
The Joint Institute for Strategic Energy Analysis is operated by the Alliance 
for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s 
National Renewable Energy Laboratory, the University of Colorado-Boulder, 
the Colorado School of Mines, the Colorado State University, the 
Massachusetts Institute of Technology, and Stanford University. 

 

 

 

Contract No. DE-AC36-08GO28308 

  

Opportunities for Industry to 
Provide Flexibility While 
Increasing Profitability 

David J. Garfield, Paige N. Jadun 
National Renewable Energy Laboratory 

Shannon Hwang 
Massachusetts Institute of Technology 

Mark O’Malley 
University College Dublin 

Mark F. Ruth 
National Renewable Energy Laboratory, Joint Institute for 
Strategic Energy Analysis  

Technical Report 
NREL/TP-6A50-75784 
September 2021 



The Joint Institute for Strategic Energy Analysis is operated by the Alliance 
for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s 
National Renewable Energy Laboratory, the University of Colorado-Boulder, 
the Colorado School of Mines, the Colorado State University, the 
Massachusetts Institute of Technology, and Stanford University. 

JISEA® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for 
Sustainable Energy, LLC. 

 

The Joint Institute for 
Strategic Energy Analysis 
15013 Denver West Parkway 
Golden, CO 80401 
www.jisea.org Contract No. DE-AC36-08GO28308 

 

Opportunities for Industry to 
Provide Flexibility While 
Increasing Profitability  
David J. Garfield, Paige N. Jadun 
National Renewable Energy Laboratory 

Shannon Hwang 
Massachusetts Institute of Technology 

Mark O’Malley 
University College Dublin 

Mark F. Ruth 
National Renewable Energy Laboratory, Joint Institute 
for Strategic Energy Analysis  

Technical Report 
NREL/TP-6A50-75784 
September 2021 



 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory (NREL), operated by Alliance for 
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. 
Funding provided by the Joint Institute for Strategic Energy Analysis through a Cooperative Research and 
Development Agreement between NREL and GE. Additionally, S.H. was funded through a DOE Summer 
Undergraduate Laboratory Internship at NREL while she performed the work for this report. The authors are 
grateful to Jill Engel-Cox, Steven Freilich, Deborah Lew, and Eduardo Ibanez for helpful discussions, and GE for 
their perspective and advice (NREL did not ask GE to endorse the study findings and recommendations). The 
views expressed herein do not necessarily represent the views of the DOE, the U.S. Government, or sponsors. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos: (left to right) iStock 1032683612, iStock 531546832, NREL 53053, iStock 515519531, NREL 15727, iStock 1166645867 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


iii 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Abstract 
As the share from variable renewable generation continues to grow, supply and demand 
flexibility will be needed to ensure a functioning electricity system. Industrial manufacturing 
currently consumes a third of primary energy worldwide, and industrial electricity consumption 
is projected to grow as the global economy decarbonizes. Therefore, the ability of industry to 
flex demand poses an enticing opportunity to enable grid flexibility. However, large capital 
outlays prevent industry from voluntarily altering demand. In this report, we show that as battery 
costs continue to fall, industry will soon be able to profitably alter demand in accordance with 
electricity price variations. Focusing on two established industries—chlor-alkali and electric arc 
furnaces (EAFs)—and two industries with large future potential—methane pyrolysis and 
atmospheric CO2 capture—we used a linear program optimization to assess the techno-economic 
feasibility of flexible industrial demand across both historical and future-looking wholesale day-
ahead marginal prices for the Electricity Reliability Council of Texas (ERCOT). We found 
positive net present values (NPVs) from $400,000 to $50 million using projected 2050 battery 
prices for industrial behind-the-meter batteries, using only arbitrage as a source of value. These 
results indicate that, in the near future, profit-seeking industrial players could help stabilize a 
high-renewables grid. 
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1 Introduction 
Deployment of wind, solar, and other variable renewable energy resources continues to grow 
rapidly as costs become increasingly competitive.1,2 However, the intermittent and time-
correlated nature of variable renewable resources combined with limited flexibility due to 
commitment and dispatch constraints of the power system, can result in supply and demand 
imbalances in electricity markets with high wind and solar penetration, manifesting as dramatic 
electricity price fluctuations, curtailment of renewable energy generation, and potential grid 
instability.3 Highly flexible power systems will therefore be needed to handle these fluctuations 
in renewable generation and effectively integrate large percentages of variable renewable 
generation.4  

