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What is Machine Learning?

* “Gives computers the ability to learn without being explicitly
programmed” (Arthur Samuel)

— Artificial intelligence
e Matching physical models to data (My interest)
— Automating my job

— Accelerate experiments, designs, applications, discovery
* Gaps =2 learn new battery physics

e Concepts: Optimization/regression with cost functions involving
hyperparameters; Cross validation; Hierarchical models
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1.

PART 1 — Introduction and Simple Algorithms

— Manufacturing Process

PART 2 — Penalized Regression,
— Early Life Prediction

PART 3 — Probabilistic Methods,
— State of Health Estimation

PART 4 — Deep Learning / Neural Networks
— Inverse Models
— Image Recognition

NREL | 3



PART 1

Introduction & Simple Algorithms
Manufacturing Process Example



Part 1 — Introduction & Simple Algorithms

* Introduction
— Resources
— Types of Algorithms
e Unsupervised vs. Supervised
— Motivating Battery Examples
* Simple algorithms
— K-means clustering

— Decision tree

NREL | 5



Electrochemical Society Data Sciences Hacks

Echem &
Resources Ve FiEle * Materials Research Society tutorials
Disciplines U. Maryland Bootcamp

. http://nanocenter.umd.edu/events/mimr-2020/
. Materials Research, Microscopy data

General Theory

* https://towardsdatascience.com
e Coursera.org — Machine Learning (Andrew Ng)

1. Linear regression with multiple variables

1. Matlab, Octave
2. Logistic regression — classification, hypothesis, decision boundary, cost function, gradient descent

1. Regularization, multiclass classification (one-vs-all)
3. Neural Networks — speech, image recognition, ..., non-linear regression

1. How the brain works @
4, Neural Networks Learning — backpropagation algorithm
5. Best practices — Train/Validation/Test datasets, Should | collect more data? ‘ Al suek Bacs i estog

1. Bias (underfitting) vs. Variance (overfitting); Learning Curves; Skewed data
6. Support Vector Machines "

. . . . Andrew Ng <
7. Unsupervised Learning — market segmentation, text summaries
American businessman

1. Principal Components Analysis, K-Means

8. Anomaly Detection — e.g. fraud detection, manuf. Outliers Andrew YarTak Ng fs  Brilsirtom American businessan,
. . . . . . computer scientist, investor, and writer. He is focusing on machine

1. Recommender systems — collaborative filtering, low-rank matrix factorization learing and Al Wikipedia
9. Large-Scale ML — Stochastic & Mini-Batch Gradient Descent; Parallelization
10. Image Recognition Examples — recognize objects, words in an image, facial recognition

1. Artificial data synthesis (+meaningful noise) vs Crowd source NREL | 6

2. Algorithm pipeline


https://towardsdatascience.com/
http://nanocenter.umd.edu/events/mlmr-2020/

Additional Background Resources

e ML in Materials Science — Excellent description of many algorithms

— T. Mueller, A.G. Kusne, R. Ramprasad, “Machine Learning
in Materials Science,” Reviews in Computational
Chemistry, 29: 186-273 (2016)

e ML Theory

— @G. James, D. Witten, T. Hastie, R. Tibshirani, “An
introduction to statistical learning” 2013.

— J. Friedman, T. Hastie, R. Tibshirani, “The elements of
statistical learning” 2010.
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Computational Resources

Languages
* Matlab (engineers - S), Octave (free version)
e R (statisticians)
 Python 3.7 (everybody)
— https://www.anaconda.com/distribution/#download-section

Libraries

* NumPy, SciPy, Scikit-learn (regression, clustering, ...)

e PyTorch (computer vision, natural language processing - racebook Al)
* TensorFlow (deep learning neural networks - Google Brain Team)

NREL | 8
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Types of Algorithms

e Supervised vs Unsupervised
e Continuous and/or Discrete (Classification)

NREL | 9



Supervised learning

Algorithm is told what is the correct answer
— Labeled input/output training data (x,y)
Regression problem (Continuous): Fitting a

function to data

problem —
infinite number of features/attributes

(a

)

Figure: T. Mueller, Reviews in
Comp. Chem. (2016)

(b)

Classification problem (Discrete): Classification
is mechanism present or not, using

Figure:
A. Gilad Kusne
Daniel Samarov

Texture

©Oe

6 . — Unlabeled sample
10

Color



Unsupervised learning

e Algorithm is not told the correct answer
* Tries to determine “categories” or “types” from data
* Needs only input data (x)

Examples:
* Google news sorting
e Deconvolution

* Market segmentation Figure:

Andrew Ng
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Supervised vs Unsupervised Learning

Applications in Materials Science

TABLE 1 Supervised and Unsupervised Learning Examples

Example Methods

Selected Matenals Applications

Supervised
learning
Table: T. IVIueIIer, UﬂEumWiSﬂd
Reviews in Comp. 1 .
Chem. (2016) SETINE

Regularized least squares
Support vector machines
Kernel ndge regression
Neural networks
Decision trees

Genetic programming

k-Means clustering

Mean shift theory

Markov random fields
Hierarchical cluster analysis
Principal component analysis
Cross-correlation

Predict processing structure—property
relationships; develop model
Hamiltonians; predict crystal
structures; classify crystal
structures; 1dentify descriptors

Analyze composition spreads from
combinatorial expennments; analyze
micrographs; identify descriptors;
noise reduction in data sets

NREL | 12



Motivating Battery Examples
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Applications of ML to EUIILE

c’7
6 Different separator
. £5 |
Batteries | -
Clustering g3t
S2t Figure: Schnell, J. Pwr
Manufacturing quality Neural SO 200 g et

Networks Cell mass begf%re filing in g
) ] ) Penalized
Microscopy/image processing Regressiag
CEVEYE
Process
Echem data (IVT) = Lifetime, performance Regression

“Crowd-sourced” data (Andrew Ng)
) ... for Batteries:
Materials research

* Real-world/complex data

* Materials Project Database

Other battery R&D (safety) e 3D continuum simulations
* Echem/thermal
*  Microstructure

100

Data

Density functional theory simulations
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Simple Algorithms
(U) K-means Clustering (discrete) + Example
(U) Principal Components Analysis (continuous/linear algebra)
(S) Generalized Linear Model (continuous)
(S) Decision Tree (discrete) + Example

NREL | 15



K-Means Clustering: Overview and Goals

Accurately group data using the fewest number of cluster
centers (k) as possible

Provides insight of potential patterns within data and makes
analysis easier

Simple unsupervised method (input data doesn’t need to be
labeled)

NREL | 16



K-Means: How it works

* Based on the number of cluster centers, the nearest points
will be sorted to the nearest cluster center.

e Two common methods used to define distance:

—|Euclidean or L, norm x| =,/ x.

—[Manhattan City Block n
x|, := Z ;|
i=1

Taxi Cab or L, norm
* Algorithms will typically iterate through different center
locations, c;, to find the optimum cluster centers while the
user sets the number of cluster centers to be used

d

*https://en.wikipedia.org/wiki/Norm (mathematics) NREL | 17



https://en.wikipedia.org/wiki/Norm_(mathematics)

K-Means: Algorithm Description

 Both the number of centers and the initial center location needs to
be chosen by the user.
— The initial center locations should be fairly spread out
— Pre-clustering algorithmB! can help determine number
 The distance to the respective centers will then be calculated and
the point selected will belong to the cluster whose center it is
closest too.

