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What is Machine Learning?

• “Gives computers the ability to learn without being explicitly 
programmed” (Arthur Samuel)
– Artificial intelligence

• Matching physical models to data (My interest)
– Automating my job
– Accelerate experiments, designs, applications, discovery

• Gaps  learn new battery physics 
• Concepts:  Optimization/regression with cost functions involving 

hyperparameters; Cross validation; Hierarchical models
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Introduction & Simple Algorithms
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Part 1 – Introduction & Simple Algorithms

• Introduction
– Resources
– Types of Algorithms

• Unsupervised vs. Supervised
– Motivating Battery Examples

• Simple algorithms
– K-means clustering
– Decision tree
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Resources 

• https://towardsdatascience.com, Wikipedia
• Coursera.org – Machine Learning (Andrew Ng)

1. Linear regression with multiple variables
1. Matlab, Octave

2. Logistic regression – classification, hypothesis, decision boundary, cost function, gradient descent
1. Regularization, multiclass classification (one-vs-all)

3. Neural Networks – speech, image recognition, …, non-linear regression
1. How the brain works

4. Neural Networks Learning – backpropagation algorithm
5. Best practices – Train/Validation/Test datasets, Should I collect more data?

1. Bias (underfitting) vs. Variance (overfitting); Learning Curves; Skewed data
6. Support Vector Machines
7. Unsupervised Learning – market segmentation, text summaries

1. Principal Components Analysis, K-Means
8. Anomaly Detection – e.g. fraud detection, manuf. Outliers

1. Recommender systems – collaborative filtering, low-rank matrix factorization
9. Large-Scale ML – Stochastic & Mini-Batch Gradient Descent; Parallelization
10. Image Recognition Examples – recognize objects, words in an image, facial recognition

1. Artificial data synthesis (+meaningful noise) vs Crowd source
2. Algorithm pipeline

• Electrochemical Society Data Sciences Hacks
• Materials Research Society tutorials
• U. Maryland Bootcamp 

• http://nanocenter.umd.edu/events/mlmr-2020/
• Materials Research, Microscopy data

Echem & 
Materials 

Disciplines
General Theory

https://towardsdatascience.com/
http://nanocenter.umd.edu/events/mlmr-2020/
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Additional Background Resources

• ML in Materials Science – Excellent description of many algorithms

– T. Mueller, A.G. Kusne, R. Ramprasad, “Machine Learning 
in Materials Science,” Reviews in Computational 
Chemistry, 29: 186-273 (2016)

• ML Theory
– G. James, D. Witten, T. Hastie, R. Tibshirani, “An 

introduction to statistical learning” 2013.
– J. Friedman, T. Hastie, R. Tibshirani, “The elements of 

statistical learning” 2010. 
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Computational  Resources

Languages
• Matlab (engineers - $), Octave (free version)
• R (statisticians)
• Python 3.7 (everybody)

– https://www.anaconda.com/distribution/#download-section
Libraries
• NumPy, SciPy, Scikit-learn (regression, clustering, …)
• PyTorch (computer vision, natural language processing – Facebook AI)
• TensorFlow (deep learning neural networks - Google Brain Team)

https://www.anaconda.com/distribution/#download-section
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Types of Algorithms

• Supervised vs Unsupervised
• Continuous and/or Discrete (Classification)
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Supervised learning

• Algorithm is told what is the correct answer
– Labeled input/output training data (x,y)

• Regression problem (Continuous): Fitting a 
function to data
– Feature selection
– Feature scaling important

• Classification problem (Discrete): Classification 
problem – is mechanism present or not, using 
infinite number of features/attributes
– Logistic regression
– Support Vector Machine

Figure:
A. Gilad Kusne
Daniel Samarov

Figure: T. Mueller, Reviews in 
Comp. Chem. (2016)
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Unsupervised learning

• Algorithm is not told the correct answer
• Tries to determine “categories” or “types” from data
• Needs only input data (x)

Examples:
• Google news sorting
• Deconvolution
• Market segmentation Figure:

Andrew Ng
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Supervised vs Unsupervised Learning
Applications in Materials Science

Table: T. Mueller, 
Reviews in Comp. 
Chem. (2016)
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Motivating Battery Examples
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Applications of ML to 
Batteries

1. Manufacturing quality

2. Microscopy/image processing

3. Echem data (IVT)  Lifetime, performance 

4. Materials research

5. Other battery R&D (safety)

“Crowd-sourced” data (Andrew Ng)
… for Batteries: 
• Real-world/complex data
• Density functional theory simulations

• Materials Project Database
• 3D continuum simulations

• Echem/thermal
• Microstructure

Clustering

Neural 
Networks

Penalized 
Regression

Figure: Schnell, J. Pwr
Sources, 2019

Algorithms

Data

Gaussian 
Process 

Regression
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Simple Algorithms
(U) K-means Clustering (discrete) + Example

(U) Principal Components Analysis (continuous/linear algebra)
(S) Generalized Linear Model (continuous) 

(S) Decision Tree (discrete) + Example
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K-Means Clustering: Overview and Goals

• Accurately group data using the fewest number of cluster 
centers (k) as possible

• Provides insight of potential patterns within data and makes 
analysis easier

• Simple unsupervised method (input data doesn’t need to be 
labeled)
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K-Means: How it works

• Based on the number of cluster centers, the nearest points 
will be sorted to the nearest cluster center.