Adding flexibility to industrial energy demand represents one potential avenue to greatly 
increasing adaptability and robustness of the grid,5,6 especially with the prospect of electrifying 
industrial process heat.7,8 Industry currently consumes a third of total primary energy across the 
United States and worldwide.9,10 While the vast majority of this energy is currently derived from 
combusting fossil fuels, efforts to decarbonize industry point to electrification as a possible 
avenue to curb emissions.7,11 This shift would represent a massive increase in electricity demand 
on the grid, potentially adding the equivalent of 60% of today’s total load,11 and a tremendous 
opportunity to add grid flexibility.  

Industrial processes can add flexibility through demand response, ramping down industrial load 
and production intensity according to grid demand or capacity prices.12 However, industry 
typically does not participate in demand response due to regulatory, knowledge, and financial 
barriers,12 as well as a temporal mismatch between operating and energy purchase decisions. In 
addition, many industrial customers today buy electricity via long-term fixed-price contracts at 
low rates, further diminishing the appeal of participating in demand response.13 We assume in 
this study that industrial customers experience dynamic wholesale pricing that accurately signals 
grid demand and supply.14  

Alternatively, industries can add demand flexibility by incorporating energy storage on-site. The 
addition of storage effectively circumvents the barriers to other modes of demand flexibility by 
enabling electricity price arbitrage: purchasing and storing electricity at low-cost hours and using 
it to power loads when electricity prices are high.15 This arbitrage behavior shifts electricity 
demand from periods of high electricity prices (presumably low renewable supply periods) to 
periods with lower electricity prices (presumably high renewable supply periods) while keeping 
industrial production at full capacity. As the cost of energy storage technologies such as lithium-
ion (Li-ion) batteries decline, they are becoming attractive across a wide swath of 
applications.16,17  

Siting these batteries on-site behind-the-meter presents several key benefits to the industrial 
customer versus siting them elsewhere on the system. Key existing assets such as substation 
equipment and the land itself can serve both the plant and battery when sited on-site. Regulatory 
look-through is limited in storage systems that only purchase electricity18,19 (satisfy a load) rather 
than those that both buy and sell electricity.20 An on-site battery or other energy storage system 
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also potentially adds resiliency to an industrial facility to reduce expensive interruptions by 
unexpected power outages. 

Besides arbitrage, battery systems can participate in revenue streams such as demand charge 
reduction, primary control reserve,21 and capacity deferral.22 Some have found that these 
alternative revenue streams may be more profitable than arbitrage23 and that combining multiple 
revenue streams may be necessary to render battery systems profitable.11,12 However, 
compensation for ancillary services, demand charge reduction, and capacity payments are highly 
dependent on policy and market structure that may change as the electricity grid transforms to 
incorporate high percentages of renewables.24,25,26  

This work explores the current and future economic potential for adding demand flexibility to 
industrial processes with and without paired on-site storage. We begin by examining the ideal 
characteristics and minimum reimbursement an industrial plant would need to receive for it to 
willingly participate as negative control energy for the grid. Here, negative control refers to the 
ramping up of electricity loads to meet excess electricity supplies on the grid. We then develop a 
price-taker linear optimization model that considers battery power, energy, and degradation to 
explore the economic value of energy arbitrage in the day-ahead wholesale electricity market. 
We model the operation of batteries paired with four energy-intensive industries: chlor-alkali and 
electric arc furnaces (EAFs), which are established electricity-intensive industries,27–30 and 
methane pyrolysis and direct air capture (DAC) of carbon dioxide (CO2), which have future 
growth and electrification potential.31–34 For these industries, we estimated optimal battery net 
present values (NPVs) using historical 2019 and simulated 2050 ERCOT electricity prices along 
with corresponding battery prices for the respective years. This analysis implicitly assumes that 
batteries are not yet widespread enough to unprofitably dampen electricity price fluctuations. As 
such, this work models the economic benefits that an early entrant into industrial behind-the-
meter storage would experience and does not consider the wide-scale grid impact of 
incorporating such storage. 

