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Abstract—Stationary batteries in residential and commercial
buildings are often used to smooth customer load profiles and
to lower customer electricity bills. Controllers for these battery
systems should account for customer energy consumption, rate
structures, and high internal battery temperatures, which can
lead to reduced performance over the battery lifetime. It is
important to consider the uncertainty in forecasting energy
consumption and temperature, especially for customers with
highly variable and uncertain loads. We propose a novel battery
controller using stochastic model predictive control that accounts
for these uncertainties and can handle complex rate structures,
including demand charges. We show that the controller performs
better than standard model predictive control when there is sig-
nificant uncertainty in the forecast. We also show improvements
in the performance with more accurate forecasts and with a more
aggressive control strategy.

I. INTRODUCTION

The U.S. residential battery market more than doubled in
2019 and is expected to triple in 2020, and non-residential
behind-the-meter batteries increased by 38% in 2019 [1].
Market growth is primarily driven by decreasing battery costs
and new rate structures that allow customers to monetize the
value of the battery [2]. This is often done through one of
three mechanisms: self-consumption of on-site generation to
reduce energy imports, energy arbitrage to import energy at
low price times and export at high price times, and demand
charge reduction by reducing the maximum imported demand
[3].

Controllers decide when to charge and discharge the bat-
tery. They typically depend on the customer’s rate structure,
which may include time-based rates, demand charges, and
feed-in tariffs. Optimal control often depends on the customer’s
electricity consumption (and solar production if it exists),
which can be highly variable and uncertain. Batteries also
experience capacity degradation due to fast cycling and high
temperatures, which may be significant if batteries are installed
outside or in unconditioned spaces [4].

Numerous studies have developed battery models to bet-
ter understand the impacts of battery cycling, temperature,
and other conditions on battery performance and degrada-
tion. Detailed models for specific battery chemistries and
configurations include many chemical, electrical, and thermal
parameters [5], [6]. Many papers use lumped models for
packaged battery products and general applications. Some
models include a 1- or 2-node thermal model to track internal
battery temperatures [7]–[9].

There are also numerous battery controllers in the literature
that are designed for maximizing economic output of the
battery. Simple controllers have a time-based schedule based
on a rate structure. Others are load-following to achieve
maximum self-consumption or minimum grid import and/or
export [10]. More complex controllers calculate when to
charge and discharge using a heuristic algorithm [7] or through
optimization that involves the load profile and rate structure.
Many papers use model predictive control (MPC) to account
for future load and rate changes in the current control decision
[11]–[13].

Because residential and commercial consumption is often
highly variable and uncertain, MPC controllers may not be
well-suited for these applications. For example, a peak-shaving
controller may be able to flatten a load profile given a perfect
forecast of future demand; however, if the actual consumption
is very different from the forecast, it is unlikely to fully flatten
the peak. For systems with significant uncertainty in their
forecasts, the assumptions from MPC may lead to sub-optimal
decisions.

Stochastic Model Predictive Control (SMPC) resolves these
issues by accounting for uncertainty in the control problem.
SMPC is similar to MPC in that it solves an optimal control
problem on a receding time horizon, but the underlying model
includes stochastic disturbances and measurement error [14].
SMPC has been used in many energy applications [15]–[17].
[18] uses SMPC for stationary batteries at the utility-scale level
with objectives that are not as relevant at the customer level.

We propose a stochastic model predictive controller for
customer-sited, behind-the-meter batteries that incorporates
uncertainty in customer load and ambient temperature. The
controller minimizes costs based on time-of-use and demand
charge rate structures and operational costs due to degradation.
The key contributions of this paper include the integration of
a thermo-electric battery model, a stochastic model predictive
controller to minimize customer energy costs and battery
degradation, and a demand charge in the SMPC optimization.

In Section II, we formulate the battery model and the
SMPC optimization problem for the battery controller. In
Section III, we use residential customer AMI data to show the
benefits of the controller and the importance of understanding
risk and uncertainty in this application. We conclude by
presenting ideas for SMPC in related energy applications.
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II. FORMULATION

A. Model Formulation

A linear battery model was used to keep the SMPC
optimization problem solvable and computationally efficient.
The electrical model is a common model taken from [11]. It
tracks the battery state-of-charge as:

dSOC

dt
= ηbηiPchg −

1

ηbηi
Pdis (1)

where SOC is the battery state-of-charge, Pchg is the AC
charging power, Pdis is the AC discharging power, ηb is the
battery efficiency, and ηi is the inverter efficiency. Note that
the efficiencies are the same for charging and discharging.

