above it.

 

Figure 18. Empirical vs. theoretical distribution of atmospheric stability for the two buoy sites 

3.1.3 Machine Learning 

The third model considered is a machine-learning-based method. Here, we consider a relative simple ensemble- 

based regression tree method, known as a random-forest model, which has shown strong predictive power in previ- 

ous wind speed extrapolation work (Bodini and Optis 2020b, 2020a), and in relating wind farm energy production to 

on-site atmospheric variables (Optis and Perr-Sauer 2019). Here, we use the RandomForestRegressor module 

23

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

in Python’s Scikit-learn (Pedregosa et al. 2011). We consider a range of input features available from the NYSERDA 

buoys: 2-m wind speed, wind direction, pressure, and air temperature; the SST and air-sea temperature difference, as 

well as the time of day and month of year. Wind direction, time of day, and month of year are all decomposed into 

their sine and cosine components to preserve circularity (i.e., 0o and 360o directions are equivalent, as are 00:00 and 

24:00).1 A summary of these variables is listed in Table 6. 

Table 6. Input Features Used for the Random-Forest Model

 

Input Feature Acronym Measurement Height (m AGL)

 

2-m wind speed WS 2 m 2 

Sine of 2-m wind direction WD 2Cosine of 2-m wind direction 

2-m air temperature T 2 

Sea-surface temperature SST 0 

Air-sea temperature difference T - SST - 

2-m pressure p 2 

Sine of time of the day time -Cosine of time of the day 

Sine of month month -Cosine of month

 

To make sure the observation sets over which the random forest is trained and tested cover as much of the seasonal 

variability as possible, we build the testing set using a consecutive 20% of the observations from each month in 

the period of record. We evaluate different combinations of the hyperparameters with a five-fold cross validation, 

and randomly sample 20 sets. The hyperparameters considered in the cross validation and their sampled ranges 

are shown in Table 7. We evaluate the performance of the learning algorithm based on the root-mean-squared error 

between measured and predicted wind speed at extrapolation height: the set of hyperparameters that leads to the 

lowest root-mean-squared error is selected and used to assess the final performance of the learning algorithm. 

As described in detail in Bodini and Optis (2020), it is both impractical and unfair to evaluate a machine-learning 

model at the same site where it is trained. Critically, the model requires observations of the lidar-measured wind 

speeds up to 200 m in order to be trained. Evaluating model performance at the training site is impractical because 

the wind profiles are already known and unfair as the other extrapolation methods do not have such knowledge of 

lidar-measured wind profiles. Instead, model performance must be assessed through a “round-robin” approach, in 

which the model is evaluated at a site not used to train the model. Specifically in this study, the random forest model 

is trained on data at NYSERDA buoy E05 and then evaluated against other extrapolation models at NYSERDA buoy 

E06 located 83 km away, and then vice-versa. This round-robin approach ensures a fair comparison of the different 

extrapolation methods and that no model has prior knowledge of lidar-measured wind profiles at the site where it is 

evaluated. 

Table 7. Algorithm Hyperparameters Sampled in the Random-Forest Cross Validation

 

Hyperparameter Possible Values

 

Number of estimators 10–800 

Maximum depth 4–40 

Maximum number of features 1–11 

Minimum number of samples to split 2–11 

Minimum number of samples for a leaf 1–15

 

1Both are needed because each value of sine only (or cosine only) is linked to two different values of the cyclical feature. 
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3.1.4 Single-Column Model 

The fourth model considered is a single-column model. Essentially, it is a stripped-down version of a three-dimensional 

(3D) model, such as WRF, in which only vertical exchanges are considered and horizontal homogeneity is assumed. 

This greatly simplifies the governing equations of a 3D model and reduces the SCM to a one-dimensional model in 

the vertical only. By further assuming no moisture processed or cloud radiation, the equations of motion simplify 

further and depend only on the horizontal pressure gradients, the Coriolis force, and the vertical turbulent flux of 

momentum and temperature: 

∂ u

 

∂ t 

= f ( v − vG) − 

∂ (

 

u′w′)

 

∂ z 

∂ v

 

∂ t 

= f ( u − uG) − 

∂ (

 

v′w′)

 

∂ z 

∂ θ

 

∂ t 

= 

∂ (

 

θ 

′w′)

 

∂ z 

(3.5) 

where u , v , and w are the three vector wind components, t is time, z is the height above the surface, θ is potential 

temperature, and uG 

and vG 

are the u- and v- components of the geostrophic wind. The

 

u′w′,

 

v′w′ terms represent the 

u- and v- components of the vertical turbulent momentum flux and

 

θ 

′w′ represents the vertical turbulent temperature 

flux. 

