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Restoring Distribution System Under Renewable
Uncertainty Using Reinforcement Learning

Xiangyu Zhang, Abinet Tesfaye Eseye, Bernard Knueven, Wesley Jones
Computational Science Center
National Renewable Energy Laboratory (NREL)
Golden, U.S.A

Abstract—Distributed energy resources (DERs) in distribution
systems, including renewable generation, micro-turbine, and
energy storage, can be used to restore critical loads following
extreme events to increase grid resiliency. However, properly
coordinating multiple DERs in the system for multi-step restora-
tion process under renewable uncertainty and fuel availability
is a complicated sequential optimal control problem. Due to
its capability to handle system non-linearity and uncertainty,
reinforcement learning (RL) stands out as a potentially powerful
candidate in solving complex sequential control problems. More-
over, the offline training of RL provides excellent action readiness
during online operation, making it suitable to problems such as
load restoration, where in-time, correct and coordinated actions
are needed. In this study, a distribution system prioritized load
restoration based on a simplified single-bus system is studied:
with imperfect renewable generation forecast, the performance
of an RL controller is compared with that of a deterministic
model predictive control (MPC). Our experiment results show
that the RL controller is able to learn from experience, adapt to
the imperfect forecast information and provide a more reliable
restoration process when compared with the baseline controller.

I. INTRODUCTION

Resilience of modern power systems means its capability to
withstand extreme events (e.g., hurricane, earthquake or delib-
erate attack) and rapidly restore service for critical customers
under impact. In the U.S., blackouts triggered by Hurricane
Maria [1] (Puerto Rico, 2017), Superstorm Sandy [2] (North-
east, 2012) and many other extreme events are ringing the
alarm for improving critical infrastructure’s resilience. Load
restoration is one practice for improving grid resilience; it
recovers load as much as possible during an outage event.
Traditionally, an outage area is re-energized by connecting to
an alternative substation [3]. However, under the impact of a
massive extreme event, a neighboring substation either might
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not be able to provide enough power or, more likely, is out
of service as well. As a result, utilizing distributed energy
resources (DERs), either dispatchable or non-dispatchable
renewable generations, within the distribution system to restore
the electricity service becomes a potential solution.

One issue with load restoration using DERs is to identify
a proper method to handle uncertainty from renewable gener-
ation for optimal control. According to [4], three mainstream
approaches has been considered in literature: 1) relying on the
forecast of renewable generation [5]; 2) conducting a scenario-
based stochastic optimization [6]; and 3) using the robust
optimization approach [7]. Apparently, using Approach 1, the
controller is essentially still deterministic and its performance
mainly depends on the forecast accuracy. A controller based
on Approach 2, however, suffers from a heavy computation
burden in order to consider a comprehensive set of random
scenarios. The robust optimization based controller, though
based on computation less expensive than Approach 2, is prone
to be sub-optimal due to the conservative behavior of robust
optimization techniques. To address these limitations, Wang et
al. [4] propose a risk-limiting approach to restore loads in a
distribution system by solving a chance-constrained optimiza-
tion problem. To sum up, the state-of-the-art methods for load
restoration are all optimization based, either deterministic or
stochastic, in order to maximize load being restored.

In recent years, reinforcement learning (RL) and deep learn-
ing, together with high performance computing (HPC), have
become a great combination for solving sequential optimal
decision-making problems. Success stories from computer
science [8], robotics [9] and energy systems [10] adequately
demonstrate RL’s capability. Compared with optimization-
based algorithms, RL can better handle/more easily model
the nonlinearity and stochasticity in the controlled system. An
additional important advantage of RL over an optimization-
based controller is its action readiness: an RL optimal control
policy can be trained offline (before extreme events) and
loaded onto the optimal controller ahead of time. When control
process is initiated, at each step, the control action can be
generated instantly according to the learned policy instead of
optimizing on-the-fly during the near real-time control. Due to
these merits, a RL-based controller (RLC) can be a potentially
powerful candidate for solving the load restoration problem
under uncertainty. Therefore, in this paper, we will investigate
the performance of an RLC and compare it with a deterministic
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Fig. 1. Illustration of a single bus system.

model predictive controller (MPC). The results of this study
showcase the effectiveness of RLC and provide some insights
on future RLC design in power system domain.