The thermal model is a lumped model that has also been
used elsewhere for batteries [7]. It tracks the battery internal
temperature as:

dTb
dt

=
1

Cth

(
(1− ηb)Pchg +

1− ηb
ηb

Pdis +
Ta − Tb
Rth

)
(2)

where Tb is the battery temperature, Ta is the ambient tem-
perature, Rth is the thermal resistance, and Cth is the thermal
mass. External heat gains are not included in the model.

The electrical and thermal models combine to create a 2-
state, fully observable state space model of the form:

ẋ = Acx+Bcu+Gcz

y = x
(3)

where:

x =

[
SOC
Tb

]
, u =

[
Pchg
Pdis

]
, z =

[
Ta
Pload

]
and Ac, Bc, and Gc are defined from Equations (1) and (2).
Note that u is a vector of controllable inputs, and z is a vector
of non-controllable inputs.

We then discretize the model assuming piece-wise constant
inputs at a sampling time of Ts, provide a probabilistic model
for the non-controllable inputs z, and add measurement noise
to the outputs y. We denote a random sequence with a tilde,
e.g. z̃, and its expected value as z = E[z̃]. The final linear
model is:

x̃k+1 = Ax̃k +Buk +Gz̃k
ỹk = x̃k + ṽ

(4)

where:

A = eAcTs

B = A−1c (A− I)Bc
G = A−1c (A− I)Gc

The signals z̃ and ṽ are modeled as independent random
sequences with a multivariate Gaussian distribution. The den-
sity of non-controllable inputs z̃k ∼ N (zk, Qz,k) varies with
time. The density of measurement noise ṽ ∼ N (0, Qv) does
not vary with time. We assume Qz,k is a diagonal matrix and
define its elements as σ2

Ta,k
and σ2

Pload,k
, representing the time-

varying variance of the non-controllable loads Ta,k and Pload,k.

Under these assumptions, the states have a Gaussian dis-
tribution with a density x̃k ∼ N (xk, Qx,k). The diagonal

elements of Qx,k are defined as σ2
SOC,k and σ2

Tb,k
. Using

the Kalman filter equations for time and measurement updates
[19], the parameters of the state density are given by:

xk = x−k +K(yk − x−k )
Qx,k = Q−x,k(I −K)

(5)

where:
K = Q−x,k(Q

−
x,k +Qv)

−1

x−k+1 = Axk +Buk +Gzk

Q−x,k+1 = AQx,kA
T +GQz,kG

T

(6)

Note that the above equations can be used iteratively to
calculate the density of states further in the future than x̃k+1.
When the measurement yk is unknown, we set xk = x−k .

For calculating demand charges, we track the peak power
of the battery and load:

Ppeak,k = max(Ptot,k, Ppeak,k−1) (7)

P̃tot,k = Pchg,k − Pdis,k + P̃load,k (8)

Note that P̃load,k is a random sequence when k > 0 and
therefore P̃tot,k is a random sequence with the same variance
as P̃load,k. We define a deterministic form of Equation (8) using
P load,k and P tot,k. In our formulation, we do not calculate
Ppeak,k when k > 0.

B. Controller Formulation

The battery controller is designed to minimize battery costs
while keeping the battery state x within reasonable constraints.
The controller uses a SMPC framework that accounts for the
uncertainty in state variables x̃k and in non-controllable inputs
z̃k. The variance of these values is used in the objective
function and in the constraints of the optimization problem.
The horizon length is nk and the total horizon time is Tsnk.

The objective function used in this paper consists of 5
terms. The first two terms capture costs associated with a
time-based rate and a demand charge, respectively. The second
two terms capture lifetime degradation costs associated with
power and temperature. Quadratic relationships for power are
used to estimate the increased degradation at large charge and
discharge currents. The final term captures the future benefit
for maintaining charge in the battery at the end of the horizon.