The momentum and temperature fluxes are not solved directly but rather parameterized based on well-established 

eddy-diffusivity relationships:

 

u′w′ = − Km 

∂ u

 

∂ z

 

v′w′ = − Km 

∂ v

 

∂ z

 

θ 

′w′ = − Kh 

∂ θ

 

∂ z 

(3.6) 

where Km 

and Kh 

are the eddy diffusivities for momentum and temperature, respectively. These terms are themselves 

parameterized with a range of possible options in the literature (Optis and Monahan 2016, 2017). We adopt a rela- 

tively simple first-order closure model that includes eddy diffusivities that are related to the wind speed gradient and 

a stability function that depends on the Richardson number: 

Km 

= l2 

m 

∂ U

 

∂ z 

fm( Ri) 

Kh 

= lmlh 

∂ U

 

∂ z 

fh( Ri) 

(3.7) 
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where lm 

and lh 

are the mixing lengths for momentum and heat, respectively, and fmand fh 

are the stability functions 

for momentum and temperature, respectively. There are a range of proposed formulations for the mixing lengths and 

stability functions. Here, we use the one developed by Smith (1990), which showed strong results when used in a 

single-column model in previou studies (Optis and Monahan 2016, 2017). A detailed explanation and the equations 

of the stability functions and mixing lengths can be found in (Smith 1990; Cuxart et al. 2006; Optis and Monahan 

2017). 

The single-column-model equations are solved on a logarithmically stretched grid from a 2-m to 2,000-m height 

with 200 grid levels to provide higher resolution near the surface. The lower boundary conditions at 2 m are the 

measured wind speed components and temperature from the NYSERDA buoys. The upper boundary conditions are 

the 800 hectopascal pressure level data provided by the ERA5 reanalysis. A zero temperature gradient boundary 

condition is also applied at the top of the domain. 

Recognizing that the geostrophic wind can change with height in conditions of horizontal temperature gradients, we 

calculate a geostrophic wind profile at each time step to force the simulations. This is done by first assuming that 

the 800 hPa winds from ERA5 are geostrophic, which is a reasonable assumption at 2000 m, where surface friction 

effects should be negligible. Next, we calculate the geostrophic wind at the surface using surface pressure and air 

temperature data from the ERA5 reanalysis product: 

uG 

= − 

1

 

f ρ 

∂ P

 

∂ y 

vG 

= 

1

 

f ρ 

∂ P

 

∂ x 

(3.8) 

where ρ is air density and P is pressure. The horizontal pressure gradient terms are calculated by taking a planar 

best fit of the closest 9 ERA5 grid points that surround the buoy locations. Equation 3.8 is used to calculate the 

geostrophic wind components at 2 m, and finally the geostrophic wind profile is found by linearly interpolating the 

2-m and 800-hPa values to the different single-column-model heights. 

To initialize the simulation, we start by solving for an initial neutral profile and impose an equilibrium condition (i.e., 

∂ u / ∂ t = 0; ∂ v / ∂ t = 0; ∂ (

 

θ 

′w′) / ∂ z = 0) and solving for the u and v profiles. Then the simulation moves forward as 

a time-marching algorithm using the complete set of equations provided in this section. A continuous simulation is 

launched for the whole year time period without interruption. 

3.2 Model Comparison 

3.2.1 Data and Methods 

The four vertical extrapolation models presented in the previous section are all validated against lidar data from 

NYSERDA Buoys E05 and E06 over the full period of record. For each lidar, we consider only the time periods 

where wind speeds are reported at every height from 20 m to 200 m. Based on recommendations from Section 2, we 

validate using the REWS calculated from each extrapolation model based on the 10-MW offshore reference wind 

turbine (Beiter et al. 2020). 

For comparative purposes, we also include WRF performance alongside the vertical extrapolation model perfor- 

mance. This inclusion allows us to compare the performance between comprehensive, 3D models that lack the 

knowledge of local observations (i.e., WRF) and highly idealized models that do benefit from knowledge of those 

observations (i.e., the extrapolation models). 