— If we consider point p (x,, y;) and centers c, (x,, y,) and c, (x,,
Y3)- Then using the Euclidean method for distance p will be

assigned to c, or ¢, based on:
min (/e — 12)2 + 01 — ¥2)2/ (et — 1307 + (1 — ¥3)?)

NREL | 18



K-Means: Algorithm Description,

cont.

After all values have been sorted to a cluster, the center of
each cluster is calculated.

[ONPED) _ @iy
~ =50y =7

After the new cIuster centers are calculated, points are
reassigned to the new cluster centers.

This process repeats itself until no values change clusters.

NREL | 19
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K-Means: Generic Example
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K-Means: Evaluating Clusters

Need to balance accuracy vs. simplicity
Accuracy of a cluster is simply defined as:

Most Frequently Occuring Class in Cluster

— Accuracy =
Y Total Instances in Cluster

(Requires hand-annotated “truth” data)

User must decide what change in accuracy is significant
enough to them to add an extra cluster center

NREL | 21



K-Means: Importance/Uses

e Accuracy similar to that of more robust algorithms while
being less computationally expensive.!?!

* Due to unsupervised nature can be useful when new data is
coming in

* Allows us to gain information about data and assumptions
prior to further analysis or model making.

NREL | 22
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Programming examples for k-means clustering in Python.

* https://towardsdatascience.com/understanding-k-means-clustering-in-
machine-learning-6a6e67336aal1?gi=572a98f4e093

* https://blogs.oracle.com/datascience/introduction-to-k-means-clustering
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K-means Clustering
Battery Example

(A. Ran, Adv. Theory & Sim., 2020)

FULL PAPER

werw.advtheorysimul.con.

Data-Driven Fast Clustering of Second-Life Lithium-lon

Battery: Mechanism and Algorithm

Aihua Ran, Zihao Zhou, Shuxiao Chen, Pengbo Nie, Kun Qian, Zhenlong Li, Baohua Li,

Hongbin Sun, Feiyu Kang, Xuan Zhang,* and Guodan Wei*

While electrical vehicles (EVs) are expanding rapidly and getting more and
more popular in the market, researchers have started to leverage the
remaining capacity of used or to-be-retired batteries for their second.life
applications. Itis crucial to develop a fast and efficient technology to
first sort them and then extend their life while delivering energy, waste
reduction, and economic benefits. In this work, a pulse clustering model
bedded with improved ¢ g K Igorithm is develaped to
effectively sort retired batteries with life cycles ranging from new to an
end-of-life state. The relevance of selected variables is rigorously validated,
reaching the accuracy as high as 88% compared with the traditional full
charge-discharge test. To note, the test time has largely reduced from hours
to minutes, This data-driven clustering medeling with fast pulse testis a
promising approach for clustering lithium-ion batteries, which is
demenstrated with a home-built and high throughput intelligent clustering
machine. In general, the technology opens a new generation of battery
clustering, improving the efficiency and accuracy over the past semiempirical
approaches.

1. Introduction

Lithium-ion batteries (LIBs) have a very
wide range of applications due to their low
price, decreasing cost, high energy den-
sity, and long lifetime '*] However, ow-
ing to the current manufacturing technol-
ogy, batteries currently used in electric ve-
hicles (EVs) do not maximize the life of
LIBs/ " Generally, a large proportion of
batteries retired from EVs have about 80%
capacity of their initial capacity/**! Accom-
panying with aging, LIBs experience volt-
age decay, resistance increase and capacity
loss, causing the shvivus difference among
retired batteries”| Taking battery thermal
management as an example, different de-
grees of battery aging will increase the diffi
culty of thermal management and increase
the risk of battery use!*"" Therefore, ac-
curately clustering the usable batteries with

I

Rapid screening test to estimate
C/5 full capacity (10-hour test!)
in 3.5 minutes.

o

Capacity(Ah)
i

18630 cylinder lithiumvion battery '

T Cycle
NREL |
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K-means Battery Example (cont.) Good, moderate, poor cells

(A. Ran, Adv. Theory & Sim., 2020)

Rapid pulse test @ 5% SOC

d —J1-100
= Principal
2R =i Components
N == — 2 Feature 1
3’ Analysis (PCA) >
34t
0 30 60 90 1 [ 150 >
e 9 K-means
Clustering e
L8} s
| U .
Fitting of relaxation data . _ Y .
R ﬁ_ [ « C2
. R 5] S r
V = U + R*exp(-t/t) L 0 Clreal T,
12k © Cl2real m
| A C3real R
m
]_.U i a. i i ml. |

330 333 340 3.45




Generalized Linear

\Yi[eYe[=]

e Supervised, continuous algorithm

e Linear regression generalized to account for response variables that have
non-normal error distribution

* Probability distributions: normal, binomial, Poisson, gamma, ...

e Unifies linear regression (continuous values), logisitic regression
(discrete values), Poisson regression

* Algorithm: Iteratively reweighted least squares for maximum
likelihood cost function

NREL | 26



Figure: T. 1 Ro(;)t
D =t T Mueller, Reviews . <b node

7
(2016) No Yes

No Yes

Supervised, discrete learning algorithm

Top-down recursive method
Attributes are either categorical or discretized

nu merical data An example of a simple decision tree.
Data are split at each level based on the attribute’s The leal nodes are n black-
value

Hunt’s Algorithm: Grows decision tree recursively

by splitting training data into purer subsets Example use: Predict material
Stop splitting at either set number of nodes or properties from DFT database
when a “leaf” becomes completely pure. (melting point, density,

conductivity,...)
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. . 6 Different separator
GLM & Decision Tree — Manuf. Example
=7 @
B (e
(J. Schnell, J. Power Sources, 2019) S, *°
. g,
% : Journal of Power Sources Table 1
£l Comparison of data mining tools for prediction of cell capacity before pre- o Not enough electrolyte
ELSEVIER journal homepage: www elsevier.com/locate/jpowsour | charge and formation. The data set consists of 113 cells and 64 independent } | i |
variables with an average capacity of 3.94 Ah. 80 0 100 110
Cell capacity Mean GIM ANN SVR DT RF  GBT Cell mass before filling in g
Data mining in lithium-ion battery cell production RMSE (in Ab) 089 042 076 048 051 044 042
Joscha Schnell’, Corbinian Nentwich, Florian Endres, Anna Kollenda, Fabian Dis{ Mean relative error (in %) 76 15 91 78 78 66
Thomas Knoche, Gunther Reinhart Imp?wir:.]em compared to mean 52 14 46 43 50 52
Technical University of Munich, Institute for Machine Tools and Industrial Management, Bolzmannstr. 15, D-85748, Garching, Germany " \x
Decision Tree (discrete)
a Batch 5 =i b :
Batch 4 Cell capacity
Monitoring_14 electrolyte residuals fe=—uu)] *
Monitoring_14 cell mass E——11
Process_8 welding power cathode — Electrode batch
l:'mcass__: :ﬂ!ding ﬁl.TIB anode — .y
rocess_7 drying recipe anode — Balch 5 Others
Batch 3 = — e T
Process_8 welding time cathode = Cell mass before
Process_7 drying recipe cathode [ ] o
Monitoring_14 electrolyte mass 1 2100.15g <100.15g Batch 4 Others
04 03 02 01 0 01 02 03 04 T s o a
Major influences of Generalized Linear Model 5.55 Ah 4.73 Ah 2.60 Ah 3.83 Ah

Fig. 5. Influences on cell capacity as derived from the GLM model (image a) and the DT model (image b).