• Two common methods used to define distance:*
– Euclidean or L2 norm
– Manhattan City Block,

Taxi Cab or L1 norm
• Algorithms will typically iterate through different center 

locations, cj, to find the optimum cluster centers while the 
user sets the number of cluster centers to be used

x1

x2

a

b

*https://en.wikipedia.org/wiki/Norm_(mathematics)

https://en.wikipedia.org/wiki/Norm_(mathematics)


NREL    |    18

K-Means: Algorithm Description

• Both the number of centers and the initial center location needs to 
be chosen by the user.
– The initial center locations should be fairly spread out
– Pre-clustering algorithm[3] can help determine number

• The distance to the respective centers will then be calculated and 
the point selected will belong to the cluster whose center it is 
closest too. 
– If we consider point p (x1, y1) and centers c1 (x2, y2) and c2 (x3, 

y3). Then using the Euclidean method for distance p will be 
assigned to c1 or c2 based on: 
min 𝑥𝑥1 − 𝑥𝑥2 2 + 𝑦𝑦1 − 𝑦𝑦2 2, 𝑥𝑥1 − 𝑥𝑥3 2 + 𝑦𝑦1 − 𝑦𝑦3 2
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K-Means: Algorithm Description, 
cont.

• After all values have been sorted to a cluster, the center of 
each cluster is calculated. 

– 𝐶𝐶𝑖𝑖,𝑥𝑥 = (∑𝑖𝑖=1
𝑁𝑁 𝑥𝑥𝑖𝑖)
𝑁𝑁

,𝐶𝐶𝑖𝑖,𝑦𝑦 = (∑𝑖𝑖=1
𝑁𝑁 𝑦𝑦𝑖𝑖)
𝑁𝑁

• After the new cluster centers are calculated, points are 
reassigned to the new cluster centers.

• This process repeats itself until no values change clusters.
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K-Means: Generic Example
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K-Means: Evaluating Clusters

• Need to balance accuracy vs. simplicity
• Accuracy of a cluster is simply defined as:

– 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹𝑦𝑦 𝑂𝑂𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝑂𝑂 𝐶𝐶𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀 𝑖𝑖𝐹𝐹 𝐶𝐶𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹
𝑇𝑇𝑀𝑀𝑀𝑀𝐶𝐶𝐹𝐹 𝐼𝐼𝐹𝐹𝑀𝑀𝑀𝑀𝐶𝐶𝐹𝐹𝑂𝑂𝐹𝐹𝑀𝑀 𝑖𝑖𝐹𝐹 𝐶𝐶𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹

(Requires hand-annotated “truth” data)

• User must decide what change in accuracy is significant 
enough to them to add an extra cluster center
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K-Means: Importance/Uses

• Accuracy similar to that of more robust algorithms while 
being less computationally expensive.[2]

• Due to unsupervised nature can be useful when new data is 
coming in

• Allows us to gain information about data and assumptions 
prior to further analysis or model making.
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• https://blogs.oracle.com/datascience/introduction-to-k-means-clustering
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https://blogs.oracle.com/datascience/introduction-to-k-means-clustering
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K-means Clustering
Battery Example

(A. Ran, Adv. Theory & Sim., 2020)

Rapid screening test to estimate 
C/5 full capacity (10-hour test!)

in 3.5 minutes.
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Fitting of relaxation data

K-means Battery Example (cont.)
(A. Ran, Adv. Theory & Sim., 2020)

Principal 
Components 

Analysis (PCA) Feature 1

K-means 
Clustering

V = U + R*exp(-t/τ)

U

R

Rapid pulse test @ 5% SOC

Good, moderate, poor cells

Finds dominant 
eigenvalues/modes
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Generalized Linear 
Model

• Supervised, continuous algorithm
• Linear regression generalized to account for response variables that have 

non-normal error distribution 
• Probability distributions: normal, binomial, Poisson, gamma, …
• Unifies linear regression (continuous values), logisitic regression 

(discrete values), Poisson regression
• Algorithm: Iteratively reweighted least squares for maximum 

likelihood cost function
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Decision Trees

• Supervised, discrete learning algorithm
• Top-down recursive method
• Attributes are either categorical or discretized 

numerical data
• Data are split at each level based on the attribute’s 

value
• Hunt’s Algorithm: Grows decision tree recursively 

by splitting training data into purer subsets
• Stop splitting at either set number of nodes or 

when a “leaf” becomes completely pure.

Figure: T. 
Mueller, Reviews 
in Comp. Chem. 
(2016)

Example use: Predict material 
properties from DFT database 
(melting point, density, 
conductivity,…) 

Root 
node
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GLM & Decision Tree – Manuf. Example
(J. Schnell, J. Power Sources, 2019)

Generalized Linear Model (continuous) Decision Tree (discrete)



PART 2

Penalized Regression, Cross Validation 
Early Life Prediction Example
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Part 2 – Penalized Regression & Cross Validation

• Linear least squares
• Penalized Regression

– Ridge
– LASSO
– Elastic Net
– Logistic regression  Neural Net.

