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A B S T R A C T

In this technical analysis, we studied the effects of complete electrification of space heating in the Texas
residential sector on the energy consumption, peak power demand, and grid capacity utilization in the
Electric Reliability Council of Texas (ERCOT) electricity grid. We utilized the National Renewable Energy
Laboratory’s (NREL) ResStock tool to develop geographically representative housing stock models and the
physics-based EnergyPlus modeling software to create an aggregate building stock energy model that represents
the residential sector in the ERCOT operating region. In this aggregate building energy model, we replace all
natural gas and other fossil-fuel furnaces with reversible electric heat pumps of varying efficiencies that can
provide heating in the winter and cooling in the summer. We integrate spatially-resolved actual meteorological
weather data with the building stock energy model to simulate a specific year (2016) of hourly-resolved energy
usage in the ERCOT region. We find the annual electricity consumption, peak hourly power demand for each
day, and load duration curves for each of 17 regions within ERCOT. From the base case, the absolute winter
peak electrical power demand in the residential sector could increase by as much as 36%, or 12 GW. These
results indicate that grid capacity would need to increase by 10 GW (a 25% increase for the residential sector)
to accommodate a winter peaking residential sector. Though winter electricity consumption would increase for
home heating, the annual amount of electricity consumption would stay roughly the same or decrease because
the higher efficiency heat pumps provide more efficient cooling than the conventional air conditioners they
also replace. Using average 2018 emissions rates, we estimate a change to standard efficiency heat pumps
would lead to a 4.1% reduction of CO2 emissions and a 5.8% reduction of NOx emissions from the residential
sector. There is no significant change in SOx emissions in our standard efficiency scenario, but in the high and
ultra-high aggregate efficiency scenarios, SOx emissions are reduced by 8.3% and 15.0% respectively.
1. Introduction

1.1. Motivation

The global push to decarbonize includes consideration of electrify-
ing the residential sector [1]. A full electrification of the residential
sector would involve replacing fossil-fuel powered appliances with
those powered by electricity, including space heating systems. One of
the most efficient and popular options to replace a fossil fuel-based
furnace is an air-source heat pump (ASHP) [2]. During heating months,
ASHPs use electricity to pump heat from the outside air to the inside
of a household. During cooling months ASHPs reverse this process
and remove heat from the household. ASHPs are a popular method of
heating homes in several states in the southeast U.S., and are gaining
popularity in cities with electrification policies—like the Californian
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cities of San Jose and Berkeley [3]. Both cities passed ordinances to ban
natural gas in most new residential buildings beginning in 2020 [4,5].
With the possibility of similar ordinances being passed in other areas of
the United States in the future, it is important to understand the impact
of electrifying space heating on total and peak electricity use.

As of 2015, 34% of U.S. households used electricity as their main
fuel for space heating [6], thus a large potential for electrification
exists. Prior literature indicates that a high penetration of electrified
residential space heating has the potential to significantly shift total
electric grid load shapes and change the season in which some grids’
annual peak demand occurs [7,8]. Significant changes in load shape
could especially affect Texas, where the Electricity Reliability Council
of Texas (ERCOT) operates the Texas Interconnection—an ‘‘islanded’’
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electric grid with a small number of low-grade connections with the
two other mainland grid systems in the United States.

In 2018, the Texas residential sector consumed 37% of total elec-
tricity generation in the state and contributes disproportionately to
system peak load (53% in 2011) [9,10]. The Texas Interconnection
is a summer-peaking electric grid, primarily driven by most Texas
residences using their air conditioners. Only 1.1% of Texas households
report not having air conditioning equipment [11]. During summer
peak hours, residential sector loads make up approximately 50% of the
ERCOT load, compared to 25% for the small commercial sector, and
25% for the large commercial and industrial sector [12]. For reference,
ERCOT peak demand for the year 2018 occurred on July 19 between
4 and 5 p.m. at a value of 73,308 MW while the winter peak that year
occurred on January 17 at a value of 65,915 MW between 7 and 8
am [13,14].

During winter peak hours, residential sector load makes up ap-
proximately 51% of the ERCOT load, small commercial load makes
up 23% and large commercial and industrial makes up 26% [12].
Approximately 60% of households use electricity as their primary heat-
ing fuel [15]. The most recent applicable residential survey estimates
around 5% of electric-heated Texas households utilize electric heat
pumps and the remaining 95% of households use electric heating via
electric resistance furnaces, baseboard heaters, or plug-in heaters [11].
Texas’s percentage of electric heating is higher than the US average
and is likely the result of a relatively small heating demand in Texas’
comparatively warmer climate. However, this warmer climate is still
susceptible to extreme cold snaps due to strong polar cold fronts in the
winter. In February 2021, the Texas grid encountered unparalleled res-
idential demands as sub-freezing temperatures persisted over the state
for consecutive days, causing statewide load shedding that resulted in
millions of households without power for multiple days.

During extreme weather events, residential loads drive the system’s
peak demand. Replacing the heating units of the remaining 40% of
fossil fuel heated households with reversible electric heat pumps can
have significant effects to both the summer peak load and the winter
peak load. Quantifying time-resolved electricity usage of a residential
sector with 100% electric space heating provides helpful information
for electric grid operators and grid capacity planners as they consider
electrification programs.