In the rest of the paper, Section II presents the load
restoration optimal control problem mathematically and the
associated MPC method; Section III explains the prediction
methods we used to predict generation from uncertain re-
sources; Section IV shows the formulation of the proposed
RLC; Section V evaluates the control performance of these
two controllers and showcases the learning efficiency of the
proposed RLC; and finally conclusion and future works are
discussed in Section VI.

II. A PRIORITIZED LOAD RESTORATION PROBLEM

A. Problem Formulation and Assumptions

In this paper, we consider restoring a distribution network
after a substation outage by using DER assets within the
system; the objective is to maximize the prioritized load
restoration to improve system resiliency. In the distribution
system of interest, there are four DER assets (Two renewable
DERs R = {p,w} and two dispatchable DERs G = {u,6})
to be leveraged: a photovoltaic (PV) generator (p), a wind
generator (w), a micro-turbine (u), and an energy storage
system (6). Critical load ¢ € L is prioritized by an importance
factor n* and H = [p',n?,...,n"N]T € RY is the vector form
for all loads (NN is the number of critical loads). The system
configuration is illustrated in Fig. 1.

Several assumptions are made in this study as follows:

1) Fuel for the micro-turbine and the initial storage for
battery system are limited, and these two DERs alone
are not sufficient to restore the system.

2) Renewable generation from the PV and wind turbine can
be predicted but the forecast is imperfect to reflect a
realistic setting.

3) The demand from critical loads (P = [p',p?,...,p
R™) is assumed to be time-invariant over the control
horizon, and it can be partially restored at any step.

4) The network/power flow constraints are not considered.
This work focuses on investigating the performance of RL
controllers under uncertainty from the energy adequacy
perspective.

5) The length of restoration control horizon/upstream repair
time (i.e., 7) is deterministic and known in advance.

N]TG
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At each step t € T, the generation of micro-turbine (p}’)
and storage (pf), demand restored for each load (P
[pt,p?,....,pN]T € RY) and renewable curtailment (p$') are
dynamically determined. Due to the uncertainty of renewable
generation and the limit on available fuel and initial energy
storage, strong temporal dependency exists over the control
horizon, which makes a RL controller as a potential candidate
for this problem.

B. Mathematical Formulation

Before delving into an RL controller, in this section, the
mathematical formulation of the above-mentioned sequential
optimal control problem for prioritized load restoration is
presented for better understanding.

As shown in (1), the objective function for the optimal
control consists of three parts:

1) To improve system resiliency: maximize the load restora-

tion over time (by priority ranking);

2) To provide a reliable and monotonic load restoration:
penalize frequent/repeated load restoration and shedding
due to the intermittent renewable generation;

3) Penalize unnecessary renewable curtailment.

C=> H'P,—e> H'[P,_; —P,J"—p1"P* (1)
teT teT

In (1), [[z%22%,..,2N)]F = [(@H)F, @)*, .., (V)]

where (2')* = maxz(0,2"). P is a vector representing

renewable curtailment over 7. At ¢t = 0, assume all loads
are not served (i.e., Py = 0). Parameters ¢ and [ are unitless
penalties for shedding restored load and curtailing renewable,
respectively. In general, the controller needs to be confident
to sustain a load for at least € steps before it is restored;
otherwise, overall restoring this load will be penalized.
While maximizing C, the following constraints should be
satisfied for all ¢t € T, among which (2) represents generation-
load power balance, (3) represents the feasible range of load
restoration, (4) and (5) represent feasible output power from
micro-turbine and the constraint on fuel availability (i.e., E*.
7 in (5) is the control interval), and (6) - (9) represent
constraints on storage output/state of charge feasibility, charg-
ing/discharging state transition and initial storage. Ramping
rate constraints for both dispatchable DERs are not considered.