1.1 Literature Review 
Studies have examined traditional demand response from industry as a means of both positive12 
and negative control energy.35 While many of these studies estimated the magnitude of demand 
response potential12,36 or grid-perspective benefits,37 few analyzed whether individual profit-
motivated industrial players would pursue them.35,38 In practice, the potential for industrial 
demand response—both positive and negative control energy—faces barriers such as inflexible 
loads, negative impacts on downstream processes, and the need to recoup high capital 
expenditures.12,13,35,39 

A number of studies have examined the potential and economics of demand response for the 
chlor-alkali industry specifically.28,36,40,41 Otashu et al. found that chlor-alkali process loads can 
nimbly adjust (on a 15 minute timescale) and that participating in demand response could result 
in process cost savings, but did not evaluate whether this resulted in overall profit for the plant 
operator.36 Paulus et al. found that chlor-alkali facilities in Germany could significantly increase 
demand response in the country, but the high opportunity cost of shedding process load rendered 
positive control financially prohibitive.40 They further found that the potential for chlor-alkali to 
act as negative control energy is significantly less than for positive control due to the high 
utilization level of existing facilities, therefore limiting the amount of negative reserve 
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capacity.40 Others have investigated cost-saving strategies that shift chlor-alkali between 
different modes of operation, maintaining a steady output stream while providing both positive 
and negative energy control.42,43 However, this switching process also results in significant 
overhead and downtime needed to clean the plant, which necessitates overbuilding plant capacity 
to enable adequate demand response.42  

Similarly, studies have examined the potential magnitude of demand response offered by 
EAF,44,45 as well as strategies for optimal furnace operation and potential electricity cost 
savings.46 Paulus et al. also examined the economic feasibility of demand response for EAF, and 
concluded that it was only feasible for positive control energy, and only with very high reserve 
energy prices (>1000 €/MW ) due to the high opportunity cost of interruptions.40 

A number of studies15,23,47–55 have utilized a price-taker approach to estimate the value of energy 
storage participating in day-ahead, real-time, and/or ancillary service markets. These studies 
consider market arbitrage in addition to other revenue streams and use linear programs to 
formulate optimal charge and discharge schedules. However, as the estimated value of storage 
heavily depends on assumptions about storage technologies, electricity prices, and market 
characteristics that change with each study, authors differ on the relative profitability of different 
battery revenue streams and overall profitability of the considered battery systems.15  

Studies have also estimated the value of battery storage specifically for industry. Braeuer et al. 
used a linear program to estimate the 2017 NPVs of installing battery systems in manufacturing 
plants for 50 different small- and medium-sized German enterprises, concluding that batteries 
could be profitable for some cases if multiple storage revenue streams were considered.39 Fisher 
et al. estimated emissions and economic payoffs from installing behind-the-meter storage for 
several hundred commercial and industrial buildings under 2013 market conditions.26 Zafirakis et 
al. analyzed the load management and arbitrage value of battery storage at a Greek industrial 
facility, but found that with existing electricity rate structures and battery prices, storage’s value 
to the facility did not outweigh its capital investment.56 Brée et al. estimated potential profits 
from pairing batteries with chlor-alkali, but only considered a redox-flow battery across a limited 
range of sizes.57 Gholian et al. estimated profits for pairing a battery with a steel mill under 
various 2015 electricity pricing structures.58 All studies assessed battery value under historical 
battery price and electricity market conditions, and while Fisher et al. lists possible developments 
that would increase battery values in the future, they do not offer future-looking assessments of 
possible battery value for future industrial operators. 