1.2. Background

1.2.1. Literature review
A variety of energy simulation software packages are available to

quantify a specific building’s energy usage and performance. These
programs often calculate energy usage through dynamic modeling of
conduction, convection, and radiation within the structure [16]. Two
commonly used dynamic modeling software programs are TRNSYS and
EnergyPlus [17,18]. EnergyPlus, developed by the U.S. Department of
Energy, allows users to modify household attributes and collect energy
consumption data of specific end uses within the structure. Unlike
computationally-lean static models, EnergyPlus requires a moderate
amount of computing power. It can take on the order of a few minutes
to process hourly usage information over one year for a 100 square
meter home using a modern personal computer. This computational
cost puts practical limitations on some applications like modeling the
usage of a large group of homes that represent a neighborhood or city.
However, this approach, known as Urban Building Energy Modeling
(UBEM), is necessary as it aids policy makers in decisions regarding
the intersection of residential sector building stock efficiency and res-
idential sector energy consumption [19]. To reduce the computing
resources needed to model large groups of buildings, researchers often
model a relatively small number of archetypes that reflect the total
unique types of units that occur in a specific region. Some studies
also further lower the computing demand by decreasing the complexity
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of the dynamic thermal model. This simplification is achieved by
reducing the system to discrete thermal resistances and capacitances
(RC), i.e., lumped-capacitance models.

These methods are often used in research on residential electrifi-
cation. Many studies conclude that residential heat pump adoption is
an integral part of decarbonization through electrification and thus the
reduced use of carbon-emitting fuels in the home [3,20–25]. Cooper
et al. [26] uses a lumped-capacitance model paired with archetyping
to find the peak net-demand in the UK if there was widespread heat
pump usage. Reyna & Chester [27] uses EnergyPlus with a method of
archetyping households in Los Angeles county (USA) to forecast elec-
tricity usage and explore the potential for energy efficiency (including
heat pump efficiency) to offset increased demand. This method is also
used in Burillo et al.’s [28] work about the effects of increasing air
temperature in Los Angeles County on peak electricity demand. Many
other studies focus on modeling residential heat pumps as part of strate-
gies to shift loads from peak hours to off-peak hours through thermal
energy storage (TES) materials and demand response (DR). This body
of research commonly uses optimization algorithms that benefit from a
simpler model than the dynamic models seen in EnergyPlus or TRNSYS,
and thus many use a lumped-capacitance RC dynamic model.

The archetype method of modeling many buildings’ energy usage
has proven useful for modeling urban and regional building stocks [29].
This method develops an array of typical household models from a
particular region’s residential building stock data. The models’ energy
usage is then scaled according to the actual number of households
in the specific region. These models help identify potential for cost
and energy savings within a locale’s building stock [30]. However, the
archetype method for UBEM has its limitations. Chen et al. [31] and
Reinhart & Davila [19] note that the UBEM workflow is not general-
ized. This characteristic of UBEM is because of the lack of standardized
building stock data across regions. The lack of standardization makes
it challenging to describe building archetypes such that they reliably
represent a region’s housing stock.

An additional limitation is the tradeoff between number of
archetypes in the energy model, geographic resolution, and avail-
able data. Reyna & Chester [27] created 51 archetypes to reflect the
Los Angeles county building stock and use EnergyPlus to simulate
83,640 simulations with those archetypes over 41 years and 40 climate
forecasting scenarios. Cooper et al. [26] use the lumped-capacitance
model to simulate 5 building archetypes over 960 different dwelling
permutations across the UK. The UK study covers a large region with
the lumped-capacitance models calibrated to more detailed simula-
tions. The Los Angeles county study is enriched by publicly available
information about the county’s building stock, the county’s appliance
usage, and the state’s assessor handbook. Focused data allows the study
to dive deep in a small geographic region but covering a diverse span
of regions following the same method would be cumbersome.

The building stock simulation studies mentioned above are general
and do not specifically focus on electrification of heating via replace-
ment heat pump system installations. Much of the literature related to
understanding the impact of heating electrification with heat pumps on
electric grids focuses on peak shifting from the building’s perspective.
Most DR studies optimize heat pumps paired with TES materials in
a single or fleet of houses, coupled with pricing signals, to minimize
energy or economic costs. There are many tradeoffs upon choosing a
method to obtain energy demand for buildings. Baeten et al. [32] use a
lumped capacitance RC method to model a household. However, simple
lumped capacitance models have been found to underestimate peak
loads by more than 10% [33]. Some studies use EnergyPlus or TRNSYS
to model small numbers of households, but do not study demand from
large groups of homes [34,35]. Other TES optimization studies use
actual measured data from metering trials or sharing agreements [21,
36,37]. Measured data, however, are generally difficult to acquire or
find in the literature [38]. Although there are multiple methods for TES

optimization studies to obtain energy demand data for a household,
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it is either hard to obtain or outside the scope of the study to spend
resources on sophisticated demand modeling.

Some studies project the large-scale grid impacts of heating electri-
fication via heat pump adoption. Love et al. [39] uses a relatively large
heat pump trial dataset to project future electricity use from electri-
fication. The heat pump trial data was adjusted for diverse occupancy
behavior and scaled up to as large as a 20% heat pump adoption rate in
the UK. Love et al.’s [39] utilization of heat pump trial data to project
future demand contributes a novel estimate of the UK electric grid’s
future peak demand and ramp rate. Eggiman et al. [40] studies the DR
potential of a high uptake of heat pumps in the UK through a bottom-
up modular demand simulation model dependent on scenario data and
socio-technical drivers such as technology improvements, population
changes, and occupancy behavior changes. Although it is not central
to the demand simulation model, a building stock model is used as
a scenario driver to identify how changes in dwelling characteristics
affect demand. Eggiman et al.’s [40] modular demand simulation model
produces a spatially and temporally resolved energy demand projection
for a 50% heat pump penetration electrification scenario. Boßmann &
Staffell [41] project future electricity demand in the UK and Germany
by scaling load curves according to applications seen to be relevant in
the future. Although it is not an ostensible electrification study, heat
pump adoption rates are used for the study’s 2050 projection—21.6%
(UK) and 7.8% (Germany).