• Determining hyperparameters via cross-
validation

• Battery Example
– Early life prediction
– Fast charge protocol optimization

Goals
• Reveal complex relationships that 

are unknown a priori
• Down-select 

features/mechanisms that best 
describe data

• Avoid under/overfitting
• Determine when more test data 

are needed

• Reduce the time duration of battery 
lifetime experiments
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Penalized Regression

….(mostly) following notation of Andrew Ng
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Cost function (linear least squares)

• Hypothesis function:  ℎ = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯+ +𝜃𝜃𝐹𝐹𝑥𝑥𝐹𝐹

ℎ𝜃𝜃 𝑥𝑥 = 𝜃𝜃0 𝜃𝜃1 ⋯ 𝜃𝜃𝐹𝐹

𝑥𝑥0 = 1
𝑥𝑥1
⋮
𝑥𝑥𝐹𝐹

= 𝜃𝜃𝜃𝜃

– 𝑛𝑛𝑀𝑀𝑡 order hypothesis function or model

– 𝑚𝑚 data observations

• Cost function:   𝐽𝐽 𝜃𝜃 = 1
2𝑚𝑚

∑𝑖𝑖=1𝑚𝑚 (ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 − 𝑦𝑦 𝑖𝑖 )2

• Minimization objective – min
𝜃𝜃
𝐽𝐽 𝜃𝜃

• Dependent variable, 
observation

• Independent variables 
or  “features”

• Can include nonlinear 
features, e.g.

• 𝑥𝑥1 = 𝑧𝑧
• 𝑥𝑥2 = 𝑧𝑧2
• 𝑥𝑥3 = 𝑧𝑧3

• Parameters
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Least squares solution - Analytical

• Analytical solution of linear problem for parameters:  
𝜃𝜃 = (𝜃𝜃𝑇𝑇𝜃𝜃)−1𝜃𝜃𝑇𝑇𝑦𝑦

• Matlab solution: theta = pinv(X’*X)*X’*y
• Inverse not possible if 𝜃𝜃𝑇𝑇𝜃𝜃 is singular

– redundant/linearly dependent features
– too many features

… delete some features (or use regularization!)
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Least squares solution – Generic numerical algorithm

• Gradient descent – similar to Newton’s method for solving nonlinear 
equations
– Make initial guess, 𝜃𝜃𝑗𝑗
– Iterate {

𝜃𝜃𝑗𝑗 ∶= 𝜃𝜃𝑗𝑗 − 𝛼𝛼 𝜕𝜕
𝜕𝜕𝜃𝜃𝑗𝑗

𝐽𝐽(𝜃𝜃)
} 

– learning rate, 𝛼𝛼
– prevents oscillation - plot cost function for each iteration

• More advanced numerical algorithms (Matlab): 
– Unconstrained: fminunc, fminsearch
– Constrained: fminbnd, fmincon
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Scaling Data – Improves Convergence

• Goal: Get all variables to vary between -1 to +1 or similar (doesn’t need to be exact)
• Normalize with maximum range or standard deviation of each variable

𝑞𝑞 = 1 − 𝐴𝐴𝑡𝑡
1
2 − 𝑏𝑏𝑁𝑁2

ℎ = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2
𝑡𝑡 ∈ (0 to 365) , 𝑁𝑁 ∈ (0 to 10,000), 𝑞𝑞 ∈ (0.6 to 1.0)

𝑡𝑡
1
2 ∈ (0 to 19),  𝑁𝑁2 ∈ (0 to 100,000,000)

Centered & scaled using 
standard deviation

Scaled 
using 

max range

Example model 
and
data

q : capacity (relative)
t : time (days)

N : cycles

𝑥𝑥1 =
𝑡𝑡
1
2

max 𝑡𝑡
1
2

, 𝑥𝑥2 =
𝑁𝑁2

max 𝑁𝑁2

𝑦𝑦 =
𝑞𝑞 − min(𝑞𝑞)

max 𝑞𝑞 − min 𝑞𝑞

𝑦𝑦 =
𝑞𝑞 − mean(𝑞𝑞)

std 𝑞𝑞

𝐽𝐽(𝜃𝜃)

𝑥𝑥1

𝑥𝑥2
𝐽𝐽(𝜃𝜃)

𝑥𝑥1

𝑥𝑥2
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Weighting data

• Introduce weights, 𝑤𝑤𝑖𝑖, into cost function:   

𝐽𝐽 𝜃𝜃 =
1
2𝑚𝑚�

𝑖𝑖=1

𝑚𝑚

𝑤𝑤𝑖𝑖(ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 − 𝑦𝑦 𝑖𝑖 )2

• Ideal weight is the reciprocal of the variance of the error
• Observations with small variances should have relatively large 

weights. Observations with large variances should have relatively 
small weights

• “Robust” regression de-weights outlier data points
• Use your intuition:  Are some data points more important than 

others?
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Regularization – helps solve ill-posed problems

• Cost function:   

𝐽𝐽 𝜃𝜃 =
1
2𝑚𝑚�

𝑖𝑖=1

𝑚𝑚

(ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 − 𝑦𝑦 𝑖𝑖 )2+ 𝜆𝜆�
𝑗𝑗=1

𝐹𝐹

𝜃𝜃𝑗𝑗2

• Analytical solution of linear problem:  
𝜃𝜃 = (𝜃𝜃𝑇𝑇𝜃𝜃 + 𝜆𝜆𝜆𝜆)−1𝜃𝜃𝑇𝑇𝑦𝑦

• Large 𝜆𝜆 forces parameters to be smaller. Helps convergence. Helps 
prevent overfitting

• How to choose hyperparameter, 𝜆𝜆
– Sweep range of values. Check results versus cross-validation data
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Cross validation – Train & Test!