Yopl+> -y =1"P, )
geg reR
0<P, <P 3)
Pt <pf <pr )
> opfer< B )
teT
—p"t < pf <ph (©)
Ste1 =50 = G-pl -7 (7)
s <§) <850 (®)
56 = so ©9)
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In (2), renewable generation forecast are given as exogenous
inputs (i.e., pf and p¥ are given for all ¢ € T). Though
renewable generation forecast are used for decision-making,
the simulator proceeds with actual generation pf and p¥. In
(7), ¢; is the energy storage efficiency and ¢; = 1/¢%* when
battery is discharging (i.e., p! > 0) and ¢; = ¢°"* when it is
charging (i.e., pf < 0). Because (7) is conditional, it makes the
problem a mixed integer linear programming (MILP) problem.

Combine all above together, the sequential optimal control
for restoring the distribution system is presented as below:

maximize (1)
Py.plpd,pg(tET) (10)
subject to (2)=(9) (vteT)

C. Model Predictive Control

In this study, a model predictive controller (MPC) is used as
a baseline controller. Due to the uncertainty from renewable
generation, the MPC solves Problem (10) repeatedly with
updated renewable forecast (i.e., p{ and py’) and system state.
We assume the MPC re-optimizes at every time interval in the
control horizon, and over the control horizon, the optimization
problem control horizon shrinks at each control interval by
one till the presumed system recovery time. At each control
step, with the optimal control problem solved on-the-fly,
the immediate step decisions are applied, and the rest are
discarded and the MPC control horizon shifts by one step
forward in time.

III. RENEWABLE FORECASTS

Two approaches for wind and PV generation forecast used in
this paper are presented. It is worth mentioning that these two
forecast approaches are used for the simplicity for demonstra-
tion and they do not represent the state-of-the-art high accuracy
prediction methods, which is not the focus of this study.

A. Wind Power Forecast

A short-term recursive multi-step time series forecasting
technique [11] is leveraged for wind generation prediction.
Specifically, a supervised learning model M is trained using
the past eight days of data and the wind forecast f’f
(DY, PE 1 DYy o ...,f);‘jrk] can be made as shown below (k is
the length of prediction period and [ is the number of prior
steps of the wind generation, used as predict features).

ﬁ;:tl = M(pltuﬂpttih ..‘7p?71+1)

f’?}+2 = M(ﬁ;)+17p%)a'"apf—l+2) (11)

Dier = MDYy i—1,Pyn—2s -+ Pryi—1)
B. PV Power Forecast
The PV power forecast is based on a simple retrospective
approach: namely output values from the same time the day
before is used to model the generation of the next day with

an adjustment, e.g., the predicted PV output for 11 a.m. today
is the PV output was at 11 a.m. yesterday plus a calculated

3

adjustment, which corresponding to the daily weather changes.
Specifically, at prediction time ¢, the prediction error is es-
timated based on the previous hours’ actual realization. The
retrospective forecast for the next three hours is adjusted (with
a receding multiplier) to account for weather variability be-
tween yesterday’s realization to today’s realization so far. This
method is straightforward to implement for the purposes of
demonstration, and avoids some complications when creating
look-ahead PV forecasts [12].

IV. THE REINFORCEMENT LEARNING APPROACH

RL basics are not discussed here, interested readers should
refer to [13] for more detailed preliminaries. Overall, training
an RL agent is to learn from experience a mapping relationship
(i.e., control policy) 7(a;|S;) that determines an optimal action
a; at state S; which will maximize expected cumulative
future reward, E(}, 7). In deep reinforcement learning,
the control policy is implemented using a neural network.
Changing the parameters of the neural network (i.e., ),
will result in a different policy my(a;|S¢). A class of RL
algorithms, called policy gradient, is to use gradient ascent to
update 1) so that E(3, ) is maximized and the optimal
control policy 7*(a;|S¢) is obtained until 1) is converged.

A. Markov Decision Process Formulation

Typically, an optimization problem is formulated as a
Markov Decision Process (MDP) to be solved using RL.
Below, three most important elements of an MDP are defined
corresponding to the problem formulation in (10).