These three studies simulate the demand from households, but they
do not rely on physics-based building energy modeling (such as UBEM).
Rather, they use existing datasets and/or future technical projections
to model future electrification demand scenarios. Love et al. [39] and
Eggiman et al. [40] model the demand from heat pump adoption in
a location that sees cool winters, rather than a climate with colder
winters that could push heat pump performance to its limits. Boßmann
& Staffell [41] model heat pump uptake in the colder climate of
Germany, but the adoption rate in the study is less than 10%. While the
contributions of the three studies are valuable for the future of electric
grid operations and planning for mass residential electrification, the
lack of physics-based modeling and lack of variation in extreme cold
weather and heat pump penetration rate is seen as a limitation.

1.2.2. Research gap identification
Modeling residential demand with hourly or sub-hourly resolution

is required to understand how changes to the building stock (e.g., elec-
trifying space heating in all households) will affect the electric grid.
This high temporal resolution enables peak and load shape analysis as
well as dispatch analysis if paired with a model of the supply-side of the
electric grid. Thus, it is essential to have an accurate transient model
of energy usage with a temporal resolution of at least one hour. Vivian
et al. [33] finds that simpler, lumped capacitance models struggle
in accuracy of transient energy usage compared to dynamic models.
The methods for creating an accurate transient model are largely non-
generalized due to variance in data, modeling engines, and spatial
coverage. Complex dynamic models, such as Reyna & Chester’s [27]
forecast of residential demand in Los Angeles county, typically only
cover a small geographic region. This variation in data leads to DR-
optimization studies that must either acquire measured data from
large groups of homes which can be difficult/expensive or implement
optimization algorithms on simplified models with a small number of
households. Large-scale grid impact studies of heat pump adoption
rely on non-physics-based modeling techniques and lack geographic
and climate diversity. Using more complex and dynamic physics-based
modeling platforms cost computing resources and typically require
multiple sources of data for inputs into the model. These tradeoffs
typically lead researchers to pick one or the other. Thus, there is a
knowledge gap in the literature that this analysis seeks to fill.
3

Fig. 1. Methodology flowchart for quantifying energy usage after full electrification
of space heating in the ERCOT residential sector. To quantify residential electric
load, the building simulation software, EnergyPlus, simulates thousands of households
that are representative of the building stock within the ERCOT residential sector.
NREL’s ResStock analysis tool is used to generate the group of households from a
statistically representative housing parameter space sample. The building simulation
data is processed into electricity consumption and peak demand data for the residential
sector.

1.3. Research question

Using physics-based modeling and existing building stock datasets,
this paper answers the question of how the energy usage of a large,
diverse residential sector would change if all space heating were electri-
fied. Electrification of the residential sector changes energy use patterns
and affects both the electric grid’s annual energy consumption and
seasonal peak demand. The remainder of this paper is structured as
follows: Section 2 gives the methodology to quantify energy usage of
an electrified residential sector, Section 3 presents the results of this
study, focusing on peak demand, energy consumption, and emissions
impacts and Section 4 formulates conclusions from the study.

2. Methodology

2.1. Model methodology

Overview
To model the impacts of the electrification of space heating on

the Texas residential sector, this analysis utilizes the National Re-
newable Energy Laboratory’s (NREL) ResStock™ analysis tool and syn-
chronous historical weather data from locations around Texas. Fig. 1
gives a graphical representation of the entire workflow. The Res-
Stock analysis tool samples location-specific housing parameters to
construct thousands of representative households and then simulates
them using the EnergyPlus engine [42]. ResStock is classified as a
Q4 physics-simulation type of generating statistically representative
households [43].

2.1.1. Aggregate building energy model
EnergyPlus is a dynamic building energy modeling software that

simulates a building’s thermal envelope and models its energy usage
according to thermal equations [17]. This software simulates the energy
usage for every household in this study. The software requires many
discrete inputs to describe a household (e.g., 3D coordinates of all
surfaces, insulation type, HVAC parameters, glazing information). This
high number of inputs has been listed as a limitation on its usage as an
modeling software [33].

This paper’s methodology uses the ResStock analysis tool to over-
come this limitation. The ResStock analysis tool automatically gener-
ates a group of households from a statistically representative housing
parameter space sample [44,45]. The parameter space uses housing
stock data from more than 11 different sources to determine probability
distributions for each residential housing parameter as a function of lo-
cation [42]. For this study, ResStock was used to create approximately
38,000 households to represent the 8.8 million homes across the ER-
COT operating region, a ratio of around 230 real homes for each model.
Fig. 8 in the results highlights the variability between the study’s homes
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Fig. 2. Heating and cooling setpoint temperatures for all household simulations used
in this study. Temperature setpoints determine a household’s target temperature for its
conditioned space during a respective heating or cooling hour. Temperature setpoints
have a significant effect on the heating/cooling load scheduling for a household.

via violin and box plots describing the annual energy consumption
of all households. These households include single-family attached,
single-family detached, and multi-family low-rise homes. At the time
of the analysis, multi-family high-rise households were not included in
the ResStock analysis tool. Because each of the simulated homes are
independent from each other, they can be modeled in parallel, which
can significantly reduce computing time as each individual simulation
can take up to 5 min on a single thread of a standard computer.

Diversified residential heating and cooling behavior is simulated
through sampling probability distributions of cooling and heating set-
points, setpoint offsets, and setpoint offset periods that are dependent
on 2004 ASHRAE IECC Climate Zone designations and building type
(e.g. mobile home, single-family detached, multi-family low-rise, and
so on). Cooling and heating setpoint diversity for this study’s household
set is shown in Fig. 2. Other consumer diversity factors like dishwasher
use, clothes washer and dryer use, and number of occupants are de-
termined by a similar method. Housing stock details for the 38,000+
households and information on probability distributions can be found
on the public data repository associated with this study [46].