Goal: Avoid under- and over-fitting

Figure: https://docs.aws.amazon.com/machine-
learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Training data
Testing data

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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Error    
Error    

Error    
Error    
Error    
Error    

Error    

Total Error 
for model hypothesis 
with hyperparameter value λ

k-fold Cross Validation

Figure: http://www.ebc.cat/2017/01/31/cross-validation-strategies/#k-fold

• Divide data sets into “k” random bins
– “Hold one out” removes one at a time (identical if k = # total observations)

• Provides method to optimize hyperparameter and validate model hypotheses

All data

http://www.ebc.cat/2017/01/31/cross-validation-strategies/#k-fold
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Selecting Best Model Using Cross Validation

• Also useful to plot 
convergence of model 
versus amount of test data

• For high variance
– More test data
– More regularization 

(less model complexity)
– Better features

Test /

Figure: 
http://www.luigifreda.com/201
7/03/22/bias-variance-tradeoff/

http://www.luigifreda.com/2017/03/22/bias-variance-tradeoff/
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LASSO (least absolute shrinkage and selection operator)

• Cost function:   

𝐽𝐽 𝜃𝜃 =
1
2𝑚𝑚�

𝑖𝑖=1

𝑚𝑚

(ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 − 𝑦𝑦 𝑖𝑖 )2+ 𝜆𝜆�
𝑗𝑗=1

𝐹𝐹

𝜃𝜃𝑗𝑗

• Hyperparameter, 𝜆𝜆
• Large 𝜆𝜆 forces parameters to be zero if their contributions are 

insignificant (throws out model terms).
• The L1 norm is non-differentiable. No analytical solution exists.
• Now your algorithm can make decisions to select relevant features 

(e.g. mechanisms) for a model!!
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Elastic Net = LASSO + Regularization

• Cost function:   

𝐽𝐽 𝜃𝜃 = 1
2𝑚𝑚

∑𝑖𝑖=1𝑚𝑚 (ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 − 𝑦𝑦 𝑖𝑖 )2+ 𝜆𝜆1 ∑𝑗𝑗=1𝐹𝐹 𝜃𝜃𝑗𝑗 + 𝜆𝜆2 ∑𝑗𝑗=1𝐹𝐹 𝜃𝜃𝑗𝑗2

• Contains both 
– L1 norm = Manhattan or taxicab norm 

= ∑𝑗𝑗=1𝐹𝐹 𝜃𝜃𝑗𝑗 = 𝜃𝜃 1 (LASSO)
– L2 norm = Euclidian norm 

= ∑𝑗𝑗=1𝐹𝐹 𝜃𝜃𝑗𝑗2 = 𝜃𝜃 2 (Regularization)
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Logistic Regression – Classification, e.g. y={0,1}

• Recall our linear regression hypothesis function
ℎ𝜃𝜃(𝑥𝑥) = 𝜃𝜃𝑇𝑇𝑥𝑥

• Logistic regression uses a non-linear hypothesis 
function that switches on/off  classification, 
y = {0, 1} or {0, 1, 2, …}

ℎ𝜃𝜃(𝑥𝑥) = 𝑔𝑔(𝜃𝜃𝑇𝑇𝑥𝑥) where    𝑔𝑔 𝑧𝑧 = 1
1+𝐹𝐹−𝑧𝑧

𝐽𝐽 𝜃𝜃 = − 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑦𝑦 𝑖𝑖 logℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 + (1 − 𝑦𝑦 𝑖𝑖 )𝑙𝑙𝑙𝑙𝑔𝑔 1 − ℎ𝜃𝜃 𝑥𝑥 𝑖𝑖 + 𝜆𝜆

2𝑚𝑚
∑𝑗𝑗=1𝐹𝐹 𝜃𝜃𝑗𝑗2 -5 0 5

z = ( T  x)

0

0.2

0.4

0.6

0.8

1

g(
z)

observations
outputs

layers
neurons in layer l

• …extends to Neural Network

𝐽𝐽 Θ = −
1
𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
(𝑖𝑖) log ℎΘ 𝑥𝑥 𝑖𝑖

𝑘𝑘
+ (1 − 𝑦𝑦𝑘𝑘

(𝑖𝑖))𝑙𝑙𝑙𝑙𝑔𝑔 1 − ℎΘ 𝑥𝑥 𝑖𝑖
𝑘𝑘

+
𝜆𝜆
2𝑚𝑚

�
𝐹𝐹=1

𝐿𝐿−1

�
𝑖𝑖=1

𝑀𝑀𝑙𝑙

�
𝑗𝑗=1

𝑀𝑀𝑙𝑙+1

Θ𝑗𝑗𝑖𝑖
(𝐹𝐹) 2

Output of logistic function 
also can be interpreted as 
probability
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Early Lifetime Prediction using Penalized Regression
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Early Life Prediction
Severson et. al., Nature Energy 4 (5) 2019

“Data-driven prediction of battery cycle life before capacity degradation”

• 124 cells (LFP/Gr by A123, 1.1 Ah, 2.0V-3.6V, 4C CC-CV discharge*)
• Various charging protocols:

– 3.6C to 7C CC charge in different combinations of steps from 0%-80% SOC, 
1C CC-CV from 80%-100% SOC for all cells*

• Machine learning models:
– Regression: linearized model regularized by both lasso and elastic net, with 

hyperparameters optimized by four-fold cross validation and Monte Carlo 
sampling