PART 2

Penalized Regression, Cross Validation
Early Life Prediction Example



Part 2 — Penalized Regression & Cross Validation

Linear least squares Goals
Penalized Regression * Reveal complex relationships that
_ Ridge are unknown a priori
 Down-select
— LASSO features/mechanisms that best
— Elastic Net describe data
* Avoid under/overfitting
Determine when more test data
are needed

Determining hyperparameters via cross-
validation

Battery Example
— Early life prediction * Reduce the time duration of battery
lifetime experiments

NREL | 30



Penalized Regression

....(mostly) following notation of Andrew Ng

NREL | 31



Cost function (linear least squares)

Hypothesis function: h = 0y + 6,x1 + 0,x, + -+ +0,,x,

he(x) =160 61 - 64l

— nt" order hypothesis function
— m data observations

Cost function: J(8) = —X" (hg(x( )) y (D)2
Minimization objectlve = meln](H)

observation

* Dependent variable,

e Parameters

* Independent variables

or “features”

* Caninclude nonlinear

features, e.g.

X, =2z
« x, = z°
« x3 = z3

NREL | 32



Least squares solution - Analytical

e Analytical solution of linear problem for parameters:
0=X"'X)"txTy
e Matlab solution: theta = pinv(X"*X)*X *y
* Inverse not possible if (X7 X) is singular
— redundant/linearly dependent features
— too many features
... delete some features (or use regularization!)

NREL | 33



Least squares solution — Generic numerical algorithm

* Gradient descent — similar to Newton’s method for solving nonlinear

equations
— Make initial guess, 6;
— Iterate {
0;:=6; — a—](@)
}

— learning rate, a

— prevents oscillation - plot cost function for each iteration
 More advanced numerical algorithms (Matlab):

— Unconstrained: fminunc, fminsearch

— Constrained: fminbnd, fmincon

NREL | 34



Scaling Data — Improves Convergence

* Goal: Get all variables to vary between -1 to +1 or similar (doesn’t need to be exact)
* Normalize with maximum range or standard deviation of each variable

1
_ 5 2 . .
Example model q_— 1—atz— bN g : capacity (relative)
h=0y+ 601x; + 0,x, t: time (days)
and t € (0to 365), N € (0 to 10,000), g € (0.6 to 1.0) N: cycles
0 :
data tz € (0to 19), N2 € (0 to 100,000,000)
1
t2 N?
Scaled X1 = 1y’ X2 = maX(NZ) 4 ](9) 4 ](9)
USin rnax(tz)
g _ g —min(q) X2 X2
Max range Y= max(q) — min(q) » @
Centered & scaled using q — mean(q)
standard deviation Y= T std(g) v .

Jfl X1

NREL | 35



Weighting data

Introduce weights, w;, into cost function:
m
1 . .
J(0) = %Z w; (hg (x(l)) _ y(l))z
1=

Ideal weight is the reciprocal of the variance of the error

Observations with small variances should have relatively large
weights. Observations with large variances should have relatively
small weights

“Robust” regression de-weights outlier data points

Use your intuition: Are some data points more important than
others?

NREL | 36



Regularization — helps solve ill-posed problems

Cost function:
]_ m n
_ ' )2 2
J(6) = %Z(hg (x®) — y @) +AZ 6;
= j=

Analytical solution of linear problem:
0=X"X+A)"1XxTy

Large A forces parameters to be smaller. Helps convergence. Helps
prevent overfitting

How to choose hyperparameter, A

— Sweep range of values. Check results versus cross-validation data

NREL | 37



Cross validation — Train & Test!

Goal: Avoid under- and over-fitting

X
Underfitting Balanced . Overfitting

Figure: https://docs.aws.amazon.com/machine-
learning/latest/dg/model-fit-underfitting-vs-overfitting.html NREL | 38



https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

k-fold Cross Validation

[ [ [ Alldata [ [ |

Error
Error
Error
error - Total Error

Error | for model hypothesis

Error with hyperparameter value A
Error

e Divide data sets into “k” random bins

— “Hold one out” removes one at a time (identical if k = # total observations)
* Provides method to optimize hyperparameter and validate model hypotheses

Figure: http://www.ebc.cat/2017/01/31/cross-validation-strategies/#k-fold NREL | 39



http://www.ebc.cat/2017/01/31/cross-validation-strategies/#k-fold

Error

Selecting Best Model Using Cross Validation

High Variance

Validation Error

Training Error
_-_-'-‘--—_

__________ L e o o . . . o, . ., . e, . . s s s . &l

Test / |

Figure:
http://www.luigifreda.com/201
7/03/22/bias-variance-tradeoff/

Model Complexity

e Also useful to plot
convergence of model
versus amount of test data

e For high variance
— More test data

— More regularization
(less model complexity)

— Better features

NREL | 40
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LASSO (least absolute shrinkage and selection operator)

Cost function:
]- m n
J0) =5 > (he(x©) =y )42 ) |6
i=1 j=1

Hyperparameter, A

Large A forces parameters to be zero if their contributions are
insignificant (throws out model terms).

The L, norm is non-differentiable. No analytical solution exists.

Now your algorithm can make decisions to select relevant features
(e.g. mechanisms) for a model!!
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Elastic Net = LASSO + Regularization

e Cost function:

1 . .
J(0) = 531 (he(xV) = y )2+ 41 Bia|6)] + 2, X, 67
* Contains both
— L, norm = Manhattan or taxicab norm

=¥7116;] = 16ll; (LASSO)
— L, norm = Euclidian norm

=Z§‘=1 sz = ||6]|, (Regularization)
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e Recall our linear regression hypothesis function
hg(x) =0Tx

* Logistic regression uses a non-linear hypothesis
function that switches on/off = classification,

Logistic Regression — Classification, e.g. y={0,1}

Output of logistic function

also can be interpreted as

nrahahlilisy s
MTOUUDdUITILY

y=1{0,1}0r{0, 1, 2, ...}
_ T _ 1
ho(x) = g(8'x) where g(z)= =
Jj(@) =——= [Z y(i) log hg(x(i)) + (1 —yD)log (1 — hg (x(i)))] + %Z?:l 9]-2
...extends to Neural Network
J(0) = —% ZZ)/,ED log(h@(x(i)) +(1 - yk))log< h@(x()) ) % Z GU)

outputs

observations

neurons in layer /
layers

NREL | 43




Early Lifetime Prediction using Penalized Regression
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1.10 =

‘—\ |
o AN S < Longest
o Shortest/ e
life \

i LY | WO %V 0%, BN WA W _I_'___
0 100 200 300 400 500

Cycle number

“Data-driven prediction of battery cycle life before capacity degradation”

e 124 cells (LFP/Gr by A123, 1.1 Ah, 2.0V-3.6V, 4C CC-CV discharge*)
e Various charging protocols:

— 3.6Cto 7C CC charge in different combinations of steps from 0%-80% SOC,
1C CC-CV from 80%-100% SOC for all cells*

* Machine learning models:

— Regression: linearized model regularized by both lasso and elastic net, with

hyperparameters optimized by four-fold cross validation and Monte Carlo
sampling

— Classification: logistic regression *All cells share the same
— Code provided open source discharge voltage curves

Early Life Prediction

city (Ah)

Severson et. al., Nature Energy 4 (5) 2019

Discharge capa

0.90

600 700 800 900 1,000
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Elastic Net
Considered Many

Features
Severson, Nature Energy 4 (5) 2019

Voltage (V)

Q00— Qg (A)

Best is difference between
discharge curve at cycle
100 and discharge curve
at cycle 10

Log,, Cycle Life

Log,, Cycle Life

Discharge capacity

Intercept of discharge capacity fit

35

25

Log,, Cycle Life

cycles 2 to 100

2

w = 2.96e-06 w =-0.00711
— @ 35
ANl I:‘:“. E -‘,: 3_?
b oBGiens 2 3 4
ga GE e aled :
=25 .
n
o (=] o
" - 2 ’
0 5 -10 0 10

cycle 2 Temperature integral
w=0.0218 w = -0.0359
@ 35
cb = ) <]
L _I LY -]
ARaea0 L 3 g %,
a Q o
- o 25 o
[=r}
O (=] o
-2
0 5 - 2 0 2
Min &QWQ_W{VJ Variance ﬁQmu_w{V}
w = -0.0293 w = -0.0714
- @ 35 .
DDO'_ = r:l i
E 3 ‘f'-'
" 5 T
L 3 %) >
= =25 .
on
o [=] o
- 2
0 5 -5 0 5

Min internal resistance
cycles 2 to 100

Log,, Cycle Life

Log,, Cycle Life

Charge time
w =0.0392
3.5
i é e B‘
i i% ??:é::L' ¢
25 3
2
-2 0 2 4

Slope of discharge capacity fit

cycles 2 to 100

w=-0.0127
3.5

8
|
a
2
20 10 0 10

Internal resistance

cycle 100 -2
w=-0.0132
35
8
Lo 4
25 4
2 - "
-10 5 0 5
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Capacity Difference
Metric

Severson, Nature Energy 4 (5) 2019

Q00 — Q9 = ACapacity at a given V

— Discretized voltage with 1000
values from 2.0 to 3.6V

— Resampled capacity data using
splines to obtain 1000 values
of capacity, Q,, for each cycle |

Enables comparison of two
different discharge curves that
have a different number of time
stamps

3.9

3.0

Voltage (V)

2.0
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Unique descriptor and

model results
Severson, Nature Energy 4 (5) 2019

? s ® ss —— 2300 Variance model:
L]
. ol Pl 1.860 ] Uses _onIy var(Q,q0-Q,o) as a
% e\ | 8 N\l w0 g descriptor
o L o - & = .
=28 -2 | [ =0 % s  Discharge model:
20 - | 2ol 10 Lossom ot i sd  [15 Uses only discharge curve
o 0.5 1.0 —01 0 107° 107 107 ] . .
Discharge capacity (Ah) Qg0 - Qi (AN) Var(AQ,gg 1oV) 100 information as descriptors
, Variance model . Discharge model Full model (6 total)
| . ! | Full model:
£ 2000H £ 2,000 =" £ 2,000 H . ]
g | g | 4 g | J " Discharge model + charge
k=1 “ k=] A o ‘5 .
B oml g 8 1000 1 } 8 1000l 4 s time, temperature, and
g I , 8 I , 8 I ‘ : .
. A W LAl = | @ resistance descriptors
% 000 2000 % 1000 2,000 % 1000 2000 (9 total)
Observed cycle life Observed cycle life Observed cycle life

[1] ® Train = Primary test A Secondary test NREL | 48



Discussion
Severson, Nature Energy 4 (5) 2019

Result is similar to incremental capacity analysis (dQ/dV)

— dQ/dV generally run at slow rates << C/5

— 4C discharge includes impedance growth effects

LFP: Single capacity fade mode (Li loss)

Full discharge curve available from every cell, every cycle

— Highly valuable model provided this discharge condition always exists
Can this be applied for SOH estimation in real-world use?

— End of charge is a more common operating condition (PART3, crrexamples)
Accelerates laboratory testing (PART3, sayesian opt. of charge protocols)
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Bayesian Optimization

Concept

| P(fID.g)

Posterior distribution changes
(prediction improves) as more
training data added

Black triangle is truth, f
Diamonds are training data, D

— Second
— Third
— Fourth

Source: T. Mueller, A.G. Kusne, R.

— F|fth Ramprasad, Reviews in Computational
Chemistry (2016) NREL | 50



Fast-charge protocol optimiz.

(P. Attia, Nature, 2020)

104
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Conclusions & Related Work

Penalized regression + cross validation automates selection of most important features when
fitting a regression model

— Features should embed physical knowledge
* Physical properties, mechanisms, model calcs., similarity transforms, etc.
— Avoids under/over fitting

Hierarchical machine learning

Related — Hierarchical ML[3-6! System @
. . responses -

— Leverages domain knowledge to reduce # experiments A
required to explore large variable spaces (enable ML on Statistical eature engineering.
small datasets) Inference

A
— Guides the choice of descriptors that are explicitly Single and multi-physics @y N
: . , It phy 2
dependent on material properties, known degradation interactions 2
mechanismsl etc. Physical modeling —> '§
Present work in Hierarchical ML at NREL & INL[] Measured features

— ldentify physical life models describing lifetime across

variable operating conditions Structure/formulation

— Reduce testing, increase accuracy, automate Figure: Childs MRS Comm. (2019) nreL | 52
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PART 3 — Probabilistic Methods

Bayes Theorem

Bayesian Optimization Fast Charge Example
Gaussian Process Regression

Lifetime/Health Examples



Bayes Theorem

oV
* Example: Cancer test with 90% accuracy, p(test+ | cancer) W“\fﬁjw

— Probability of cancer given positive test, p(cancer | test+) \Nht“::\fﬁow

wan
e Start with prior probability information.
— Use new information to calculate posterior probability

* Bayes Theorem lets us reverse conditional probabilities
Conditional probability for x Marginal probability for

event A given event B event B
Conditional probability for p(A|B)p(B)
event B given event A p(BlA) - A - . Marginal probability for
P[ ) ) event A

Source: http://www.stat.cmu.edu/~brian/463-663/week09/Chapter%2003.pdf NREL | 55
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Bayesian Optimization

Concept

| P(fID.g)

Posterior distribution changes
(prediction improves) as more
training data added

Black triangle is truth, f
Diamonds are training data, D

— Second
— Third
— Fourth

Source: T. Mueller, A.G. Kusne, R.

— F|fth Ramprasad, Reviews in Computational
Chemistry (2016) NREL | 56



Fast-charge protocol optimiz.