We note that the DTU method is only capable of modeling the mean wind profile. Therefore, performance metric 

analysis throughout this section excludes the DTU method. 
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3.2.2 Results 

We begin with a comparison of the mean wind profile in Figure 19, showing results at both NYSERDA buoys E05 

and E06. The observed wind profile shows moderate shear, increasing from about 8.5 ms− 1 to 10.5 ms− 1 at E05, and 

8.0 ms− 1 to 10.3 ms− 1 at E06. We see that the random-forest machine-learning model provides excellent agreement 

with the mean profile, whereas the other models are deficient in some respects. The single-column model underesti- 

mates wind speeds at E05 but is very close to the observed profile at E06. The logarithmic profile captures the upper 

winds relatively well with a slight positive bias, but has increasingly higher bias at lower heights. The DTU method 

significantly overestimates wind speeds, especially at the upper heights, with nearly a 1.5-ms− 1 bias at 200 m. Fi- 

nally, we see that the WRF model tends to underestimate the wind profile (as shown in the previous section).

 

Figure 19. Mean modeled and observed wind profiles at NYSERDA Buoys E05 and E06. The dot- 

ted line denotes the observed profile and solid colors denote the different extrapolation models. 

REWS-based performance metrics for the different models are shown in Figure 20. Again the strong performance of 

the machine-learning model is apparent, with considerably lower error metrics and higher correlation to observations 

relative to the other models. The bias is notably negligible at Buoy E05 and slightly negative at E06 By contrast, 

the single-column model has the weakest performance across all metrics at E05 and all but the bias at E06. The 

logarithmic profile performance falls in between the machine-learning and the single-column models and is the 

only model with a positive bias at both buoys. Finally, the WRF model tends to perform similarly to the logarithmic 

model with slightly lower unbiased RMSE and higher correlation, but higher magnitude of bias and EMD. 

We next consider the role of atmospheric stability in relative model performance, first by comparing the mean wind 

profiles by stability regime in Figure 21. Stability regimes are based on the WRF-modeled bulk Richardson number 

between 200 m and the surface. Here, we focus only on Buoy E05 and note that relative performance is similar at 

both buoys. The machine-learning model shows similar performance in unstable and stable conditions, accurately 

capturing the unstable profile and slightly underestimating the stable profile. The single-column model performs 

reasonably well in unstable conditions but is unable to capture the high shear in the stable regime and significantly 

underestimates wind speeds. The log profile similarly underestimates wind speeds in stable conditions but overesti- 

mates in unstable conditions. Finally, the WRF model underestimates the wind profile in unstable conditions while 

accurately capturing winds above 100 m in stable conditions, but overestimating them below 100 m. Overall, we see 

that all models apart from the random forest struggle with consistent accuracy across stability regimes. 
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Figure 20. REWS performance metrics for the different vertical extrapolation models 

This relative consistency is further illustrated in Figure 22, where we show the REWS performance metrics by sta- 

bility regime. Again, we focus on Buoy E05 and note the similar relative performance between models at Buoy E06. 

We also see the random forest with the strongest performance metrics, apart from slightly higher magnitude bias 

and higher EMD in stable conditions relative to the WRF model. The single-column model shows lower magnitude 

bias and EMD in unstable relative to stable conditions but high unbiased RMSE and correlation across both regimes. 

The log profile performs better in unstable conditions than unstable conditions for all performance metrics, whereas 

the WRF model cRMSE and R2 are lower in unstable conditions, but bias and EMD are higher relative to stable 

conditions. 

We next compare normalized diurnal profiles for each model in Figure 23. The observed profiles show moderate 

diurnal trends with peak wind speeds from 00:00 to 05:00 UTC at 5% above the mean, and minimum wind speeds 

around 16:00 UTC that are 5% to 7% below the mean. We also note the larger diurnal amplitude at Buoy E06 rel- 

ative to Buoy E05. The random-forest model shows excellent agreement on average throughout the diurnal cycle, 

with RMSE in the normalized wind speeds of only 0.25% and 0.8% at E05 and E06, respectively. The single-column 

model performs reasonably well at capturing the diurnal cycle (0.82% and 1.0%) while both the WRF model and 

logarithmic profile have the largest error (RMSE greater than 2% at both buoys). Specifically, the WRF model tends 

to overestimate the amplitude of the diurnal cycle, whereas the logarithmic profile tends to underestimate it. 