J =

nk∑
k=1

ctou,kTsP tot,k

+cpeak max
k∈[1,nk]

(
P tot,k − Ppeak,0 + ζPσPload,k , 0

)
+βP

nk∑
k=1

(
P 2

chg,k + P 2
dis,k

)
+βT

nk∑
k=1

max
(
T b,k − Thigh, 0

)2
+ctou,nk

ηbηiSOCnk

(9)

where J is the total cost, ctou,k is the time-of-use rate at
sample k, cpeak is the demand charge rate, and ζP , βP , βT , and
Thigh are tuning parameters that adjust the relative costs and
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risks of high net loads, high battery power, and high battery
temperatures. We assume the electricity price ctou,k is net-
energy metered. The 2nd term includes a back-off magnitude
ζPσPload,k to account for the risk of variability in P tot,k (see
[14]). We note that the cost function will only account for the
incremental increase in the demand charge across the horizon.

There is no uncertainty in the power inputs or in any other
parameter in the electrical model, so SOC is a deterministic
state. Therefore, Pchg, Pdis, and SOC can be bounded with
hard constraints:

Pchg,k ≥ 0 ∀k ∈ [1, nk]

Pdis,k ≥ 0 ∀k ∈ [1, nk]

SOCmin ≤ SOCk ≤ SOCmax ∀k ∈ [1, nk]

(10)

where SOCmin is the reserve SOC of the battery, and SOCmax
is the battery capacity.

The battery temperature T̃b is a random variable due to
the stochastic nature of T̃a, and must be bounded using a
chance constraint to ensure that the battery operates at a safe
temperature and to limit the risk of thermal run-away:

T b,k ≤ Tmax − ζTσTb,k ∀k ∈ [1, nk] (11)

where T b,k is the controller’s estimated value of Tb,k, Tmax
is a soft constraint of maximum temperature and ζTσTa,k

is the back-off magnitude (see [14]). Note that Tmax is not
necessarily the same as Thigh, but both terms ensure low battery
temperatures.

Finally, the linear model from (4) provides equality con-
straints for states across the time horizon:

xk = Axk−1 +Buk−1 +Gzk−1 ∀k ∈ [1, nk] (12)

Combining Equations (9-12) gives the final control prob-
lem:

(P1)min
uk

: J

s.t. uk ≥ 0

SOCmin ≤ SOCk ≤ SOCmax

T b,k ≤ Tmax − ζTσTb,k

xk = Axk−1 +Buk−1 +Gzk−1
∀k ∈ [1, nk]

(13)

We note that zk and Qz,k are required inputs for P1 for
the entire horizon. The state variance σ2

Tb,k
can also be pre-

computed using Equations (5) and (6).

All constraints are linear, and the objective function is
strictly convex (when assuming reasonable values for some
parameters, e.g. all β > 0), making P1 a convex optimization
problem that guarantees a globally optimum solution and can
be solved efficiently. The formulation also ensures that Pchg
and Pdis are never non-zero at the same time step when ctou > 0
and 0 < ηbηi < 1 (see [11]).

III. RESULTS

We test the battery model and controller described in
Section II and assess the control performance in multiple
scenarios. Two reference scenarios test an MPC controller with

TABLE I. MODEL AND CONTROL PARAMETERS USED FOR
SCENARIOS

Parameter Value

Pload and σ2
Pload,k

varies, see Figure 1
Ta and σ2

Ta,k varies, see Figure 1
ηb 98 %
ηi 97 %
Cth 90 kJ/K
Rth 60 K/kW

Qv

[
0.05 kW 0

0 1◦C

]
Ts 30 minutes
nk 48

Off-peak: 0.012376 $/kWh
ctou Shoulder: 0.026377 $/kWh

On-peak: 0.123296 $/kWh
cpeak 8.5674 $/kW
βP 0.001
βT 0.002
ζP 2.33 (99th percentile)
ζT 2.33 (99th percentile)
Thigh 30 ◦C
Tmax 40 ◦C

SOCmin 0 kWh
SOCmax 10 kWh

a perfect forecast and with a forecast with high uncertainty.
SMPC scenarios test the control performance by varying the
level of risk and forecast uncertainty. All scenarios are run
for a single residential customer with high PV generation over
a 1-month period. The simulations are run at 30-minute time
intervals, and the horizon is 24 hours, or 48 time steps.

All scenarios use parameter values described in Table I un-
less otherwise noted. The load profile was taken from an open-
source dataset of residential customers with rooftop PV near
Sydney, Australia [20]. We used data over a month for a single
customer with high energy consumption, a high PV capacity of
4.5 kW, and no controllable loads. The temperature profile was
taken from the Sydney airport for the corresponding month and
year [21]. Figure 1 shows the load and temperature profiles as
well as their mean and variance across the month. Note that
the battery is assumed to be installed outside and subjected to
the ambient temperature and no direct solar radiation.