(P. Attia, Nature, 2020)
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Gaussian Process Regression
(GPR) and State-of-Health

(SOH) Estimation

* Motivation
* GPR Algorithm
* Examples

7. SOH estimation results of battery RW9 with random walk operation.

 Conclusions, Future Work,
Open-source Data
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Motivation — Gaussian Process Regression (GPR) Algorithm

Motivation — Estimate full capacity (SOH) without running a full charge/discharge

) Features @

I 1. Time in CC mode t o D
<, oo 2. Timein CV mode o
R 3. Voltage relaxation 2 od

s COmod CVmode 4. Final voltage o :
00 7.(')00 4600 Ev(IJOO sém 16000 5. EIS spect ra ‘—Tmininsphﬂfe—';‘.—Testm.g phase

Time (5) 0 s N )
Jan2014 Feb2014 Mar2014 Apr2014 May2014 Jun2014 Jul2014

GPR benefits

Ability to down-select best “features” that correlate with capacity
Once trained, easy to implement in real-time controller

Provides capacity “measurement” and measurement error
Interpretable, can include physical knowledge
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Gaussian Process Regression (GPR) Algorithm
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Gaussian Process Regression

Probability distribution between measured input x (observation)

and output y (response)

“Prior” distribution Y ~ N (0, Kf(& x) + CT,? I,)

Kernal Kf(x, X) = kij

Training

Optimize hyperparameters

Noise covariance matrix

When small, k is large.

= 07 exp

@ — [G-f:r |!:- Un]

Distance between x; and x;.

—(xj — xj)z * Squared-exponential
3 covariance function
21 * Many others possible

Measurement is important

when weight / is large

Source: Yang, J. Power Sources, 2018
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Gaussian Process Regression - Optimization

* Training

Optimize hyperparameters e = [G'f, [, o]

e Cost function

L=logp(ylx, @) = —% log(det(K¢(x, x) + 0;1,)) - %yT[Kf(x, x) + o’ Ly - glcg 27

e Partial derivative for gradient descent algorithm

_10(K(x, %) + o Iy _
a%ilogp(y|xa '9) = %f}"{ [‘I‘IT - (Kf(X, X) + GEIH) 12 f':&;;:ﬂ }] LEI = [Kf(x, X) + UEIH] 1}"

Source: Yang, J. Power Sources, 2018 NREL | 62



Gaussian Process Regression - Implementation

 Prediction

“Posterior” distribution  p(y*|x, y, x¥).

e Estimate

v = Kp(x, x9)T[Kp(x, X) + 0L,y

* Error estimate
cov(y*) = Kp(x*, x*) — Kp(x, x)7[Kf(x, x) + aﬁln]_le{x, x*)

95% confidence range = SOH .00+ 1.96 X cov(SOH gimare)

Source: Yang, J. Power Sources, 2018 NREL | 63



Examples of SOH Estimation Using GPR
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Journal of Power Sources

G P R = SO H USi ng Ch a rge Featu res L. SEVIE journal homepage: www.elsevier.com/locate/jpowsour

Data 8
. Feature set selection . . .
analysis A novel Gaussian process regression model for state-of-health estimation of
v lithium-ion battery using charging curve
Sample set: (x _
P : (Xan Yan) Duo Yang, Xu Zhang, Rui Pan, Yujie Wang, Zonghai Chen”
* * Department of Automation, University of Science and Technology of China, Hefei 230027, PR China
Training set: (X,y) Testing set: (x*,y*) ®
@) ,, : : : : : : : :
Gaussi ¢ x~[F1;,F2,F3,F4] ' P F2 (CV duration) N
aussian 42 427 (CC duration) —
process —» ¥y~ N(O,K (x,x)+0,1,) ~ — ¥
hypOthCSiS ¢ % — gc:e ‘il — Cycle 21 % 4 (slope)
o3, cle 41 === Cycle 61 oL
2 = Cycle 81 Cyele 101 | £ : Feature set
Improved covariance function >3 —— Cyele 121==Cycle 141] 1 = 3§f (vertiesd
—|x e Hz - |x,,x H2 3. CC mode CV mode
k(x,x,) =0}, exp(#ﬁoﬁz exp(#)+a:§(xj,xj) . 3 . . . . .
! Z ] 2000 4000 6000 8000 10000 12000 ¢ 2000 4000 6000 8000 10000
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Fig. 4. The SOH estimation procedure.
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GPR SOH based on CCCV features (time, time) | '. =

—— 151st cylce

C

lists available at Sci Direct

Engineering Failure Analys

/
Current/d,

journal homepage: www.elsevier.com/locate/e|

aar 4

Remaining useful lifetime prediction based on the
damage-marker bivariate degradation model: A caseg il
on lithium-ion batteries used in electric vehicles Hey@ <

%2 200 400 600 G0 1000 12000
151st cylce Charge time/s

ing Feng™*, Paul Kvam®, Yanzhen Tang 32 v . . L s

Jing & ng 0 2000 4000 6000 8000 10000 12000
* Narional University of Defense Technology, Changsha, HN, China Charge time/s

" Georgia Institute of Technology, Atlanta, GA, USA

Fig. 4. Extraction of time-to-current-saturation (TCS) from CC/CV charge current cuny

Fig. 3. Extraction of time-to-voltage-saturation [TVS) from CC/CV charge valtage curve.

ARTICLE INFO ABSTRACT
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Article history: Remaining useful lifetime (RUL) refers to the available service time left before the performance ===== |lower bound
Received 25 August 2015 o of a system degrades to an unacceptable level. Recent innovations to lithium-ion battery packs
Received in "’"“FI" form & April 2016 have raised expectations with regard to energy storage capability in electric vehicles (EVs). This et |eee H
Accepted 12 April 2016 has catalyzed new research on RUL prediction, since accurate RUL prediction for lithium-ion

Avadable online 25 May 2016 batteries used in EV is highly desired for safe and lifetime-optimized operation. A battery’s

maximum releasable capacity (MRC) usually decays over time, thus it is a primary factor 025 5

which determines the remaining cycle life of the battery, However, MRC usually needs to be

Marker processss measured under strict laboratory conditions and cannot be easily assessed during field use in

Bivariate Wiener process EVs, This naturally inhibits potential applications of many online RUL prediction mmods

Lithiume-ion bamery that rely on MRC measurements. We found two markers of MRC decay, named as time-to-

Electric vehiclke voltage-saturation (TVS) and time-to-current-saturation (TCS), from constant-current
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GPR SOH using relaxation features (Vs, Ro, Ra,

426 -
Electrochimica Acta

ELSEVIER journal homepage: www.elsevier.com/locate/electacta
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¥

State-of-health (SOH) evaluation on lithium-ion battery by simulating = )
the voltage relaxation curves 4
Kun Qian **, Binhua Huang ™, Aihua Ran ™, Yan-Bing He ", Baohua Li ™",

Feiyu Kang "™

‘SNMMH Environmental Science and New Energy Technology Engineering Laboratory, Tringhia-Berkeley Shenzhen Institute, Shenzhen, 518055, PR Ching (d)

far the Next Power and Energy Storage Botteries, Groduate School ot Shenzhen, Tsinghua University, Shenzhen,
518055, PR China
¢ Laboratory of Advanced Materials, School of Materials Science and Engineering. Tsinghua University, Beijing. 100084, PR China
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Awailable online 13 February 2019 characteristic parameters that can distinguish the ohmic, activation and concentration depolarizations —
are acquired. The obtained parameters are sensitive to electrochemical states, which provide compre-
pres— hensive evaluation to the state-of-health of batteries and aging mechanism analysis. As an example, the b
Lithium ion battery proposed method identifies two aging stages of Li{NijaCojsMnyay0s/graphite pouch cells during
state of health accelerated aging. Namely, a loss of lithium inventory in the first stage of aging, and the loss of active (1]
Valtage stabilization model material in the next stage. Postmodern analysis including X-ray dlfrramnn and high- u‘solunun trans- (=1
Aging mechanism mission electron microscope well agrees with the voltage relaxati The d state-of-
health evaluation method is non-destructive and accessible for on-board aging diagnosis, which is of 8
great significance for developing better battery management system.