Finally, we present 12-by-24 heat maps to show the combined diurnal and monthly trends of model performance. 

We show only the bias heat maps in Figure 24 while the remaining performance metric heat maps are provided in 

the Appendix. We see that the machine-learning model has consistently low magnitude bias throughout the diurnal 

and monthly cycles with no clear diurnal trends but a tendency to overestimate wind speeds in the fall. The single- 
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Figure 21. Mean modeled and observed wind profiles at NYSERDA 

Buoy E05 in unstable (left) and stable (right) atmospheric conditions 

column model shows considerable negative bias throughout the year with a tendency to overestimate wind speeds in 

November. Interestingly, the bias in December is positive from 01:00 to 12:00 and negative form 13:00 to 00:00. The 

WRF model shows some trends with positive bias in spring in the early hours with negative bias in the midhours. 

Finally, the logarithmic profile shows substantial trends with strong overestimation of winds through most of the year 

and underestimates in spring with the largest magnitude of those underestimates in the early hours. 

3.3 Explaining DTU Model Performance 

Figure 19 showed that the DTU method significantly overestimated wind speeds. This is a surprising result given its 

strong performance in Badger et al. {badger_extrapolating_2015} in which 10-m satellite-measured winds were 

extrapolated. To explore this, we compare DTU model performance using both 2-m and 20-m measurements as 

the basis for extrapolation. The results are shown in Figure 25. We see that the extrapolation from the 2-m mea- 

surements does not match the measured wind speed profile. This is likely because the measurement height is too 

low and located within the viscous sublayer where log-law approximations are not valid. When the same method 

is used to extrapolate from the 20-m lidar measurements, we see a good match between extrapolated and measured 

values. This analysis reveals that this DTU method is not suitable for extrapolation based on buoy wind speed mea- 

surements, which are often made with propeller or cup anemometers between 2 m and 5 m above the sea surface. 

Instead, this method should be applied to short offshore meteorological masts and satellite-derived wind speed esti- 

mates. 

3.4 Implications for Validating at Extrapolated Height 

This section has established that the random-forest machine-learning model significantly outperforms the other ex- 

trapolation models in its ability to predict wind profiles based on surface measurements. Here, we consider whether 

machine-learning model performance is sufficiently high such wind speed validation could be performed at hub 

height, based on extrapolation near-surface measurements to hub height first. In principle, this approach would 

overcome the limitations of validating near the surface, as discussed in the previous section. 
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Figure 22. REWS performance metrics for the different vertical extrapo- 

lation models at NYSERDA Buoy E05 for unstable and stable conditions 

First, we acknowledge that the machine-learning model was only found to perform well across the two NYSERDA 

buoy locations, and its ability to generalize across the U.S. Atlantic wind energy areas (or even the Pacific, Hawaii, 

and so on) is unclear and requires further research. 

Assuming the machine-learning model would perform similarly well across the U.S. Atlantic, for example, then 

the low bias found in this study would support the use of machine learning to at least validate mean wind profiles. 

However, the cRMSE for modeling the REWS was nearly 1 ms− 1, considerably less than the other models, but still 

a moderate error. Therefore, the extrapolation of near-surface wind speeds for the purpose of validating at hub height 

or REWS would not be appropriate on a time series basis and would be associated with prohibitive uncertainty to 

allow for a meaningful validation. Therefore, as recommended in the previous section, validating modeled wind 

speeds using direct offshore lidar measurements remains the key recommendation of this report. 

30

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

Figure 23. Mean modeled and observed diurnal cycles of normalized REWS at NYSERDA Buoys E05 and E06. 
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Figure 24. Heat maps (12 by 24) of REWS bias at NYSERDA Buoy E05 for the different extrapolation models 
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Figure 25. Mean observed and modeled wind profiles at NYSERDA Buoy 

E05 when using the DTU method based on 2-m and 20-m measurements 
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4 Summary and Future Work 

4.1 Summary 

Two key questions were answered in this report. First, what are the best data sources and methods for validating 

modeled U.S. offshore wind resource data sets? And second, what are the best methods for vertically extrapolating 

near-surface wind speed measurements to heights that span the rotor-swept area of modern offshore wind turbines? 