Action is the set of decision variables the RL controller
needs to determine at ¢ € 7. In this study, action is defined
as a; = [pt',p?, p]. With exogenous inputs (i.e., p{ and p¥)
and ay, the total restored load 17 P, can be determined by (2).
In this single bus scenario, serving load with higher priority
is dominantly optimal than serving lower priority load. So
restored amount for each load pi is determined once the total
load restoration 17'P, is determined, according to H.

State represents the system status of the current step. In this
study, state is defined as S; = [p{,p¥, S, Bl 1TP,/1TP, t].
Py and py are the PV and wind generation imperfect forecast
for the next hour. SY and E}* are the state of charge for the
storage and remaining fuel for the micro-turbine, representing
power supporting capability of the controllable DERs at cur-
rent step. 17 P, /17 P represents current load restoration level.
t represents the current step index.

Reward: Given S; and the RL agent’s decision a;, the
environment returns a reward at each step representing how
good the action is. The reward is defined as r; = HTP, —
H”[P;_1 —P;]T — Bpg, which is the same as one step value
in the objective function in (1).

Based on this MDP formulation, an OpenAl Gym [14]
environment is developed to enable the reinforcement learning.

B. Evolution Strategies based RL (ES-RL)

Essentially, the process of on-policy reinforcement learning
can be divided into two tasks: 1) experience collection and

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



TABLE I
PARAMETERS USED FOR CASE STUDY

Var Value Var Value
[1.0, 1.0, 0.9, 0.85, 0.8, . =T
H | 065 045, 04,03, 03] (P, p¥] 10, 300]
[33, 34, 8.5, 85, 60, "

P 60, 58, 115, 64, 85] B 1000
T (1,2, ... 72] (p%:ts | p¥:ehy 171200, 200
C [1, 2, ., 10] 50 720
PV [0, 300] (89, 59) (160, 800]
Wind [0, 150] T 1712

€ 100 B 0.2
¢eh 0.95 ¢dis 0.90

2) use the collected experience to update policy my(a:|S;).
By running these two tasks repeatedly, an optimal policy
7*(a;|S;) is expected to be determined once ) is converged.
Depending on the detail of policy update, there are many
deep reinforcement learning algorithms (e.g., proximal pol-
icy optimization, deep deterministic policy gradient) suitable
for the above-mentioned control problem. In this study, we
choose to use a direct policy search algorithm based on
evolution strategy (ES-RL) [15] due to its scalability. It is
worth noting that ES-RL is gradient-based, instead of a
purely heuristic algorithm. Specifically, it uses ES for zero-
order gradient approximation: at each iteration, ES-RL first
perturbs the policy parameters i) by generating some random
noises from an isotropic multivariate Gaussian e; ~ N(0,1)
for ¢ € {1,...,n}. Based on these noises, n new policies
parameterized by ; + oe; are obtained (o is the standard
deviation of the perturbing noise). These “mutated” policies
Topetoe; (A]Sy) will be used for experience generation and
obtain the stochastic return from the environment (G,
ZtET 7). Using these results, the new policy will be updated
using 41 = Uy + Lm Zz_ Ge;, in which ¢ is the learning
rate. With adequate iterations, v, is expected to converge to
an optimal combination and an optimal policy is trained.

V. CASE STUDY
A. Experiment Settings

In this section, we study a specific load restoration problem
with a control horizon of six hours (repair time needed to
restore the service from upstream substation) and a control
interval of five minutes. Table I details the parameters used
in this case study. The baseline MPC was implemented using
JuMP in Julia 1.4 and was solved on a MacBook Pro with
Intel Core 17 Quad-Core Processor (2.80GHz) and 16GB RAM
using the GLPK open source solver.

Real world PV and wind generation profiles in two months
(July and August) are collected as the exogenous data used for
training and testing. Use different renewable generation set in
training and testing is to resemble the reality and to provide a
more objective evaluation. Specifically, Fig. 2 shows the setup
of controller-simulator interaction. First, a scenario sampler
will randomly samp]e six hours of renewable generation

profiles (i.e., P[t0 tot 1. to +T]) from the exogenous data pool.