Because residential space conditioning demands are largely driven
by weather patterns, it is important for studies that span large regions,
like this one, to use as much temporally-matched data as possible. To
simulate a historical weather environment, our study utilizes actual
meteorological year (AMY) weather data from 2016 across 17 locations
in Texas. The year 2016 was chosen because it involved a relatively
hot summer corresponding to an ERCOT peak demand of 71 GW and a
particularly cold stretch of weather in February. ResStock uses the U.S.
Census American Community Survey and other geospatial data sources
to estimate how many households correspond with each weather file
location [45].

The individual simulations are typically executed on a high perfor-
mance computer (HPC) or cloud computing system—this study used
NREL’s Eagle HPC [47]. The raw output data from each simulation are
then processed and analyzed. The analysis process shown in Fig. 1 was
repeated four times to include different heat pump technologies that
reflect increasing cooling efficiency, using seasonal energy efficiency
ratio (SEER), and heating efficiency, using heating seasonal perfor-
mance factor (HSPF), as shown in Table 1. Higher SEER or HSPF ratings
reflects a more efficient heat pump—one that uses less energy as to
cool or heat the same cooling or heating load. Note that all existing
electric heating efficiency levels (primarily electric resistance heating)
were left as is. As a simplification, fuel-fired heating systems serving
multiple dwelling units in multifamily buildings were assumed to be
replaced with individual heat pump units serving individual dwelling
units.

The raw output data from EnergyPlus contains energy usage for
each of the 38,000+ housing units from each of the 8784 h represented
in the 2016 historical weather files. This hourly energy usage data
4

Table 1
Scenario definitions. The standard efficiency air-source heat pump is rated at the federal
minimum efficiency for the southern U.S. The high efficiency heat pump is a currently
available high-end variable speed air-source heat pump. The ultra-high efficiency mini-
split heat pump is currently available and represents the efficiency bound of currently
available electric space heating technologies.

Scenario name % Residential
electric heating

Heat pump
type

Cooling Eff.
(SEER)

Heating Eff.
(HSPF)

Base 57% – – –
Standard Eff. 100% Single-speed 15.0 8.5
High Eff. 100% Variable-speed 22.0 10.0
Ultra-High Eff. 100% Variable-speed 29.3 14.0

collected from each EnergyPlus simulation is multiplied by the 230
households each model represents. Energy use for each simulation is
then summed and grouped by time and location. The resultant dataset
displays the total electricity, natural gas, and propane consumption of
every hour of 2016 for the ERCOT residential sector. The maximum
hour of electricity consumption (kWh) for each day is divided by the
change in time (one hour) to create an absolute peak hourly demand
value (kW) for the day. These values for maximum hourly demand on
each day are referred to in this paper as daily peak demand values. These
366 daily peak demand values are used to create a daily peak demand
curve for ERCOT. Consumption and peak demand data from the base
simulation are compared to the different heat pump technology sce-
nario data to analyze annual consumption, net emissions, and capacity
utilization. The hourly energy usage and daily peak demand datasets
can be found at public data repository associated with this study [46].

2.1.2. Heat pump and auxiliary heating performance
Heat pump performance decreases as the ambient temperature falls

below freezing. Auxiliary heating is sometimes necessary to supplement
the heat pump and continue to meet the heating load of the conditioned
space. In the southern U.S., this auxiliary heating source is usually
electric resistance (also called ‘‘electric strip heat’’) heating which is
less efficient than using the heat pump compressor [48]. All auxiliary
heating required by the heat pumps in this study is met by electric
resistance heat.

The degree of heat pump performance degradation depends on
the specific model heat pump. The outdoor temperature below which
auxiliary heating is needed can vary from 0 to −25 ◦C, depending
on the specific model’s performance and how it is sized relative to a
location’s design conditions [49]. The ASHPs modeled for this study
were sized via an algorithm that is consistent with industry standards
(e.g., ACCA Manuals J and S), which primarily selects heat pump
capacities based on a home’s design cooling load, but allows heat
pumps to be oversized (15%, 20%, and 30% for single-, two-, and
variable-speed systems, respectively) to meet a higher portion of the
heating load in relevant climates. In colder climates, it may or may not
be beneficial to deviate from industry standards and allow selection of
heat pumps that can meet the entire design heating load without an
auxiliary heat source. However, this decision was determined to not be
relevant for this ERCOT analysis, where design cooling loads generally
exceed design heating loads.

Fig. 3 displays the coefficient of performance (COP) of each of the
three heat pumps used in the electrification scenarios of this study for
every heating hour of a building energy model of a sample home in
the Dallas, TX area using historical 2016 weather. The COP for an
HVAC unit is the ratio of the heating load delivered to the conditioned
space against the electricity consumed by the heat pump and HVAC
heating fans to meet that heating load. The COP of the auxiliary electric
resistance heating required during very cold hours is shown by the
yellow triangles.

Heat pump system performance can be very sensitive to how the
auxiliary heat is controlled. In a worst-case scenario, the heat pump
compressor is locked out and no longer allowed to provide heat below
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Fig. 3. Hourly coefficient of performance (COP) vs. outdoor dry bulb temperature for
each of the three heat pumps used in the study’s electrification scenarios, as simulated
for 8760 h in a sample home in Dallas, TX. COP is the ratio between heating load
delivered and the electricity consumed by the heating unit and the air handler fan
to meet that heating load. Note that the ultra-high efficiency MSHP fully meets the
heating load without using auxiliary electric resistance heat. COP is primarily a function
of outdoor dry bulb temperature, indoor dry bulb temperature, and compressor speed;
the spread in COP values for a given outdoor temperature is due to variability in
compressor speed needed to meet the load in a given hour (does not apply to the
single-speed Standard Eff. ASHP), variability in indoor temperature, as well as efficiency
losses due to compressor cycling. The step-changes in COP are due to defrost mode
operation (below 5 ◦C; function of outdoor wet bulb temperature) and MSHP pan heater
(below 0 ◦C).