– Classification: logistic regression
– Code provided open source

*All cells share the same 
discharge voltage curves

Longest
lifeShortest

life



NREL    |    46

Elastic Net 
Considered Many 

Features
Severson, Nature Energy 4 (5) 2019

• Best is difference between 
discharge curve at cycle 
100 and discharge curve 
at cycle 10
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Capacity Difference 
Metric

Severson, Nature Energy 4 (5) 2019

• Q100 – Q10 = ∆Capacity at a given V
– Discretized voltage with 1000 

values from 2.0 to 3.6V
– Resampled capacity data using 

splines to obtain 1000 values 
of capacity, Qi, for each cycle I

• Enables comparison of two 
different discharge curves that 
have a different number of time 
stamps
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Unique descriptor and 
model results

Severson, Nature Energy 4 (5) 2019

[1]

Variance model Discharge model Full model

Variance model:
Uses only var(Q100-Q10) as a 
descriptor 
Discharge model:
Uses only discharge curve 
information as descriptors 
(6 total)
Full model:
Discharge model + charge 
time, temperature, and 
resistance descriptors 
(9 total)
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Discussion
Severson, Nature Energy 4 (5) 2019

• Result is similar to incremental capacity analysis (dQ/dV)
– dQ/dV generally run at slow rates << C/5
– 4C discharge includes impedance growth effects 

• LFP: Single capacity fade mode (Li loss)
• Full discharge curve available from every cell, every cycle

– Highly valuable model provided this discharge condition always exists
• Can this be applied for SOH estimation in real-world use?

– End of charge is a more common operating condition (PART3, GPR examples)
• Accelerates laboratory testing (PART3, Bayesian Opt. of Charge Protocols)



NREL    |    50

Bayesian Optimization 
Concept

• Posterior distribution changes 
(prediction improves) as more 
training data added

• Black triangle is truth, f
• Diamonds are training data, D

– First
– Second
– Third
– Fourth
– Fifth

Source: T. Mueller, A.G. Kusne, R. 
Ramprasad, Reviews in Computational 
Chemistry (2016)
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Fast-charge protocol optimiz.
(P. Attia, Nature, 2020)

• Find charge 
protocol 
(CC1,2,3,4) with 
longest life

80%∆SOC 
in 10 min

• Closed-loop 
experiment 
optimization

• Uses early-
life prediction 
method of 
Attia, 2019.

Bayesian 
optimization

Early life 
prediction 
accelerates 
optimization
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Conclusions & Related Work

• Penalized regression + cross validation automates selection of most important features when 
fitting a regression model
– Features should embed physical knowledge

• Physical properties, mechanisms, model calcs., similarity transforms, etc.
– Avoids under/over fitting

• Related – Hierarchical ML[3-6]

– Leverages domain knowledge to reduce # experiments 
required to explore large variable spaces (enable ML on 
small datasets)

– Guides the choice of descriptors that are explicitly 
dependent on material properties, known degradation 
mechanisms, etc.

• Present work in Hierarchical ML at NREL & INL[7]

– Identify physical life models describing lifetime across 
variable operating conditions

– Reduce testing, increase accuracy, automate
Figure: Childs MRS Comm. (2019)
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PART 3 – Probabilistic Methods

Bayes Theorem
Bayesian Optimization Fast Charge Example 

Gaussian Process Regression
Lifetime/Health Examples
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Bayes Theorem

• Example: Cancer test with 90% accuracy,   p(test+ | cancer)
– Probability of cancer given positive test, p(cancer | test+)

• Bayes Theorem lets us reverse conditional probabilities

Source: http://www.stat.cmu.edu/~brian/463-663/week09/Chapter%2003.pdf

Conditional probability for 
event B given event A 

Conditional probability for 
event A given event B 

Marginal probability for 
event B

Marginal probability for 
event A

x

−..

• Start with prior probability information. 
– Use new information to calculate posterior probability

http://www.stat.cmu.edu/%7Ebrian/463-663/week09/Chapter%2003.pdf
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• Posterior distribution changes 
(prediction improves) as more 
training data added

• Black triangle is truth, f
• Diamonds are training data, D

– First
– Second
– Third
– Fourth
– Fifth

Source: T. Mueller, A.G. Kusne, R. 
Ramprasad, Reviews in Computational 
Chemistry (2016)

Bayesian Optimization 
Concept
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Fast-charge protocol optimiz.
(P. Attia, Nature, 2020)

• Find charge 
protocol 
(CC1,2,3,4) with 
longest life

80%∆SOC 
in 10 min

• Closed-loop 
experiment 
optimization

• Uses early-
life prediction 
method of 
Attia, 2019.

Bayesian 
optimization

Early life 
prediction 
accelerates 
optimization
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Gaussian Process Regression 
(GPR) and State-of-Health 

(SOH) Estimation

• Motivation
• GPR Algorithm
• Examples
• Conclusions, Future Work,

Open-source Data
Figure: D. Yang, JPS, 2018
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Motivation – Estimate full capacity (SOH) without running a full charge/discharge

Motivation – Gaussian Process Regression (GPR) Algorithm

Features
1. Time in CC mode
2. Time in CV mode
3. Voltage relaxation
4. Final voltage
5. EIS spectra

GPR benefits
• Ability to down-select best “features” that correlate with capacity
• Once trained, easy to implement in real-time controller
• Provides capacity “measurement” and measurement error
• Interpretable, can include physical knowledge
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Gaussian Process Regression (GPR) Algorithm
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Gaussian Process Regression

• Probability distribution between measured input x (observation) 
and output y (response)

Distance between xi and xj. 
When small, k is large.