© 2019 Elsevier Ltd. All rights reserved.
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GPR: SOH from EIS T

COMMUNICATIONS

(Zhang, Nat. Comm, 2020)

ARTICLE W) Check tor updates
oPEN
Aging .. |dentifying degradation patterns of lithium ion
data: 6 training datasets batteries from impedance spectroscopy using
' 6 testing datasets —Zeinn machine learning
5?233::::2 Yunwei Zhang @ 2, Qiaochu Tang234% Yao Zhang® ° Jiabin Wang234, Ulrich Stimming®3%7 g

—_ 25C05-test Alpha A, Lee'>"™

2  25com-ten

= i

S ——35002-test cC Rest

e | e Voltage V. Rest

° \ARRYAY,

4.2V
: : : i
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Cycle number /

* 9 EIS measurements were recorded 30V {14 VIl oIX

eve ry'Other CyC|e. ® Without DC current Time

. . . .
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GPR: SOH from EIS — Data structure

(Zhang, Nat. Comm, 2020)

— Response Vectors

(a.k.a. output or dependent variables)
(N by 1)

— Capacity at the end of the cycle where
Y1
EIS was measured.

(N by 1)

Remaining useful life (# of cycles until

s 1 y2 = relative capacity hits 80%)

N = total number of EIS measurements across all cells
M = number of data points per EIS measurement
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GPR: SOH from EIS — Selecting Input Data

Not all measurements are of
equal value. EIS must be (Zhang, Nat. Comm, 2020)
conducted when battery state is
constant —i.e., after resting.
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Data from EIS at OCV w/o rest, a 1y
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GPR: SOH from EIS— Selecting Best Prediction Frequencies

Capacity

(Zhang, Nat. Comm, 2020)

GPR can be modified with hyperparameters that can automatically down-weight

input features (i.e., specific frequencies from the EIS measurements) that are
irrelevant to the regression

This method essentially identifies the critical information from the input matrix
that is required to make a prediction

— Algorithm selected trough and peak of EIS semicircle

' | | , @ (b) |
,.‘_;’ N s e 17.80 Hz (91st) — sk
09| "’-:'w + Predicted “ 2.16 Hz (100th) O'ZM
o3 .
08" | E - v E 0.15} 1
e O 0.2 o g
0.7 E o4 : E wxl |
R2 -0.88 il M
0.6 - J — 0.05/ '
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0 50 100 150 200 250 300
Cycle Number




Conclusions — Gaussian Process Regression for SOH

Limitations of literature - Must generalize for real-world
* Algorithms tested on 2-12 cells ope rating conditions
* ConstantT

e Variable T, SOC,, charge rate

Constant SOC, @ start of charging * Variable cycling/use/degradation modes

Constant charge rate

Features

1. Time in CC mode

vk WD

Time in CV mode
Voltage relaxation
Final voltage

EIS spectra

e Feature selection
*  Physics justified
*  Physics model parameters

- Capacity in CC mode within a voltage window
(Independent of charge rate, SOC)

—> Model parameters R, R,, R_ fit to relaxation > R =R, ¢ f(T,50C)
(Independent of charge rate) (Independent of T,SOC)
—> Model parameters R, R,, Cg fit to EIS

(Independent of frequency range)
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Features (Independent variables)

Raw

Time, t
Current, |
Voltage, V
Temperature, T

Derived

Capacity, Q
Resistance(T,SOC,I, pulse time or freq.)
(hl/laxg)t * Acoustic
QCC or tCC * Pressure/force
ch ‘g’r X e Use history

V0-to-VE =1 TVO-to-Vf e Avg.temperature
dQdVv

 C(Calendar age
" Pos * Cycling throughput
* Neg

. * Vehicle mileage
* Liinventory
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Open-Source Aging Data

 NASA Ames, Prognostics Center of Excellence

Saha, B., and Goebel, K. (2007). Battery Data Set, NASA Ames Progn. Data Repos. NASA Ames Res. Cent. Moffett Field
CA. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.

 U. Maryland Ctr. For Advanced Life Cycle Engineering (CALCE)

He, W., Williard, N., Osterman, M., and Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster—Shafer
theory and the Baye5|an Monte Carlo method. J. Power Sources 196, 10314-10321.

Xing, Y., Ma, EW.M., Tsui, K.L., and Pecht, M. (2013). An ensemble model for predicting the remaining useful
performance of lithium-ion batteries. Microelectron. Reliab. 53, 811-820.

* Severson et al., MIT & Stanford

Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M.H., Aykol, M., Herring, P.K., Fraggedakis, D., et
al. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383—391.
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Remaining Useful Life
Prediction Review Article

Hu et al., Battery Lifetime Prognostics, Joule (2019),
https://doi.org/10.1016/j.joule.2019.11.018

Remaining challenges in RUL prediction:

Early life prediction
Dynamic load conditions

Computational complexity
Statistical methods = Al methods (better

nonlinear fitting)
Empirical = Physics models (better accuracy)

Lack of data

Researchers
15t life = 2 |ife

Filtering Algori c

RUL Predi Based on Model and Filter
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PART 4 — Deep Learning / Neural Networks

Neural Network (NN) Theory

NN Inverse Models for Optimization (mesoscale, EIS)
NN Microstructure Segmentation

Generative Models



Neural Network — Theory

NNNNNN



Figures: T. Mueller, Reviews in Comp. Chem. (2016)

Deep Learning

 Mimic the biological brain Perceptron Activation
* Artificial neurons (a.k.a. nodes) function, a
linked like neurons y Output(s),

 “Deep” implies >1 hidden layer Multilayer

. . R . neural network
Sigmoid activation function, a(x)

Input layer
L * Continuously differentiable )
a(x) (gradient descent requires Hidden
derivative layer
* Works for classification (discrete),
regression (continuous), and mixed Output layer
w-X—-b problems

y REL | 79



Figure: T. Mueller, Reviews in Comp. Chem.