temperatures around 0 ◦C. ASHPs that are properly installed will
continue to provide some heat below 0 ◦C, with some specific models
continuing to provide heat down to −25 ◦C. The ASHPs in this study’s
EnergyPlus simulations have their compressor lockout temperature set
to −17.8 ◦C, which is below the 99.6% heating design temperature found
in the coldest parts of Texas (e.g., −12.2 ◦C in Amarillo, TX) [50].
The 99.6% heating design temperature represents the temperature that
is lower than the outdoor temperature 99.6% of the hours in a year
(in other words, the 0.4th percentile), based on 30-years of historical
weather. The 99.6% heating design temperature (or the less conserva-
tive 99% version) are commonly used for heating load calculation for
equipment sizing. Fig. 4 shows heat pump and auxiliary heat behavior
for an example older home in Dallas, TX with a SEER 15, HSPF 8.5 heat
pump (consistent with our Standard Efficiency scenario). While the heat
pump continues to operate down to −12 ◦C, auxiliary heat is needed
for about 200 h, primarily when outdoor temperatures are below 2 ◦C.

Auxiliary heat can also be deployed at higher temperatures when
the thermostat is increased (manually or scheduled) and the heat pump
cannot reach the new setpoint quickly enough [51]. Best practice
installation (required by some state energy codes) involves locking out
5

Fig. 4. Heat pump and auxiliary heat behavior are shown for an example older home
in Dallas, TX with a SEER 15, HSPF 8.5 heat pump (consistent with our Standard
Efficiency scenario). This figure illustrates that auxiliary heat control is an important
factor in evaluating the impact of electrification on the grid. Additionally, the ‘‘night
setback’’ case illustrates that reducing the heating temperature setpoint at night can
increase overall usage of auxiliary electric resistance heat if auxiliary heat lockout
control is not used.

auxiliary heat above a certain outdoor temperature (typically around
2 ◦C to 4 ◦C) [52]. About half of the households in this study are
modeled with a reduced heating setpoint at night (based on data from
RECS 2009 [11]). Auxiliary heat lockout control was not modeled
for this study; however, it is not likely to be relevant to the main
conclusions of this study, which focus on the top hours of winter peak
demand, since these hours occur below 2 ◦C to 4 ◦C in most parts
of ERCOT (e.g., as shown in Fig. 4). If auxiliary heat lockout were
implemented, it would reduce annual electricity consumption in the
electrification scenarios (primarily the Standard and to a lesser extent
the High scenario), however, it would not likely affect peak demand
results.

2.2. Methodology limitations

There are a few limitations associated with this method. The house-
holds sampled by ResStock and modeled in EnergyPlus have not been
fully validated against metered data because hourly 2016 residential
load data is not publicly available. Results for annual energy use of
single-family detached homes were validated in [41]; validation of
timeseries results, including multifamily buildings is the subject of
ongoing work [53]. Additionally, the sizing of heat pumps in this
model is automated via an algorithm that is consistent with industry
standards (e.g., ACCA Manuals J and S). However, it is well understood
that the majority of residential HVAC systems are installed without
performing detailed load calculations, commonly leading to system
oversizing or undersizing [54]. Improper sizing could impact aggregate
building load, but recent studies have found the impact of sizing on
air conditioner load to be smaller than previously thought [54,55].
Because oversizing a heat pump by 20% has a bigger financial impact
than oversizing a traditional gas furnace by 20%, installers of heat
pumps may be more likely to perform detailed load calculations, which
could moderate sizing impacts.
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Another limitation is related to nightly temperature set point be-
havior. In our study, approximately 53% of the households with a heat
pump use a constant temperature setpoint at night (i.e. the conditioned
space’s setpoint remains the same at night as in the daytime) and the
remaining 47% use a setback temperature during the night time (based
on data from RECS 2009 [11]). Having a night setback will result in
higher heating demand in the morning when occupants wake up and
become active. Our analysis assumed that all night setbacks end at 8:00
am, whereas in reality this timing varies by a few hours. This likely
causes our model to overpredict winter peak to some degree. Fig. 4
shows how night setback increases peak hour demand by about 20% for
an example household in Dallas, TX with a standard efficiency ASHP.
If we modeled diversity in the timing of night setback recovery, this
increase in peak would be diversified across several hours. Addressing
setback timing diversity in future studies is a priority as it will more
accurately reflect occupant behavior.

Finally, our study is limited in that it narrowly focused on resi-
dential space heating electrification. Although electrified water heating
load is likely to change annual residential sector electrical loads in a
significant way, it is outside the scope of this study [56,57]. Alternative
pathways to decarbonization like renewable hydrogen are not explored
in this study. Other parallel trends, such as population shifts, building
stock turnover, increased cooling due to climate change, and electri-
fication of other sectors (transportation, commercial, industrial, and
other residential end uses) would also have an impact on power sector
electricity demand, although residential space heating will continue to
be the primary driver of winter peak demand. Our hourly consumption
data will be publicly available for future studies that want to analyze it
in combination with these other trends [46]. Despite these limitations,
we believe this methodology is a sufficient starting point for modeling
the residential electrification of a large, diverse geographic region
covering a synchronous electric grid.

3. Results and discussion

Peak demand and consumption impacts

Quantifying the energy usage of the ERCOT residential sector with
100% electrified space heating shows how residential electricity de-
mand trends could change by consumer-driven or policy-driven electri-
fication. To show how electricity demand changes, we show a compari-
son of the daily peak demand for each day of 2016, between the current
and a fully electrified residential sector, along with comparisons of
load duration curves. Our results show that the electrification of space
heating in the ERCOT residential sector causes the residential sector’s
demand to switch from a summer to a winter-peaking grid, with peak
winter demand increasing by nearly 12 GW (see Figs. 5 and 6). Further,
total electrification of heating requires an increased grid capacity to
meet the new peak demand. Because the heat pumps provide more ef-
ficient cooling than the air conditioners they replace, annual electricity
consumption either stays the same or decreases (when more efficient
heat pumps are modeled). Lastly, emissions decrease in all electri-
fication scenarios. We elaborate on these findings in the following
subsections.

