

Image 35789 - Credit: Dennis Schroeder / NREL

Electro-Optical Measurement Techniques

Utilize the unique characteristics of photons across different regions of the electromagnetic spectrum to probe the optical and electronic properties of chemical systems, materials and devices for energy conversion technologies

Luminescence Spectroscopy

- Emission upon excitation by photon absorption (photoluminescence, PL) or carrier injection (electroluminescence, EL)
- Photon emission probes electronic transitions, in either visible or near-infrared
- Steady-state and temporal information, with resolution spanning picoseconds to minutes
- · Amenable to imaging or microscopy for spatial information

. Kuciauskas, et al. "Recombination and bandgap engineering in CdSeTe/CdTe solar cells." als 7, 071112 (2019). X. Zheng, D. Ku

Transient Optical Spectroscopy

- Pump-probe techniques; pump photon generates excited state, delayed photon probes excited-state dynamics
- Sensitive to electronic (UV/visible/near-IR) and vibrational (mid-IR) transitions
- · Time resolution spanning femtoseconds to microseconds
- Technique variations can probe bulk, surface, and interfacial dynamics of excitons, charges. and spin carriers, including transport.

1 10 100 Delay Time (ps)

Spectro-temporal transient absorption map illustrating charge separation at a perovskite-perovskite heterojunction, enabling enhanced photovoltaic performance.

High-frequency Spectroscopy

- · Pump-probe techniques, using THz (terahertz spectroscopy) or GHz (microwave conductivity) probes
- Sensitive to complex conductivity or dielectric function, providing information about carrier generation, transport, and losses
- THz: time resolution spanning femtoseconds to nanoseconds; GHz: time resolution spanning nanoseconds to milliseconds

Image adapted nom: O. G. Reid, et al. "Quantitative analysis of time-resolved microwave conductivity data. J. Phys. D: Appl. Phys. 50, 493002 (2017).

OE) unuer the DOE or the U.S. G