Kernal

“Prior” distribution

Noise covariance matrix

Optimize hyperparameters

• Squared-exponential 
covariance function

• Many others possible

Measurement is important 
when weight l is large• Training

Source: Yang, J. Power Sources, 2018
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Gaussian Process Regression - Optimization

• Cost function

Optimize hyperparameters

• Training

• Partial derivative for  gradient descent algorithm

Source: Yang, J. Power Sources, 2018
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Gaussian Process Regression - Implementation

• Estimate

“Posterior” distribution

• Prediction

• Error estimate

Source: Yang, J. Power Sources, 2018
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Examples of SOH Estimation Using GPR
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GPR – SOH Using Charge Features
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GPR SOH based on CCCV features (timeCC, timeCV)

±7% error 
@ 20% fade
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GPR SOH using relaxation features (Vs, Ro, Ra, Rc) Vs



NREL    |    68

GPR: SOH from EIS
(Zhang, Nat. Comm, 2020)

• 9 EIS measurements were recorded 
every-other cycle. 

• 0.02 Hz - 20 kHz, 5mA excitation (C/9), 15-
minute rest before

6 training datasets
6 testing datasets

Aging 
data:
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GPR: SOH from EIS – Data structure
(Zhang, Nat. Comm, 2020)

Input Matrix
(a.k.a. features or indep. variables)

x = 

Cell 1

Cell 2

Cell n

…
…

N = total number of EIS measurements across all cells
M = number of data points per EIS measurement

Capacity at the end of the cycle where 
EIS was measured.

Response Vectors
(a.k.a. output or dependent variables)

Remaining useful life (# of cycles until 
relative capacity hits 80%)

(N by M)

(N by 1)

y2 =

(N by 1)

y1 =
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GPR: SOH from EIS – Selecting Input Data
(Zhang, Nat. Comm, 2020)

During discharge

15 min after 
CC discharge

State-V

15 min after 
CCCV charge

Not all measurements are of 
equal value. EIS must be 
conducted when battery state is 
constant – i.e., after resting. 
Data from EIS at OCV w/o rest, 
or from non-linear portions of 
C-V curve, are very noisy, and 
build a worse model. 
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GPR: SOH from EIS– Selecting Best Prediction Frequencies
(Zhang, Nat. Comm, 2020)

• GPR can be modified with hyperparameters that can automatically down-weight 
input features (i.e., specific frequencies from the EIS measurements) that are 
irrelevant to the regression

• This method essentially identifies the critical information from the input matrix 
that is required to make a prediction
– Algorithm selected trough and peak of EIS semicircle
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Conclusions – Gaussian Process Regression for SOH

Limitations of literature
• Algorithms tested on 2-12 cells
• Constant T
• Constant SOC0 @ start of charging
• Constant charge rate

Features
1. Time in CC mode
2. Time in CV mode
3. Voltage relaxation
4. Final voltage
5. EIS spectra

Must generalize for real-world 
operating conditions

• Variable T, SOC0, charge rate
• Variable cycling/use/degradation modes
• Feature selection

• Physics justified
• Physics model parameters

 Capacity in CC mode within a voltage window

Model parameters Ro, Ra, Rc fit to relaxation

Model parameters Rct, Rw, Cdl fit to EIS

 Ri = Ri,ref f(T,SOC)
(Independent of charge rate) (Independent of T,SOC)

(Independent of charge rate, SOC)

(Independent of frequency range)
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Features (Independent variables)

Raw Derived

• Time, t
• Current, I
• Voltage, V
• Temperature, T

• Capacity, Q
• Resistance(T,SOC,I, pulse time or freq.)
• Max(T)
• QCC or tCC
• QCV or tCV
• QV0-to-Vf or tV0-to-Vf
• dQdV

• Pos
• Neg
• Li inventory

• Acoustic
• Pressure/force
• Use history

• Avg. temperature
• Calendar age
• Cycling throughput
• Vehicle mileage
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Open-Source Aging Data

• NASA Ames, Prognostics Center of Excellence
– Saha, B., and Goebel, K. (2007). Battery Data Set, NASA Ames Progn. Data Repos. NASA Ames Res. Cent. Moffett Field 

CA. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.

• U. Maryland, Ctr. For Advanced Life Cycle Engineering (CALCE)
– He, W., Williard, N., Osterman, M., and Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer 

theory and the Bayesian Monte Carlo method. J. Power Sources 196, 10314–10321.
– Xing, Y., Ma, E.W.M., Tsui, K.L., and Pecht, M. (2013). An ensemble model for predicting the remaining useful 

performance of lithium-ion batteries. Microelectron. Reliab. 53, 811–820.