3.1. Peak demand findings

Our analysis finds that the timing of peak demand for the year for
the ERCOT residential sector changes from the summer (driven by air-
conditioning loads) to the winter (driven by heating loads) for every
scenario we analyzed. From the base case, winter peak demand in the
residential sector could increase by as much as 12 GW, a 36% increase.
This change would likely require a shift in electric grid operations
because the ERCOT grid has evolved its maintenance schedules to
handle its largest loads in either late July or early August. Planned plant
outages are typically scheduled in the shoulder and winter seasons
6

Fig. 5. Simulated residential sector daily peak demand (maximum hourly demand on
each day) for the months of 2016 containing the summer and winter peaks : August
and December. Daily peak demand data is shown for the current state of the ERCOT
residential sector ‘‘base’’ (yellow thick line) and an electrified ERCOT residential sector
with standard-efficiency ASHPs ‘‘standard’’ (pink long-dashed line), high efficiency
ASHPs ‘‘high’’ (blue dotted line), and ultra-high efficiency MSHPs ‘‘ultra-high’’ (dark
gray thin line). During the majority of December, the electrification scenarios’ daily
peak demand is higher than the base scenario.

because of lower load [58]. Grid investments are often driven by
summer heat derating limits of transmission lines and power plants—
something that might not be as big a factor for a winter peaking
system.

Additionally, we find that the change in magnitude of peak hour
between the current residential sector and an electrified sector varies
by location. The further north and west in the ERCOT service area, the
larger change in peak demand the county will see during its peak hour
of the year.

3.1.1. System-scale effects
Figs. 5 and 6 show the daily peak demand for the base scenario

(the current mix of residential heating types) and each respective
electrification scenario. For example, Fig. 6’s graph with the triangle
and square datapoints reflects the high-efficiency scenario which in-
volves replacing all residential fossil-fuel powered heating units with
a variable speed SEER 22, HSPF 10 electrically-driven air-source heat
pump. Each data point on Fig. 6 is the peak hour of averaged power
demand for each day of the year in 2016 for each scenario. Fig. 5
shows the same data but only for the peak summer month and peak
winter month. Both figures show the highest amount of demand from
the residential sector that the electric grid will be required to meet for
each day out of the year. Fig. 5’s focus on August and December allows
for a closer view of the summer and winter peak demand values and
seasonal trends.

The base scenario’s data show the typical demand trends from the
ERCOT residential sector: (1) a system peak in late July or early August
driven by high air-conditioning demand, (2) lower demand during late
fall and early spring, and (3) local maxima during the winter when
demand spikes because of cold weather. The electrification scenario
shows how electrification changes the base case’s trends: (1) the system
peak occurs during the winter in December at 45 GW (25% higher than
the base summer peak) for the standard efficiency scenario and (2) peak
demands during the summer months are 6% to 22% lower, because
the modeled heat pumps provide more efficient cooling than the air
conditioners they replace. The reduction in the summer peak load could
help mitigate increases in median summer outdoor temperature due to
climate change.

The scenarios show that heating electrification in the residential
sector is likely to push the ERCOT residential sector from a summer-
peaking sector to a winter-peaking sector. Additionally, the scenar-
ios indicate that lower summer peaks allow households with newly
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Fig. 6. Simulated residential sector daily peak demand (maximum hourly demand on each of the 366 days) using 2016 weather data for the current state of the ERCOT residential
sector ‘‘base’’ (diamond) and an electrified ERCOT residential sector with standard-efficiency ASHPs ‘‘standard’’ (circle), high efficiency ASHPs ‘‘high’’ (triangle), and ultra-high
efficiency MSHPs ‘‘ultra-high’’ (square). The electrification scenarios (circle, triangle, and square) show a residential sector that peaks in the winter. The summer daily peak
demand is slightly less than the base scenario in the standard efficiency scenario, but daily peak demand significantly decreases in the high and ultra-high efficiency scenarios.
This significant decrease is because the heat pumps provide more efficient summer cooling than the air conditioners they replace.
installed ASHPs to take advantage of their higher efficiency during
cooling months, reducing summer demand.

These findings show how demands on the electric grid could change
if residential heating were fully electrified. Peaker plants – power plants
that are only utilized when there is high demand – would likely need to
be dispatched more often in the winter. This change would likely have
numerous impacts, such as changing wholesale electricity prices, im-
pacting grid emissions profiles, and altering power plant maintenance
scheduling. It could also affect the planning reserve margin (PRM) for
ERCOT. The PRM is the percentage of projected capacity above the
projected peak demand [59]. The North American Electric Reliability
Corporation (NERC) highlights ERCOT as having potential reliability
issues because of its slim PRM [60]. The targeted PRM for ERCOT is
13.7%, but was 10.6% in 2018 [61,62]. Since the residential sector’s
winter peak of the Standard efficiency electrification scenario is more
than 10% larger than the residential sector’s summer peak of the base
scenario, a fully electrified residential sector could drive large-scale
capacity expansion in ERCOT.

The daily peak demand results from our model follow the same
trends as other large-scale heat pump electrification studies. Those
studies find peak demand increases ranging from 14% to 59.8% and
a 1.5 GW peak demand increase per 1 million heat pumps [39–41].
Our study reflects an increase of 2.84 GW peak demand per 1 million
heat pumps. This deviation from the results of these studies could be
because of dissimilar building stock and more inconsistent weather in
Texas. Extremely low temperatures typically drive the Texas winter
peak, rather than total seasonal energy consumption.