4

Renewable Generation Data Pool
(Training/Testing)

|

| Scenario Sampler |

Pitis...

Controller

Load Restoration

System Simulator

Fig. 2. Illustration of controller comparison setup, the performance of MPC
and RLC can be evaluated by swap in either controller. This setup is also
used for RLC training. Recall from Section IV-A, the RL state Sy consists of
renewable forecast and the system state x¢, two inputs for the controller.

Based on the selected period, the renewable forecaster men-
tioned in Section III is able to generate forecast profiles at each
step (i.e., PR [Et+T, k] in which k is the forecast horizon).
At step t, the controller, either MPC or RLDC, makes decision
based current system state (i.e., z; = [S?, B, 1TP; /1T P, t])
and forecast made at this step. Based on the action, the system
simulator will update system state and evaluate the reward at
this step r;. By the end of the control horizon, the total reward
> 1c7 Tt is used to evaluate the controller performance.

B. RLC Training

The RL controller is trained on the High Performance Com-
puting system at the U.S. Department of Energy’s National
Renewable Energy Laboratory (NREL). Each Eagle computing
node has dual Intel 18-core processors and in this study ten
nodes are utilized for the training resulting in a cluster of 323
parallel workers for the optimal policy search using ES-RL
algorithm mentioned in Section IV-B. Specifically, for each
step of gradient update (i.e., training epoch), parallel workers
together collect 5000 episodes of training data (equivalent to
72 x 5k = 360k control steps) by interacting with simulators.
The learning step used in our study is 0.001 and the discount
factor v = 1 since this control problem has a finite control
horizon. Fig. 3 shows RL learning curves in three trials. The
RL learning tasks are scheduled to be run for around two hours
on Eagle, but from the resulting learning curves, it can be seen
that learning has already converged to a policy by the end of
the first hour. The trained RL agent is used in the following
performance evaluation.

C. Performance Evaluation

This section conducts performance evaluation of the pro-
posed RL controller from three aspects: first, the controller’s
reaction towards intermittent renewable generation is exam-
ined; second, a comparison between MPC and RLC is con-

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 3. Learning curves showing the average episode reward increases with
the increase of training steps (i.e., amount of total experience collected). Three
curves represent for three different trials. The bottom x-axis shows the training
steps and the top x-axis shows the corresponding wall time.
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Fig. 4. Generation output from four DERs and renewable curtailment over
one six-hour scenario. Substation outage occurs at 12:00 and the fault cannot
be repaired until 18:00.

ducted using a specific scenario; and third, the MPC and RLC
comparison based on multiple testing scenarios is studied.

1) Controller response: Fig. 4 shows the generation profiles
of the four DERs (R = {p,w} and G = {u,6}) over
the 6-hour control horizon of a specific scenario, in which
the substation outage occurred at 12:00. By observing this
scenario, it can be seen that although the PV generation
changes violently in this afternoon, the RLC can properly
control the micro-turbine and storage system at each step to
compensate for the variability in renewable generation, which
helps providing continued support to loads that have been
restored. Moreover, between 12:15 and 13:00, when solar
generation is abundant, instead of greedily using it to restore
more loads immediately, the RLC choose to charge the power
to the storage at this time since it has learned from training
that restoring load too soon might lead to penalty due to failure
to sustain restored loads. From this scenario, we can see that
RLC can make some seemingly reasonable decisions at each
step. To further study the quality of these decisions, RLC is
compared with the baseline MPC over several scenarios.

2) RL vs. MPC: Single Scenario: Fig. 5 shows the compar-
ison between two restoration processes controlled by a MPC
and an RLC. MPC started with picking up first eight loads

5

| —
0 20% 40% 60% 80% 100%
Load restored percentage

MPC
210 —I—I_-
25
(=]
—
RL
o 10 ——
25
[}
—
12:00 13:00 14:00 15:00 16:00 17:00 18:00

Fig. 5. Load restoration comparison between MPC and RL controller.
According to Table I, load 1 to 10 have monotonically decreasing priority.
Color bar shows the load restoration level with yellow means 100% restoration
and black means 0%.

with higher priority but at the end of the control horizon only
six loads are fully restored. This is mainly due to the forecast
error of renewable generation, the difference between forecast
and reality causes poor planning and thus in the later half
of the control horizon, MPC realized that there isn’t enough
remaining fuel, stored energy and renewable generation and
has to shed load 7, 8 again. Also, load 8 was repeatedly
restored and partially shed until it was totally shed, providing
an unreliable service to this load.