• Severson et al., MIT & Stanford
– Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M.H., Aykol, M., Herring, P.K., Fraggedakis, D., et 

al. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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Extra
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Remaining Useful Life 
Prediction Review Article
Hu et al., Battery Lifetime Prognostics, Joule (2019), 

https://doi.org/10.1016/j.joule.2019.11.018

Remaining challenges in RUL prediction:
• Early life prediction
• Dynamic load conditions

Opportunity: Physics models
• Computational complexity

Statistical methods  AI methods (better 
nonlinear fitting)

Empirical  Physics models (better accuracy)
Opportunity: Embedded control + Cloud 
computing; NN model reduction

• Lack of data
Researchers
1st life  2nd life

Opportunity: Blockchain + OpenData



PART 4 – Deep Learning / Neural Networks

Neural Network (NN) Theory
NN Inverse Models for Optimization (mesoscale, EIS)
NN Microstructure Segmentation
Generative Models
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Neural Network – Theory
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Deep Learning

• Mimic the biological brain
• Artificial neurons (a.k.a. nodes) 

linked like neurons
• “Deep” implies >1 hidden layer

Perceptron

Multilayer
neural network

Inputs, x

Output(s), y

Activation 
function, a

Sigmoid activation function, a(x)

• Continuously differentiable 
(gradient descent requires 
derivative

• Works for classification (discrete), 
regression (continuous), and mixed 
problems

Figures: T. Mueller, Reviews in Comp. Chem. (2016)

Input layer

Hidden 
layer

Output layer
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NN Training via Backpropagation

Gradient descent backpropagation algorithm

• For 𝜕𝜕

𝜕𝜕Θ𝑖𝑖𝑗𝑗
(𝑙𝑙) 𝐽𝐽 Θ ,

• Initialize parameter matrix to random values, −ϵ ≤ Θ𝑖𝑖𝑗𝑗
(𝐹𝐹)≤ ϵ

• Step through data, for 𝑖𝑖 =1 to 𝑚𝑚
– Set 𝐴𝐴(𝑖𝑖) = 𝑥𝑥(𝑖𝑖)

– Forward propagate: Compute 𝐴𝐴(𝑖𝑖) through all 𝐿𝐿 layers
– Using 𝑦𝑦(𝑖𝑖), compute 𝛿𝛿(𝐿𝐿) = 𝐴𝐴(𝐿𝐿) − 𝑦𝑦(𝑖𝑖)

– Backpropagate: Compute 𝛿𝛿(𝐹𝐹) for all other layers

– Δ𝑖𝑖𝑗𝑗
(𝐹𝐹) ≔ Δ𝑖𝑖𝑗𝑗

𝐹𝐹 + 𝐴𝐴𝑗𝑗
(𝐹𝐹)𝛿𝛿𝑖𝑖

(𝐹𝐹+1)

• 𝜕𝜕

𝜕𝜕Θ𝑖𝑖𝑗𝑗
(𝑙𝑙) 𝐽𝐽 Θ ∶= 1

𝑚𝑚
Δ𝑖𝑖𝑗𝑗

(𝐹𝐹) + 𝜆𝜆Θ𝑗𝑗𝑖𝑖
(𝐹𝐹) if 𝑗𝑗 ≠ 0

• 𝜕𝜕

𝜕𝜕Θ𝑖𝑖𝑗𝑗
(𝑙𝑙) 𝐽𝐽 Θ ∶= 1

𝑚𝑚
Δ𝑖𝑖𝑗𝑗

(𝐹𝐹) if 𝑗𝑗 = 0

• * Note – gradients can also be calculated numerically. Analytical preferred, but numerical is useful to cross-compare to validate 
analytical result

observations
outputs

layers
neurons in layer l

• Cost function

𝐽𝐽 Θ = −
1
𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
(𝑖𝑖) log ℎΘ 𝑥𝑥 𝑖𝑖

𝑘𝑘
+ (1 − 𝑦𝑦𝑘𝑘

(𝑖𝑖))𝑙𝑙𝑙𝑙𝑔𝑔 1 − ℎΘ 𝑥𝑥 𝑖𝑖
𝑘𝑘

+
𝜆𝜆
2𝑚𝑚

�
𝐹𝐹=1

𝐿𝐿−1

�
𝑖𝑖=1

𝑀𝑀𝑙𝑙

�
𝑗𝑗=1

𝑀𝑀𝑙𝑙+1

Θ𝑗𝑗𝑖𝑖
(𝐹𝐹) 2

Figure: T. Mueller, Reviews in Comp. Chem. 
(2016)
Equations: Andrew Ng/Coursera
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NN – Pros/Cons, Variants, Mat. Sci Applications

Pros/Cons
• Pros: General applicability to linear/nonlinear, discrete/continuous, image/time-series, …
• Cons: Black-box model. Lacks interpretability. Data/time-intensive training
Variants
• Architectures: 

– Dynamic systems: Recurrent NN include loops
– Spatial systems: Convolutional NN

• Activation functions: 
– Sigmoid, tanh, rectified linear, softmax, swish

• Optimization methods
Common materials applications

– Predict interatomic potentials
– Materials processing optimization
– Complex structure/property relationships Figure: https://missinglink.ai/guides/neural-network-

concepts/7-types-neural-network-activation-functions-right/

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
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NN Inverse Model
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Figure: Takagishi
et al., Batteries 

2019, 5, 54

Virtual Electrode Design via NN Inverse Model
(Y. Takagishi, Batteries, 2019)
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NN Electrode Design – Data Generation
(Y. Takagishi, Batteries, 2019)

• Objective: Min. Total resistance = Reaction + Electrolyte + Diffusion
• 2100 simulations of virtual generated microstructures
• Selected features

– Active volume fraction
– Particle radius
– Pressure
– Binder/additive vol. frac.