4.1.1 Best Practices for Validation 

Based on the analysis in this report, we make the following recommendations for validating U.S. offshore wind 

resource models: 

1. The following four key performance metrics at a minimum should be calculated: the bias (capturing the 

difference in the modeled and observed means), the unbiased or centered root-mean-squared-error (which 

isolates the random error from the model), the Earth mover’s distance (which quantifies the difference between 

two distributions), and the correlation coefficient (which measures the correspondence or “pattern” between 

two data sets). 

2. Models should be validated at measurement height and not at an extrapolated height above the measurements 

(e.g., hub height). Generally, there is too much error in even the best extrapolation methods to meaningfully 

validate models against extrapolated measurements. 

3. Near-surface measurements from buoys or satellite products are not well-suited for wind resource validation 

for two reasons. First, winds near the surface can behave very differently than winds across the rotor-swept 

heights, particularly during the diurnal cycle. Second, model performance metrics can be different near the 

surface than at the rotor-swept heights, and validating near the surface may incorrectly characterize model 

performance at the more relevant rotor-swept heights. 

4. Land-based coastal measurements should generally not be used for offshore model validation for two main 

reasons. First, the coastal wind resource behaves very differently from the offshore wind resource, and vali- 

dating along the coast may incorrectly characterize model performance in the farther offshore wind lease and 

Call Areas. Second, the land-sea boundary produces strong horizontal gradients in wind speed in this area, and 

validating 2-kilometer or greater resolution models becomes highly uncertain given these gradients. 

5. Given the previously mentioned considerations and the lack of offshore meteorological towers in the United 

States, floating lidars remain the only robust data source to perform comprehensive validation of wind speeds 

across rotor-swept heights. 

6. Given the size of expected offshore wind turbine rotor diameters (e.g., 175 m and 240 m for 8-megawatt [MW] 

and 15-MW designs, respectively), the rotor-equivalent wind speed should be calculated and used in place 

of the hub-height wind speed when performing model validation at floating lidars. Although the differences 

in overall model performance are small between the two, these differences become more substantial under 

conditions of high shear. 

7. Numerical weather prediction models like WRF perform differently depending on atmospheric stability con- 

ditions; therefore, validating in unstable and stable conditions separately can help isolate causes for model 

underperformance. Generally, the bulk Richardson number (RiB) is the best stability metric to separate unsta- 

ble and stable conditions, as it can characterize stability across the rotor-swept heights. However, RiB 

requires 

temperature measurements at two heights that are not available from lidar measurements. Estimates of RiB 

from the a model such as WRF, however, can provide a reasonable substitute. 

8. Evaluating model performance by season and time of day can provide further insight into areas of model 

strength and deficiency. An effective way to disseminate both the seasonal and diurnal cycles is through a 

“12-by-24" performance matrix or heat map. 
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9. Finally, evaluating model performance during extreme events (high-shear events, extreme cold, storms, hur- 

ricanes, and so on) provides a gauge in how well a forecast model can predict anomalous events that can 

negatively impact an offshore wind farm. 

4.1.2 Extrapolation Models 

Of the four wind speed vertical extrapolation models considered, the random- forest machine-learning model sig- 

nificantly outperformed the other models and was able to accurately represent winds across the vertical profile in 

different seasons and times of day, and in different stability regimes. Furthermore, the machine-learning model 

substantially outperforms the WRF model, highlighting the benefit of local observations in generating wind profiles. 

We emphasize that machine-learning model performance was based on training the model at one floating lidar (e.g., 

Buoy E05) and then evaluating its performance along with the other models at the other lidar (e.g., Buoy E06). In 

fact, very little performance degradation was found compared to testing the machine-learning model directly at the 

site it was trained, likely a result of the horizontally homogeneous conditions in the U.S. Atlantic offshore wind 

areas. This result has important implications for future use in creating observation-based wind atlases (see next 

section). 

4.2 Future Work 

4.2.1 Machine-Learning and U.S. Offshore Wind Atlases 

The machine-learning approach to vertically extrapolate near-surface wind speeds shows considerable promise 

in the ability to produce observation-based wind atlases for U.S. offshore waters. Currently, the best observation- 

based wind atlas is the satellite-based atlas developed in Ahsbahs et al. (2020), a collaboration between NREL 

and DTU. This atlas uses only the 10-m wind speeds using the scatterometer-measured near-surface wind speeds 

that are extrapolated to 10 m using a geophysical transfer function. Training a machine-learning model on these 

data to predict offshore wind profiles at lidar sites should be a priority for future research and the first step toward 

an observation-based U.S. offshore wind atlas that can provide extrapolated measurements across the rotor-swept 

heights. 