In contrast, RLC learned from experience (during training)
that predicted information cannot be totally relied on and
formed its own control policy under these uncertain scenarios.
From Fig. 5, it can be seen that RLC started with restoring the
most important four loads and gradually restore more loads as
it become more confident to handle renewable uncertainty. For
loads that have been restored, it is very likely that they will
be served continuously.

3) RL vs. MPC: Multiple Scenarios: To get a more com-
prehensive comparison, each of these two controllers are ex-
amined in 50 scenarios, 25 each in training period and testing
period. Comparing the RLC performance in both training and
testing scenarios is to examine if the performance deteriorates
in unseen testing scenarios.

Fig. 6 and Table II present the comparison results, from
which the following observations/conclusions can be drawn:

a) In general, RLC performs better than MPC considering
the maximized objective’s mean, median and distribution.
The distribution of the objective function values for the
MPC has higher variance than that of the RLC. This is
due to MPC’s strong dependence on the renewable fore-
cast: in those scenarios where forecast is relatively better,
MPC has good performance but when forecast error is
large, MPC tends to have much worse performance.

RLC performance does not become inferior under the
unseen testing scenarios. The reason is that even though
the RLC has not seen the exact scenarios in testing cases,
the distribution of renewable generation and forecast error
is similar in training and testing (two adjacent months

b)

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 6. Objective function values comparison between MPC and RLC. A total

of 50 scenarios are selected among training and testing data (evenly split),
and each boxplot shows the distribution of 25 scenarios.

TABLE 11
AVERAGE OBJECTIVE FN. VALUES OVER 25 SCENARIOS IN EACH CASE
Controller Scenarios
Training Testing
MPC 15811.77 | 16647.85
RLC 17633.46 | 18044.50

with the same forecasting technique).

To sum up, in this section, a comparison between RLC and
MPC is conducted and we discover that due to the training
experience, RLC has learned about how to handle imperfect
forecast and provide a steadier and more reliable restoration
process, which achieves a higher average objective function
value than MPC. In addition to the experimental findings
above, we also identify an issue/improvement area: in some
cases, RLC does not deplete the fuel and stored energy in the
controllable DERs by the end of the control horizon, which
could be sub-optimal.

VI. DISCUSSION AND FUTURE WORK

In this study, based on a load restoration problem on a
single bus system, we conduct a preliminary study comparing
the performance of a reinforcement learning controller (RLC)
with that of a deterministic model predictive controller (MPC),
considering the uncertainty from renewable generation. The
results show that RLC can achieve better control performance
than MPC: By learning from experience, RLC is able to learn
an optimal control policy to handle forecast error.

Though preliminary results show that RLC is promising to
provide better control, the following tasks will be addressed
in our future work. First, more complex system will be tested.
Additional complexity comes from three aspects:

a) System complexity: power flow and network constraints
will be considered.

b) Operation complexity: a more versatile RLC will be
trained to handle different operation conditions; e.g.,
different initial conditions such as sg and E*.

¢) Uncertainty complexity: uncertainty in the restoration
time will be taken in consideration.
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Second, although forecast values are used in the RL formu-
lation, RLC does not necessarily need explicit renewable fore-
cast values for decision-making. Instead, historical renewable
generation can be used for the RL state and during the RLC
training, it has the ability to learn a forecasting tool implicitly
to facilitate decision-making.

Finally, whether an RL controller should be trained using
historical data from the past 30 days, 120 days or half a
year is worth investigating. This is because more historical
data provides more scenarios to train a versatile and capable
controller. Conversely, historical data from half a year ago
might have different distribution and could change the overall
distribution the RL training is optimizing against, thus causing
sub-optimal behavior.
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