3.1.2. County-level effects
Fig. 7 shows the change in demand per household during its re-

spective peak hour of the year between the base scenario and the
standard efficiency (Fig. 7A) or ultra-high efficiency (Fig. 7B) scenario.
In general, the climate of Texas is colder in the more northern areas of
the state. Thus, counties in the north and west part of the ERCOT region
see the largest magnitude of change in the peak demand hour of the
7

year because the newly electrified heating demands are higher in those
parts of the state. The northwest region of ERCOT is sparsely populated
and contains less electricity transmission and distribution infrastructure
and a large spike in demand might require a more robust grid network.
Fig. 7B shows that the increase in peak hour demand is much more
moderate in the ultra-high efficiency scenario, and even decreases on
average in some counties.

Because the effects of electrification occur differently according to
geographic location, these findings can inform how heat pump rollouts
can be implemented. For example, it is likely that the electrification of
heating in the south and southeast part of the ERCOT operating region
would cause fewer disruptions to the electrical system than if it was
first implemented in the northwest part of ERCOT.

3.2. Electricity consumption and emissions findings

3.2.1. Annual consumption
We find that the annual electricity consumption of the electrification

scenarios stays roughly the same as the base scenario for the standard
efficiency scenario and decreases compared to the base scenario for the
high efficiency and ultra-high efficiency scenarios. Table 2 shows the
absolute energy consumption data for all scenarios and fuel sources.
Although energy consumption decreases for all scenarios compared
to the base, the electrification scenarios require more grid capacity
than the base scenario. Fig. 8 shows a violin plot of the electricity
and natural gas consumption distribution among each representative
household. Note the large increase of zero-consumption natural gas
households from the base scenario to the electrification scenarios as
well as the similar plot shape between the base and standard efficiency
scenarios for electricity consumption. Emissions from carbon dioxide
and nitrogen oxides decrease in every electrification scenario because
the slightly cleaner emission mix from the grid displace emissions
created by residential fossil fuel furnaces. The emissions mix is expected
to get cleaner in the next 10 years as ERCOT plans to add between 14
and 27 gigawatts of solar capacity [63].
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Table 2
Annual energy consumption of the ERCOT residential sector over all simulation cases. The electricity consumption increase
in the standard case is negligible and in all other cases energy use decreases substantially over all fuels. Natural gas and
propane consumption are only reduced by approximately 50% because of gas and propane domestic water heaters, clothes
dryers, lighting fixtures, pool heaters, and stovetops that continue to exist in the space heating electrification scenarios.

Scenario Electricity
(TWh)

Electric cooling
(TWh)

Electric heating
(TWh)

Natural gas
(trillion BTU)

Propane (trillion
BTU)

Base 127.1 47.5 9.2 101.6 8.5
Standard 127.1 43.2 13.4 55.7 4.6
High 119.5 36.9 12.2 55.7 4.6
Ultra-high 113.3 32.3 10.4 55.7 4.6
Fig. 7. Map A depicts average change in system peak hour demand per household
between standard efficiency and base scenarios. Map B average change in system peak
hour demand per household between ultra-high efficiency and base scenarios. This
figure shows geographic differences in the magnitude of the change between the peak
hour of the current building stock and the peak hour of fully electrified housing stock.
The demand change magnitude follows a trend of higher change in more northerly
locations, largely because of colder climates in the panhandle and northwest region of
the state.

3.2.2. Load duration curves
Fig. 9 shows load duration curves of each scenario in this study.

A load duration curve portrays how many hours over a year that a
certain amount of demand occurs. The lowest demand hour is on the
far right, at hour 8784 (2016 was a leap year) and the peak demand
8

Fig. 8. Violin plots for the annual electricity and natural gas consumption for each
representative dwelling. The box plot’s horizontal line indicates the median electricity
consumption and its length indicates the inter-quartile range (IQR). The dot on the
natural gas violin plots indicate the median annual natural gas usage and the line
protruding from it indicates the range from the median to the upper (0.75) quartile.
To ensure readability of the plot, we reduced the 𝑌 -axis limits to 2 * the IQR of the
base case’s natural gas consumption.

hour is on the far left at hour 1. Thus, the integral of a load duration
curve is annual energy consumption. The region of Fig. 9 that is most
pertinent to this study is the top left where the hours of highest demand
are shown. because this is what can affect an electrical grid’s PRM and
capacity planning strategy. The inset of Fig. 9 shows the same load
duration curves over the 10 highest demand hours.

According to these data, the three electrification scenarios have
lower average demand, but their peak demand hours are higher than
the base scenario. Very cold weather induces a higher peak hour on
the system than the base scenario, but the electric heat pumps keep
average demand lower during the spring, summer, and fall months
because of their higher efficiency at cooling households. This reduction
in electricity use during cooling days is why the annual electricity
consumption for the electrification scenarios is either the same or less
than the base scenario’s annual electricity consumption.

The inset of Fig. 9 shows that for the High and Ultra-high efficiency
electrification scenarios, the demand only exceeds that of the base
scenario for approximately five hours of the year, split across two
days (as seen in Figs. 6 and 5). It is likely that demand response
strategies could shift this demand to lower-demand hours. For example,
internet-connected thermostats could pre-heat some homes and use
their thermal mass to coast through the five peak hours on the two
peak days.
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Table 3
Absolute emissions and percent reduction in emissions from the base scenario’s emissions across all electrification scenarios. Average total
(baseload and non-baseload) emission rates: 425.5 kg/MWh for CO2, 0.23 kg/MWh for NOx emissions, and 0.36 kg/MWh for SOx. Average
non-baseload emissions rate: 573.2 kg/MWh for CO2, 0.36 kg/MWh for NOx emissions, and 0.5 kg/MWh for SOx. Fossil fuel heating furnace
emission rates: 53.2 kg/MMBtu for CO2, 0.04 kg/MMBtu for NOx, and 0.00027 kg/MMBtu for SOx The mid-case scenario has a 2050 annual
average long-run marginal CO2 emissions rate of 290 kg/MWh, the scenario with a high projected cost of renewable energy (HCRE) has a rate
of 239.2 kg/MWh, and the scenario with a low projected cost of renewable energy (LCRE) has rate of 177.3 kg/MWh.