The TOU rate and demand charge are taken from [22].
The TOU rate has a price ratio of about 1-to-5, which is larger
than most TOU rates [23]. The demand charge uses 30-minute
average demand and, in our formulation, is not restricted to
the on-peak period. Battery electrical parameters were taken or
derived from [24]–[27]. We assume the battery is AC-coupled,
and do not consider inverter power limits. Thermal parameters
were derived from [5], [26], and [27]. Other values were
estimated using the previous sources to achieve reasonable
values for a typical residential battery.

The controller performance was assessed using the cost
function from Equation (9). To determine the actual cost to
the customer across the entire month, we replace nk with the
total number of time steps throughout the simulation, use the
actual total power Ptot,k instead of P tot,k, and set σPload = 0.

A. MPC Reference Scenarios

Reference scenarios are run using a MPC framework
similar to the proposed framework in Section II. Equation (13)
is used for the MPC framework with all variance parameters
(σTa

, σPload , and σTb
) set to zero. The Perfect Forecast scenario

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 1. Daily Profiles for (a) Customer Load Pload and (b) Ambient
Temperature Ta for each day of simulation. Shaded region shows z ± 2σz .

uses the exact load and temperature as the forecasts for the
MPC optimization. The MPC Baseline uses the same forecast
as the SMPC Baseline scenario.

Table II shows the results of all the scenarios. The TOU and
demand costs are taken from the first two terms in Equation
(9), and other costs include costs due to degradation. As
expected, the MPC with a perfect forecast performs very well,
significantly lowering the total cost. The baseline MPC run
performs poorly, especially considering the demand charge
cost, since there are significant deviations between the baseline
forecast and the actual power.

B. Baseline Scenario

The SMPC Baseline scenario uses the mean and variance
of the load and temperature profiles calculated on an hourly
basis as shown in Figure 1. Note that the z ± 2σz interval
contains the majority of the data, although a few days of the
month have very high powers and high temperatures. The two
days with the largest load correspond to the two days with the
highest temperatures.

The controller successfully reduces the total cost to the
customer across the month from $19.94 (from the MPC
Baseline scenario) to $15.01 as shown in Table II. This im-
provement primarily comes from a reduction in peak demand
that is enabled by the controller’s load forecast. The TOU
cost increased slightly, likely due to the focus of the SMPC
control on the demand charge; for example, if there is a risk
of approaching the peak power, the controller will reduce the
chance of exceeding it by discharging more or charging less,
even if that leads to increased TOU costs.

Figure 2 shows the results of the baseline scenario for the
peak load day of the month. The battery charged during night-
time hours when electricity prices are low and uncertainty in
load is low. It waits to discharge the battery until about 16:00
during the on-peak period, which is about when the load power
increases and becomes more variable. It successfully lowered
the peak demand before 20:00. However, the controller did

Fig. 2. Results for SMPC Baseline Scenario on the Peak Load Day

not expect the load power to remain high after 20:00, and
it almost fully discharged during the on-peak period. Right
after 20:00, the battery stopped discharging and the net load
increased dramatically, which led to a large increase in the
peak power, and the largest peak of the month.

The baseline controller had no information about the high
demand or high temperature of this day; it was only provided
the expected value and variance shown in Figure 1. Therefore,
it could not have predicted the high load power, nor the high
ambient temperature late in the day.

The simulation ran in 45 seconds, or 31 ms per time step,
on a Dell PC with a 1.9 GHz Intel Core i7 processor and 16
GB of RAM. The simulation is run in Python with a publicly
available convex optimization solver [28].

C. Effect of Risk

One method to improve the performance of the baseline
controller is to increase the risk tolerance for high peak
demand and high battery temperatures by decreasing the back-
off magnitudes ζP and ζT . Decreasing ζP will decrease the
value of the 2nd term in Equation (9) for time steps when there
is a risk of exceeding the previous peak demand, leading to
more charging or less discharging when the load is estimated
to be high or is more uncertain. Decreasing ζT will loosen the
constraint on T b,k through Equation (11), which will increase
the battery charge and discharge power when the battery
temperature is close to Tmax. Both of these changes will make

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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the controller behave more aggressively during times when the
load power and the ambient temperature is high.