Ultimately, a machine-learning approach must rely on floating lidar data to train the model. Given the sparsity of 

these data sources, a future U.S. offshore wind atlas built from this approach will be relying on a relatively small 

number of training sites. Therefore, it is crucial to understand how machine-learning prediction accuracy decreases 

with distance offshore and how accurate, for example, we can expect a machine-learning-based wind atlas to be 

when several hundred kilometers from a floating lidar training site. Only two floating lidars 83 km apart were con- 

sidered in this preliminary analysis, and the machine-learning model showed very little degradation across that dis- 

tance. Immediate future work should consider all six currently deployed floating lidar data and apply a “round-robin” 

approach, in which a model trained at one site is evaluated at all remaining sites (as in Bodini and Optis 2020a). 

Such a study will provide critical information on how machine-learning extrapolation models perform not only with 

distance, but even across different oceans (i.e., a model trained in the Atlantic and applied in the Pacific). 

This proposed scope of future research will be aided by continued efforts to make floating lidar data public. Most 

deployed lidars are currently owned by wind energy developers and publicly available. Public access to these data 

would greatly improve our understanding of the U.S. offshore wind resource and help produce more accurate hub- 

height observation-based offshore wind atlases. 

4.2.2 Improving Single-Column-Model Performance 

The single-column-model performance offshore could be improved considerably through better accounting of near- 

surface stability. The model was forced at its lower boundary only by the 2-m wind speed and temperature and 

critically did not consider the role of sea surface temperature and related heat flux. Therefore, the single-column 

model really had no way to account for or characterize the role of atmospheric stability that was demonstrated in 

this study to be an important driver of the wind profile. By contrast, the WRF model is able to capture these effects 

and the machine-learning model used the air-sea temperature difference as an input variable which considerably 

35

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



 

improved model results. Improving the single-column-model design to account for atmospheric stability (e.g., by 

substituting the temperature lower-boundary condition with a flux-based measurement) should be an area of future 

work. 

4.2.3 Measuring Offshore Atmospheric Turbulence and Stability 

The ability to measure and characterize atmospheric stability in U.S. offshore waters is greatly hindered by the lack 

of observational data. In this study, the best metric possible was the air-sea temperature difference that describes only 

near-surface atmospheric stability and has limited predictive accuracy on stability aloft. 

The emergence of microwave radiometry has the potential to rapidly improve this characterization. Radiometers are 

capable of measuring temperature and humidity profiles and were demonstrated in the Wind Forecasting Improve- 

ment Project 2 (WFIP2) in complex terrain (Shaw et al. 2019a) and are being researched for offshore applications 

(Shaw et al. 2019b). Recently, a U.S. Department of Energy small business funding award is exploring the use of 

buoy-mounted radiometers to measure temperature and humidity profiles offshore. 

Should such data become available soon, an immediate effort to characterize atmospheric stability and validate the 

WRF model’s ability to predict stability should be undertaken. It is currently unknown how well it characterizes 

atmospheric stability in U.S. offshore wind areas and, given the importance of stability in governing wind profiles, it 

is vital to understand this to improve WRF in offshore areas and more accurately characterize the U.S. offshore wind 

resource. 

Finally, validating WRF model ability to estimate turbulence intensity should be a near-term priority. Turbulence 

intensity is the key atmospheric variable used by the wind industry to quantify atmospheric turbulence, and is now 

being measured by offshore floating lidars. Turbulence intensity is not a current output from WRF but is expected 

to be within a year or two. Validating modeled estimates of offshore turbulent intensity will be crucial to aid the 

emerging offshore wind industry in accurately characterizing turbine and wind farm design conditions. 
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5 Appendix

 

Figure 26. Heat maps (12 by 24) of REWS RMSE at NYSERDA Buoy E05 for the different extrapolation models 
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Figure 27. Heat maps (12 by 24) of REWS EMD at NYSERDA Buoy E05 for the different extrapolation models 
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Figure 28. Heat maps (12 by 24) of REWS R2 at NYSERDA Buoy E05 for the different extrapolation models 
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