NN Training via Backpropagation 2015)

Equations: Andrew Ng/Coursera

e Cost function

1 m K 2 L-1 s; s;+1 5
— @) (i) _.,@ _ (i) o o
J(®) - Z Zyk log (h@(x ))k + (1 =y, )log (1 (h@(x ))k) + o » (G)ﬁ )
i=1k=1 1=1i=1 j=1
outputs
observations layers

Gradient descent backpropagation algorithm
d
. For —5/(0),
7071 (©

. Initialize parameter matrix to random values, —e < eg.)s €
. Step through data, fori =1tom
—  Seta® = ®
—  Forward propagate: Compute a®® through all L layers
—  Usingy®, compute §®) = a») — y®
—  Backpropagate: Compute §O for all other layers

@ ._ A D) c(1+1)
- Al.j = AL-]- +aj 6;

. d 1,0 @ . -
Kg)](@) = %AU +A@ji If] 0
. d 1.0 I
_aeg.’](@) = —A;; ifj=0
. * Note — gradients can also be calculated numerically. Analytical preferred, but numerical is useful to cross-compare to validate

analytical result NREL | 80



NN — Pros/Cons, Variants, Mat. Sci Applications

Pros/Cons
* Pros: General applicability to linear/nonlinear, discrete/continuous, image/time-series, ...

* Cons: Black-box model. Lacks interpretability. Data/time-intensive training
Variants
e Architectures:

— Dynamic systems: Recurrent NN include loops

— Spatial systems: Convolutional NN 05
e Activation functions:

— Sigmoid, tanh, rectified linear, softmax, swish —*

— Sigmoid
— Tanh

* Optimization methods .
Common materials applications
— Predict interatomic potentials 1
— Materials processing optimization o2 : ! 2 .

_ H 1 Figure: https://missinglink.ai/guides/neural-network-
Complex StrUCture/prOperty relatlonShlpS cogncepts/7r)—tvpes—neuiaI—netvfork—activation—functions—right/ NREL | 81
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NN Inverse Model
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Virtual Electrode Design via NN Inverse Model

Process parameters
(predictor)

Active material volume ratio
Particle radius

Conductivity of matrix
Binder/additives volume ratio
Pressure in compaction process

(Y. Takagishi, Batteries, 2019)

batteries

Machine Learning Approaches for Designing
Mesoscale Structure of Li-Ion Battery Electrodes

Yoichi Takagishi *, Takumi Ya

aka and Tatsuya Yamaue

Inverse problem

Bayesian optimization

Figure 1. Proposed prediction and optimization scheme for a Li-ion battery porous electrode.

o
IMDPI
~

chack for
wpdates

3-D simulation physico-chemical simulations ~ |
Generate electrode structures Simulate each resistance factor
Structure #1 Structure #2 Structure #3 Reaction resictance Elentrolyte resistance
"r”[aﬂ.,.;t_.i rp:—exp{—%q:]n l.%f{ v. [—Ojvng:] =0
Rope=n/lI-L) & =[o.,0-6)"]
Structure #4 Structure #5 Structure #2100 Diffusion resistance Total resistance
>’ Ac, =i, 72D,
ENTEEY L. Rrur=R1’+Rrﬂ:c +Rd|jf
w R, =, (e, )4, (c,+Ac )7 -L)
Regression N/
Databse vV
Artificial Neural Network
: Electrode performance
Va \ (Objective function)
A

Total specific resistance Figure: Takagishi

§ et al., Batteries
2019, 5, 54
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NN Electrode Design — Data Generation

(Y. Takagishi, Batteries, 2019)

* Obijective: Min. Total resistance = Reaction + Electrolyte + Diffusion

e 2100 simulations of virtual generated microstructures

° Selected featu res (a) w Reaction (b) o Electrolyte
. . Eazo E o 5 o
— Active volume fraction .
— Particle radius |
0 T T T T 1 0 T
P re S S u re ° 0‘2\.|’|:|Iume ?;:io of acl]'e;:’materiala8 ! ! 0‘2 Volume rc:io of actif;:materialols
(c) (d)
400 Diffusion 80D ¢ Total )
. . . - — 700
— Binder/additive vol. frac. g m E
g gan - § 500 1 ..
8 G 400 . : 4
e 180 - 2300 B sl 4 i
& ! £ 200 e e
T =0 2 TN BRCI ‘ji\;}';. :
Figure: Takagishi * 0 L__ ~ ‘““2 | hl e .
et al" Batteries ’ I12\|"0Iurne ?é:io ofa\c’ci?r-eﬁn‘natr-;rialI:LB ' ’ 01“"“"”"‘* ?a:" °[a‘ti‘?fmaterialo-8

20191 5; 54 NREL [ 84



ANN predicted total specific resistance [Qm]

Table & Figure:
Takagishi et al.,

(Y. Takagishi, Batteries, 2019) Batteries 2019, 5, 54

Table 4. The correlation coefficients, R?, for the validation data.

Electrode Design — NN Selection

Selected NN based on

Number of Neurons

Number of .
Hidden Layers 3 P . s 1 1 1 R? saturating at 0.990
1 0326 0788 0834 0810 079 0978 0937 ‘V * 2 hidden layers &
2 0330 0795 082 0863 0827 0845 [0.990] “0:990
* 16 neurons
175 (6) " 15 (10) o;i.l 175 (16) s'
3 - .
. * Training data (70%)
T  Validation data (30%)
7&;
0 50 100 150 20 e | o

Physico-chemical calculated total specific resistance [Qm]



Figures: Takagishi et
al., Batteries 2019,
5,54

Electrode Desigh — Ranking Feature Importance

(Y. Takagishi, Batteries, 2019) Active volume fraction

st : * / most important
e 1st-layer-neuron weight- 2
coefficients are summed = E’lyte, Binder vol. frac. next
vs each design parameter e l \
. . [ | - — -
O ptl m a I d eS Ig n ’ AP Vol AP radius Kmatrix Pressure Binder Vol
(Inverse problem) Fut
o= 20 : uture:
e o g .+ +Experiments
Best fit Degraded fit validation ’
Not invertible mm) Invertible . E densi
(Bayes. opt. did not converge) S | nergy enSIty Co-
Table 5. Optimized process parameters foxotal specific resistance. O pt I m I Za t I O n

Active Material Binder/Additives Electrolyte Compaction ® CO nvex N e u ra I
Volume Fraction (%)  Radius (um)  Volume Ratio (%) Conductivity (S/m)  Pressure (MPa)

50.4 6.00 0.0820 1.00 590 N etWO r k ( i nve rti bgle )86




EIS Fitting Using NN to Provide

Initial Parameter Guesses e

Analysis of Thousands of Electrochemical Impedance Spectra of
Lithium-Ion Cells through a Machine Learning Inverse Model

Sam Buteau'* and J. R. Dahn©1:2:44:%

: :
* EIS data notoriously hard to fit

2Department of Chemistry, Dathausie University, Halifox, NS B3H 482, Canada

EL hemical § I

. .. e spectra of lithium-ion cells can be collected J\.mull; illy at various cycle numbers and various state
of charges, |m>d||um. vast amounts of data. Fitting cach spectrum o an equivalent circuit leand o physical insights about the

D e p e n d e nt O n h u l I I a n I n Itl a I evolution of the lithivm-ion cell, yer the fitting problem requires good human initial guesses for the circuit parameters 1o reliably
converge, making the fitting process labor intensive and difficult 1o scale. This article presents a paradigm to automate the fitting of

mea mn'cd data l‘}ph\\lul models, replacing the good human first guesses with an inverse mode] parg ametrized with an artificial neural

network, This method is simple 10 nnplumul wses principles applicable o a wide variety of fiting problems, and leads o reliable

u e S S e S and accurate initial gucsses of the cire CIers rnl a given spectrum. The software impleme: n will be freely available once

g a good user interf leveloped, o luated on a dataset of about 100000 impedance spectra

from lithivm-ion cells, achies failure of fining |]1pm\|ll|,.|l\.|v 1% of the dataset, corresponding to the percentage of poor quality
dastar in the datasct.