We run the controller with High Risk conditions ζP =
1.28 and ζT = 1.28, corresponding to the 90th percentile of
a Gaussian distribution. The performance results are shown in
Table II and are slightly improved over the SMPC baseline
scenario. The more aggressive control was able to reduce the
TOU cost without increasing the demand charge cost. The peak
time and day was the same for this scenario and for the baseline
scenario.

We note that lower risk tolerance and more aggressive
control behavior will not improve performance in all instances.
The nature of the data used in these scenarios, and in particular
the load profile on the peak day, cause the higher risk scenarios
to lower the total costs.

D. Effect of Uncertainty

A preferable method to improve the controller perfor-
mance, when possible, is to provide a more accurate prediction
of load and temperature forecasts to the controller. Using the
monthly load data and a publicly available model estimation
tool, we develop an autoregressive (AR) model of the load
power to reduce the uncertainty of the load forecast [29]. While
more complex methods can create more accurate forecasts
[30], we chose a first order AR model for simplicity. The load
power is estimated as:

Pload,k = P load,k + PAR,k

PAR,k = 0.7977PAR,k−1 + εAR,k
(14)

where PAR,k is the difference between the actual load power
and the mean load power. The mean load power P load,k is
the same as in the original formulation, but the variance of
Pload,k is now defined by εAR,k ∼ N (0, σ2

PAR,k
). We note that

σPAR,k < σPload,k for all hours of the day.

The AR Model scenario reduces total cost relative the
the previous SMPC scenarios. Table II shows the TOU cost
increases while the demand cost decreases. The improved
demand forecast allows the controller to predict high consump-
tion in the future, which greatly reduces the peak demand and
the demand cost. It is likely that the conservative back-off
parameter ζT causes the controller to reduce discharge power
during the hot afternoons, which then increases the TOU cost
since that is when the on-peak period occurs.

The final scenario tests the AR model with a higher risk
tolerance. The combination of these effects lowers the total
cost to $9.56 for the month. The addition of higher risk and
more aggressive controls leads to lower TOU costs and higher
demand costs.

Figure 3 shows the results of the scenario with the AR
model and a higher risk tolerance for the peak load day of the
month. Compared to the SMPC baseline scenario, the battery
discharges more slowly during the on-peak period to conserve
battery charge. It is able to more closely follow the peak power
and limit the peak power increase during the peak period. It
is also able to keep the battery temperature lower than the
baseline SMPC controller did. The peak power still achieves
its maximum value around 22:00, but at a lower value than in
previous scenarios.

Fig. 3. Results for SMPC Scenario with AR Model and High Risk Tolerance
on the Peak Load Day

TABLE II. PERFORMANCE RESULTS FOR ALL SCENARIOS

Scenario TOU Cost Demand Cost Other Costs Total Cost
No Battery $-2.01 $40.47 $0 $38.47

Perfect Forecast $-26.62 $14.74 $10.81 $-1.07
MPC Baseline $-33.20 $41.64 $11.50 $19.94

SMPC Baseline $-31.17 $35.07 $11.10 $15.01
SMPC, High Risk $-32.89 $35.07 $11.23 $13.41
SMPC, AR Model $-23.62 $25.96 $10.49 $12.83
AR + High Risk $-30.65 $29.52 $10.69 $9.56

IV. CONCLUSION

In this paper, we formulate a thermo-electric battery model
and a stochastic MPC controller that optimizes battery cycling
over a TOU and demand charge rate structure. The controller
accounts for uncertainty in the load forecast and ambient
temperature forecast, maintains low battery temperatures, and
maintains low charge and discharge rates to minimize the
effects of degradation. Simulation results show that all SMPC
scenarios perform better than the MPC when there is un-
certainty in the forecast. We show that reducing forecast
uncertainty improves the performance of the SMPC controller.
Increasing risk tolerance to force a more aggressive control
strategy also improves performance, although that result may
not be generalizable to other scenarios.

There are many research topics to explore in the area
of stochastic MPC for stationary batteries and other behind-
the-meter devices. Using more advanced forecasting models,
including temperature forecasting, would further reduce the
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model uncertainty and should improve the control perfor-
mance. More accurate battery models can be used, especially
for understanding the impact on battery degradation. New
controllers can optimize over different rate structures, for
example using tiered rates, having demand charges that vary
by time of day, and requiring the battery to only charge
from on-site solar generation. The SMPC framework can
also be coupled with additional methods for state estimation,
parameter estimation, and other controllers such as a real-time
battery controller, other device controllers, or a building-level
management system.
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