Residential sector emissions Percent reduction from base
[thousand metric tons]

Base Standard High Ultra-high Standard High Ultra-high

NOx 2018 33 31 28 26 5.8% 14.1% 21.0%
SOx 2018 46 46 42 39 0.0% 8.3% 15.0%
CO2 2018 59,400 56,900 52,600 49,000 4.1% 11.4% 17.4%
CO2 2050 Mid-Case 42,200 39,700 37,500 35,700 5.8% 11.0% 15.3%
CO2 2050 HCRE 35,700 33,300 31,500 30,000 6.8% 11.9% 16.1%
CO2 2050 LCRE 27,900 25,400 24,100 23,000 8.7% 13.6% 17.5%

HCRE = high projected cost of renewable energy
LCRE = low projected cost of renewable energy
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ig. 9. Load duration curve for each scenario of electrification and the base scenario.
hese curves show the load required to meet every hour of the residential sector’s
emand from highest demand hour to lowest demand hour for each simulation case.
he inset graph shows the same data, but for only the highest 10 load hours of the
ear. The figure shows that the electrification scenarios (pink long-dashed line, blue
otted line, and dark gray thin line) utilize the same or less amount of capacity as the
ase simulations case (yellow) until the most demanding hours of the year (see inset
raph). During those hours, the electrification cases demand up to 12 GW more than
he peak hour of the base simulation case.

Fig. 9 shows that each electrification scenario requires more de-
and during the few highest demand hours of the year compared to

he base scenario. This likely requires the electrical grid to expand its
apacity or change its supply mix to meet the increased demand during
he electrification scenarios’ peak hours. Peaker power plants – power
lants that only turn on to meet demand during peak hours – typically
ave a lower efficiency than baseload power plants. For example, in
018, ERCOT non-baseload CO2 emission rates were 35% higher than
he average emission rates [64]. This lower efficiency typically leads to
eaker plants generating more emissions per megawatt-hour produced.

.2.3. Current and future emissions analysis
Emissions calculations for this study are evaluated within two dif-

erent contexts: (1) the emission reductions with respect to present-day
lectric and on-site combustion emissions values and (2) the carbon
mission reductions with respect to a future electric grid that has in
art been decarbonized. Table 3 shows the residential sector absolute
9

d

missions and percent change from the base scenario’s total emissions
or each electrification scenario. Present-day emission calculations for
lectricity are based on EPA eGRID average and non-baseload emissions
ates for ERCOT in 2018 [64]. Average emission rates are used to cal-
ulate the base scenario’s electricity emissions. Average non-baseload
mission rates are applied to the change in electricity consumption
rom the base scenario and each electrification scenario. This usage of
on-baseload emission rates is necessary because a widespread building
tock change would be a driving force on the daily residential peak
hen non-baseload plants are active. The displaced emissions from

eplacing fossil fuel heating furnaces are derived from EPA stationary
oint and air sources data [65].

To estimate how these changes in emissions might change under
uture grid scenarios, Table 3 also includes annual CO2 emissions
eductions using annual average long-run marginal emission rates for
hree 2050 scenarios from the NREL Cambium dataset, which provides
ata from capacity expansion and generator dispatch modeling for
020 Standard Scenarios [66]. The long-run marginal emission rates
onsider socio-technical drivers like population growth and increased
esidential demand.

Ideally, one would know the marginal emissions for the generation
ix at different hours of the year, for years into the future; however,

hanges in load of this magnitude would require further modeling of
apacity expansion or supply dispatch, which is beyond the scope of
his study. Using average emissions data is sufficient to estimate coarse
irectional impacts. Because the annual electricity consumption is not
ncreased in any of the electrification scenarios, emissions decrease for
ach electrification scenario. This emissions reduction occurs because
ossil-fuel furnace emissions are getting replaced while no increase in
lectricity usage occurs. True emissions reductions of an electrified
esidential sector will depend on a future emissions mix that likely falls
ithin the bounds of the 2050 scenarios’ long-run marginal emission

ates, a percent reduction between approximately 6 and 9 percent for
he standard efficiency scenario.

. Conclusions

In this analysis, we utilized NREL’s ResStock and the open-source
nergyPlus tools to quantify the electricity usage of a residential sector
ith 100% electrified heating. The results show how an electrified

esidential sector in Texas would peak in the winter instead of the
ummer. This switch would likely decrease net emissions while also
equiring the grid to increase its capacity to accommodate higher spikes
n demand during the winter months.

The electrification of space heating in the ERCOT residential sector
ould shift the residential sector from peaking its demand in the

ummer to the winter. In our analysis, annual electricity consumption
oes not increase because the more efficient heat pumps reduce the



Applied Energy 298 (2021) 117113P.R. White et al.

D

e

D

i
i

D

1

A

S
(
n
s
t
p

a
(

e
f
A
O
f
a
t
F
t
D
p
c
t
G

s

summer cooling energy use more than they increase winter heating
energy demand, but the electric grid may need to increase its total
generating capacity to accommodate very high demand during extreme
cold weather events.

This study is useful to grid planners and policy makers, particularly
those in regions primarily driven by summer cooling loads, because it
gives insights into the grid impacts of heating electrification programs
and policies. Such insights are to expect a higher residential winter
peak demand and lower residential summer demands. Our analysis
also showed how the change in demand can vary across large-scale
synchronous electric grids and thus how a specific electrification policy
can have various localized impacts. This information is critical for the
smart deployment of grid resources. The methodology herein could
be expanded to other regions to explore the impacts of space heating
electrification on other large-scale synchronous electric grids.
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