* Trained NN to provide initial guesses

percentile: 10 percentile: 25

204 R=(37,6. 3)
R=(13, 19, 6)
R=(5,2,1)

| Component Name | Circuit Representation | Formula \
R

5 4
Resistor _/W\/_ Zonm(W) = R -Im(Z) R=(16, 29, 13) 54

. 04 R=(4,2,1) |
@/9) (unitless) R=(3.2.1) o
& -5- . : . . : : : -5 -
1 30 40 50 60 0 80 90 100 50 60 70 BOD 90 100
CPE ZoPE (W) =W percentile: 50 percentile: 90
L]
154 R=(15, 20, 7)
(Rfwe/e) R=(4,5.2) 4
104 R=(20, 21, 8)
51 R=(11,5.2)
04 ot R=(26, 22, 8)
. R=(29, 25, 8)
-5 ; - - . - - - -5 - - - - - . . -
40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

R

ZARC ZZARc(w) = W

Re(Z) (unitless)

Figures: S. Buteau, J. Echem Soc, 2019. NREL | 87



Microstructure Segmentation — Fiji WEKA Software

888888



WEKA (Waikato Environment for

Knowledge Analysis)

The Trainable Weka Segmentation? is a Fiji plugin that combines a collection of machine
learning algorithms with a set of selected image features to produce pixel-based
segmentations.

The advantages of Weka include?:

* freely availability under the GNU General Public License

* portability, since it is fully implemented in the Java programming language and thus
runs on almost any modern computing platform

* a comprehensive collection of data preprocessing and modeling techniques

e ease of use due to its graphical user interfaces

I Arganda-Carreras, I.; Kaynig, V. & Rueden, C. et al. (2017), "Trainable Weka Segmentation: a machine learning tool for
microscopy pixel classification.", Bioinformatics (Oxford Univ Press) 33 (15), PMID 28369169,

doi:10.1093 /bioinformatics /btx180 (on Google Scholar).

2 https://imagej.net/Trainable Weka Segmentation
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Example 1: Identifying NMC particles (2D image)

Particles labelling
MATLAB connectivity analysis

Pores, particles, particle-to-particle segmentation
Grey level image WEKA machine-learning

- o

<

< e L
Ul
~ o
[ ]

'y
¢

» Image quality is good enough not to require advanced method such as machine learning to identify pore and
solid domain. However, threshold-based segmentation provides a nearly fully connected solid domain. This
example shows it is possible to identify individual particles through machine learning

Classifier trained with 3 phases: pores, particles, particles connection.
From this segmentation, a simple connectivity analysis can easily distinguish each particles individually
Enable particle morphology and size analysis NREL | 90
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Example 2: Identifying open-porosity
cracks/voids in graphite (3D volume)

Pores, cracks, particle segmentation
Grey-level image WEKA machine-learning

I . - .

ol
32

5
r
5l
>

» Distinction between the background (pore) and cracks is ambiguous. Threshold-based method
will be highly subjective. Even though some cracks look like closed-porosity, they are actually
connected to the pore in 3D, thus connectivity analysis cannot distinguish pores from cracks.

» Classifier trained on the 3D volume with 3 phases: pores, cracks, particles.
» Enable quantification of crack density, and specific surface area due to cracks
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Example 4: Segmenting multi-phase, highly

convoluted graphite/Li image (3D volume).

Plated Li > Difficulty comes from

metal convoluted image and
similar grey level value
between several phases
(pores of both layers,

4 phases + background segmentation

WEKA machine-learning b acC kg roun d an d m eta I

deposition solid phase).

» Threshold-based method
cannot segment this image.

» Classifier trained on 5
phases: solid and pore of
both layers, plus the
background

» Enable quantification of
metal deposition

NREL | 92



Other

Generative Adversarial Network
Safety Map
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an Computationa I Mate ria|S www.nature.com/npjcompumat:

Generative Adversarial Network

— Microstructure Generation ARTICLE  OPEN —

Pores for thought: generative adversarial networks for
Lithium-ion cathode stochastic reconstruction of 3D multi-phase electrode
microstructures with periodic boundaries

Andrea Gayon-Lombardo', Lukas Mosser”, Nigel P. Brandon' and Samuel J. Cooper (3**

t

The generation of multiphase porous electrode microstructures is a critical step in the optimisation of electrochemical energy
storage devices. This work implements a deep convolutional generative adversarial network (DC-GAN) for generating realistic n-
phase microstructural data. The same network architecture is successfully applied to two very different three-phase microstructures:
A lithium-ion battery cathode and a solid oxide fuel cell anode. A comparison between the real and synthetic data is performed in
terms of the morphological properties (volume fraction, specific surface area, triple-phase boundary) and transport properties
(relative diffusivity), as well as the two-point correlation function. The results show excellent agreement between datasets and they
are also visually indistinguishable. By modifying the input to the generator, we show that it is possible to generate microstructure
with periodic boundaries in all three directions. This has the potential to significantly reduce the simulated volume required to be
considered “rep ative” and therefore massively reduce the computational cost of the electrochemical simulations necessary to
predict the performance of a particular microstructure during optimisation.

ining se

Tra
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Cell Crush Safety Map via
Physics Simulation & ML

(Li, Joule, 2019)

Joule

Joule 3, 2703-2715, November 20, 2019 ® 2019 Elsevier Inc. 2703

Data-Driven Safety Envelope
of Lithium-lon Batteries
for Electric Vehicles

Wei Li,"*? Juner Zhu,"*** Yong Xia,** Maysam B. Gorji,' and Tomasz Wierzbicki'

Parametrization of the problem
(2672 arrays)

o V¢

[mm)

. Ri=R, =Ry Ri>R,=R;
: w
‘& \\ <
- T -
Parameterized indenter R, =R; KR, Ry KRy =Ry
v
Detailed FE model Labelshort circuit cases
(fracture of separator)
. . SimulationMatrix —| = =
Predict separator failure from 2104 plano stain Machisisaming
d efo r m e d g e O m et ry o —| Training data (2004) I - Algortihm
— NN w/ 1 hidden layer & 50 LTt |
nodes

Generate safety map

— SVM with radial basis
function (RBF) kernal

Mass (kg) LT

€k

Loadin: gdretl

4—‘ ML Classification model
75
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Conclusions & Outlook

* |sthe algorithm, right? (linearity, error assumptions, architecture)

— How can | incorporate the physics of the problem?
* Dol have enough data? Do | have the right data? Will the model extrapolate?
 Center and scale! (eat your vegetables)

Applications: “Crowd-sourced” data Paths forward

* Materials discovery * Materials databases e Open-source data

* Microscopy, * DFT * Lab &real world
spectroscopy « Complex, hierarchical data Y IO A

length scales

’ I?erformance, ’ Echem * Challenge problems
lifetime, safety * Microscopy « Validity of ML

. Manuf. process opt. . Spgctrosco_py | algorithms across

e Real-time control e 3D continuum simulations

chemistries, designs
* Fleet management * Real-world data
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