Figure: Takagishi
et al., Batteries 

2019, 5, 54
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Electrode Design – NN Selection
(Y. Takagishi, Batteries, 2019)

• Training data (70%)
• Validation data (30%)

Selected NN based on 
R2 saturating at 0.990 
• 2 hidden layers &
• 16 neurons

Table & Figure: 
Takagishi et al., 

Batteries 2019, 5, 54
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Electrode Design – Ranking Feature Importance
(Y. Takagishi, Batteries, 2019)

• 1st-layer-neuron weight-
coefficients are summed 
vs each design parameter

Active volume fraction 
most important

E’lyte, Binder vol. frac. next

Future:
• +Experiments, 

validation
• Energy density co-

optimization
• Convex Neural 

Network (invertible)

Optimal design
(Inverse problem)

Best fit
Not invertible

(Bayes. opt. did not converge)

Degraded fit
Invertible

Figures: Takagishi et 
al., Batteries 2019, 

5, 54
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EIS Fitting Using NN to Provide 
Initial Parameter Guesses

• EIS data notoriously hard to fit
– Dependent on human initial 

guesses
• Trained NN to provide initial guesses

Figures: S. Buteau, J. Echem Soc, 2019.
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Microstructure Segmentation – Fiji WEKA Software
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WEKA (Waikato Environment for 
Knowledge Analysis)

The Trainable Weka Segmentation1 is a Fiji plugin that combines a collection of machine 
learning algorithms with a set of selected image features to produce pixel-based 
segmentations.

The advantages of Weka include2:
• freely availability under the GNU General Public License
• portability, since it is fully implemented in the Java programming language and thus 

runs on almost any modern computing platform
• a comprehensive collection of data preprocessing and modeling techniques
• ease of use due to its graphical user interfaces

1 Arganda-Carreras, I.; Kaynig, V. & Rueden, C. et al. (2017), "Trainable Weka Segmentation: a machine learning tool for 
microscopy pixel classification.", Bioinformatics (Oxford Univ Press) 33 (15), PMID 28369169, 
doi:10.1093/bioinformatics/btx180 (on Google Scholar).
2 https://imagej.net/Trainable_Weka_Segmentation

https://academic.oup.com/bioinformatics/article-abstract/doi/10.1093/bioinformatics/btx180/3092362/Trainable-Weka-Segmentation-a-machine-learning
http://dx.doi.org/10.1093%2Fbioinformatics%2Fbtx180
http://scholar.google.com/scholar?cluster=12995971888361615836
https://imagej.net/Trainable_Weka_Segmentation
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Example 1: Identifying NMC particles (2D image)

 Image quality is good enough not to require advanced method such as machine learning to identify pore and 
solid domain. However, threshold-based segmentation provides a nearly fully connected solid domain. This 
example shows it is possible to identify individual particles through machine learning

 Classifier trained with 3 phases: pores, particles, particles connection.
 From this segmentation, a simple connectivity analysis can easily distinguish each particles individually
 Enable particle morphology and size analysis
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Example 2: Identifying open-porosity 
cracks/voids in graphite (3D volume)

 Distinction between the background (pore) and cracks is ambiguous. Threshold-based method 
will be highly subjective. Even though some cracks look like closed-porosity, they are actually 
connected to the pore in 3D, thus connectivity analysis cannot distinguish pores from cracks. 

 Classifier trained on the 3D volume with 3 phases: pores, cracks, particles.
 Enable quantification of crack density, and specific surface area due to cracks

Grey-level image
Pores, cracks, particle segmentation

WEKA machine-learning Overlay
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Example 4: Segmenting multi-phase, highly 
convoluted graphite/Li image (3D volume). 

 Difficulty comes from 
convoluted image and 
similar grey level value 
between several phases 
(pores of both layers, 
background and metal 
deposition solid phase).

 Threshold-based method 
cannot segment this image.

 Classifier trained on 5 
phases: solid and pore of 
both layers, plus the 
background

 Enable quantification of 
metal deposition

Graphite 
electrode

Plated Li 
metal

Grey-level image

4 phases + background segmentation
WEKA machine-learning

Overlay
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Other
Generative Adversarial Network

Safety Map
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Generative Adversarial Network 
– Microstructure Generation



NREL    |    95

Cell Crush Safety Map via 
Physics Simulation & ML

(Li, Joule, 2019)

Detailed 
finite 

element 
model of 

mechanical 
crush

• Predict separator failure from 
deformed geometry 
– NN w/ 1 hidden layer & 50 

nodes
• Generate safety map

– SVM with radial basis 
function (RBF) kernal
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Conclusions & Outlook
• Is the algorithm, right?  (linearity, error assumptions, architecture)

– How can I incorporate the physics of the problem?
• Do I have enough data?  Do I have the right data?  Will the model extrapolate?
• Center and scale!  (eat your vegetables)

Applications:
• Materials discovery
• Microscopy, 

spectroscopy
• Performance, 

lifetime, safety
• Manuf. process opt.
• Real-time control
• Fleet management

“Crowd-sourced” data
• Materials databases
• DFT
• Complex, hierarchical data

• Echem
• Microscopy
• Spectroscopy

• 3D continuum simulations
• Real-world data

Paths forward
• Open-source data

• Lab & real world
• Diversity of time & 

length scales
• Challenge problems
• Validity of ML 

algorithms across 
chemistries, designs
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