Influence of Ink Formulation and Drying Conditions on Ionomer Distribution in High-Performance Roll-to-Roll-Coated Gas-Diffusion Electrodes

Scott Mauger (scott.mauger@nrel.gov)
PRiME/236th ECS Meeting, I01B-2218
October 6, 2020
Team

NREL – Min Wang, K.C. Neyerlin, Tim van Cleve, Mike Ulsh
Colorado School of Mines – Michael Dzara, Svitlana Pylypenko
Argonne National Lab – Firat Cetinbas, Jaehyung Park, Rajesh Ahluwalia, Debbie Myers
Carnegie Mellon University – Leiming Hu, Shawn Litster

Funding – D.O.E. Advanced Manufacturing Office, Roll-to-Roll Advanced Materials Manufacturing Lab Collaboration
Roll-to-Roll Manufacturing

Electrocatalyst approaches and challenges for automotive fuel cells

Mark K. Debe

10% of 2030 market = 15M vehicles/year
= 4.5B MEAs/year

- 20 production lines – 585 MEAs/min
- Coating – 1 m wide x 20 m/min

High-performance R2R-manufactured MEAs needed to meet cost and volume targets
Direct Coating vs Decal Transfer

Decal Transfer
- Catalyst Ink
- PTFE
- Coat and Dry
- Hot Press
- Membrane
- Peal
- Membrane or GDM
- Coat and Dry

Direct Coating
- Coat and Dry
Motivation for Direct Coating

<table>
<thead>
<tr>
<th>Production Volume (sys/yr)</th>
<th>1000</th>
<th>10,000</th>
<th>20,000</th>
<th>50,000</th>
<th>100,000</th>
<th>500,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>m² active area/yr</td>
<td>7,470</td>
<td>74,702</td>
<td>149,404</td>
<td>373,511</td>
<td>747,022</td>
<td>3,735,111</td>
</tr>
<tr>
<td>Slot die coating process ($/m²)</td>
<td>$52.59</td>
<td>$9.14</td>
<td>$4.92</td>
<td>$4.00</td>
<td>$2.93</td>
<td>$1.30</td>
</tr>
</tbody>
</table>

- Direct coating offers significant savings over decal coating
- Gas diffusion media easier to coat on than membrane

Data courtesy of Strategic Analysis, Inc.
The GDE Challenge

- Spray-coated GDEs often don’t perform as well as CCMs
- Need an ionomer overlayer to form good GDE-membrane interface

Two coating steps (CL + overlayer) does not have an advantage over decal process

The Roll-to-Roll Advantage

- In colloidal mixtures materials can phase separate form enriched surfaces

- Separation is favorable when:
 - Evaporation >> Diffusion, Sedimentation
 - Large difference in particle size
 - Higher concentration of small particles

- Goal—can we design an ink and single coating step that leads a GDE with an ionomer rich surface

Small Scale Coating Trials

- Mayer Rod coating on SGL 29BC diffusion media to simulate R2R coating
- Increase drying temperature to increase evaporation rate
 - 25, 60, and 80 °C
- Increase ionomer:carbon ratio to increase volume of ionomer available to move to surface
 - 0.9, 1.2, 1.6 I/C
- Ink
 - Pt/HSC (TKK TEC10E50E): 3.2 wt%
 - Dispersion Media: water/1-propanol (75/25 w/w)
 - Nafion, 1000 EW
Measurement of Surface Ionomer

Kelvin Probe Method

- Ambient
- Non-contact
- Non-destructive
- Relative measurement

X-ray Photoelectron Spectroscopy

C 1s

- **Ionomer**
- **Pt/HSC**

Coating Method Table

<table>
<thead>
<tr>
<th>Coating Method</th>
<th>I/C</th>
<th>C/I Cc</th>
<th>ΔCPD [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray-coated without overlayer</td>
<td>0.9</td>
<td>0.21</td>
<td>-</td>
</tr>
<tr>
<td>Spray-coated with overlayer</td>
<td>0.9</td>
<td>0.38</td>
<td>1104</td>
</tr>
<tr>
<td>Mayer Rod</td>
<td>0.9</td>
<td>0.49</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.58</td>
<td>726</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.86</td>
<td>933</td>
</tr>
</tbody>
</table>

Increasing I/C and drying temp increase surface ionomer content
Increasing I/C:
• Increases conductivity
• Decrease diffusivity
Slot-Die-Coated GDEs

- Same ink as rod coating
- Coating speed - 1 m/min
- Dry at 80 °C
- Freudenberg H23C8 diffusion media

X-ray Photoelectron Spectroscopy

<table>
<thead>
<tr>
<th>Coating Method</th>
<th>I/C</th>
<th>C_l/C_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray – no overlayer</td>
<td>0.9</td>
<td>0.21</td>
</tr>
<tr>
<td>Spray – overlayer</td>
<td>0.9</td>
<td>0.38</td>
</tr>
<tr>
<td>R2R slot die</td>
<td>0.9</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

R2R GDEs show same trends as rod coated
Fuel Cell Performance

- **1-step R2R GDEs perform as well as 2-step spray-coated GDEs**
- High performance also shown with PtCo-based R2R GDEs

![Graph 1](image1.png)

0.1 mg_{Pt}/cm^2
100 %RH
80 °C
150 kPa_{Abs}

![Graph 2](image2.png)

R2R GDEs
0.9 I/C
H₂/N₂ Impedance Spectroscopy

\[Z(\omega)_{\text{model}} = j\omega L_{\text{wire}} + R_\Omega + \sqrt{\frac{R_{\text{CL}}}{Q_{\text{DL}}(j\omega)\phi}} \coth\left(\sqrt{\frac{R_{\text{CL}}}{Q_{\text{DL}}(j\omega)\phi}}\right) \]

Setzler & Fuller, JES, 162 (6) F519-F530 (2015)
https://github.com/NREL/OSIF

100 %RH
0.2/0.2 sccm H₂/N₂
80 °C
\(V_{\text{DC}} = 200 \text{ mV}\)
\(V_{\text{AC}} = 1 \text{ mV}\)
1 – 10 kHz

Coating Method

<table>
<thead>
<tr>
<th>I/C</th>
<th>(R_{\text{CL}}) [mΩ-cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>92 ± 10</td>
</tr>
<tr>
<td>1.2</td>
<td>88 ± 10</td>
</tr>
<tr>
<td>1.6</td>
<td>81 ± 10</td>
</tr>
</tbody>
</table>

Spray – without ionomer overlayer
0.9 222 ± 10

Spray – with ionomer overlayer
0.9 108 ± 10

0.9 I/C has sufficient ionomer to form good interface with membrane
• Increasing drying temperature leads to ionomer enrichment at GDE surface
• Ionomer rich surface forms low resistance interface with membrane
• 1-coating step R2R GDEs have same performance as 2-step spray coated GDEs
• GDEs are viable for industrial manufacturing
This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The submitted manuscript was created, in part, by U Chicago Argonne, LLC, Operator of Argonne National Laboratory, Argonne, U.S. Department of Energy Office of Science laboratory, operated under Contract No. DE-AC02-06CH11357. This research used the resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory, also under Contract No. DE-AC02 06CH11357. Funding provided by U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was conducted as part of the Roll-to-Roll Advanced Materials Manufacturing Laboratory Collaboration, and strongly leveraged work supported by the Hydrogen and Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.