Several studies endogenously vary electricity price with large storage additions22,59–61 and 
quantify battery system value in terms of grid- or utility-level impact. However, larger-scale grid 
benefits may not directly translate into profit for a private storage owner.49,62 We used a price-
taker model for optimizing battery operation, and in doing so, assumed that battery operation did 
not change observed electricity prices. For the given node (Judkins, Electric Reliability Council 
of Texas [ERCOT] Load Zone West), we observed a very weak correlation between historical 
price and load (See Appendix).  
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2 Methods 
Before investigating the economic feasibilities of negative control strategies, we first chose 
specific industries to study based on the following criteria:  

1. The process should currently have or have the potential in the future to consume very 
large amounts of energy. 

2. The energy consumption should constitute a significant portion of the variable cost of 
production to create a large financial opportunity to the plant owner. 

For the case of negative control without storage, an additional criterion must have been met: 

3. Dynamic response to fluctuations in electricity supply must be technologically feasible 
for the respective process. 

We examined processes that satisfy these three criteria, both with and without paired storage. 
When evaluating the ability for industry to act as negative control without storage, an additional 
attribute would be highly desirable: the required capital expenditure should be low, such that idle 
assets do not represent a significant financial burden. However, virtually all energy-intensive 
industrial processes require large amounts of physical capital to handle the large loads. This 
presents an inherent challenge when attempting to utilize industrial loads for negative control 
without paired energy storage. 

The established industries we examined, chlor-alkali63,64,65,66 and EAF,67,68 have been described 
numerous times, so we will not do so here. However, because methane pyrolysis and DAC are 
nascent industries, we describe them briefly. 

2.1 Methane Pyrolysis 

Methane pyrolysis is the process of thermally separating CH4 into hydrogen gas and solid 
carbon. Though it is not yet a mature industry, in 2016 the company Monolith brought a 
Nebraska facility online69 to produce carbon black. Nonetheless, pyrolysis presents an 
opportunity to generate hydrogen from natural gas without emitting CO2, sometimes referred to 
as “turquoise” hydrogen, by heating methane in the absence of oxygen (O2). Without O2, the 
methane cannot combust to CO2, and instead pyrolyzes to hydrogen (H2) and solid carbon 
products. Much work has investigated molten-metal catalysts that can lower the activation 
temperature for this process.70,71 Yet the real appeal of methane pyrolysis comes from the solid 
carbon that the process produces. Without modification, the carbon forms an amorphous carbon 
powder that, in molten-metal reactors, floats to the top of the liquid metal and is continuously 
skimmed off. This amorphous carbon can be sold into the market for carbon black at roughly 
$1.35 per kg.72 Currently, industry growth is limited by the size of the market for carbon black, 
which is not sufficient to absorb very large amounts from methane pyrolysis. One potential solid 
carbon market with tremendous growth potential is carbon fiber. In fact, the U.S. Department of 
Energy’s (DOE’s) Advanced Research Projects Agency, Energy recently awarded over $14 
million to four projects aiming to synthesize structural carbon fiber directly via methane 
pyrolysis to displace steel and cement.73 Carbon fiber currently has a market price of around 
$20/kg.74 Despite this, we conservatively assume in this study that the carbon is sold at the 
market price for carbon black ($1.35/kg), while the hydrogen is sold at $1/kg, the current U.S. 
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cost of production from steam methane reforming without carbon capture,69 and the two products 
are produced stoichiometrically as 1 kg H2 for every 3 kg of C.  

2.2 Atmospheric CO2 Capture 
Atmospheric CO2 capture, another nascent industry, is projected to grow significantly in coming 
years to limit the effects of global warming.75–78 In the most generalized description of the 
process, ambient atmosphere is passed over a CO2-absorbing material (absorbent) that selectively 
binds the gas. This material is then typically heated to release the CO2, regenerating the 
absorbent while generating a stream of pure CO2 and consuming most of the energy required by 
the process. While this desorption step typically requires heating, we assume here this heating 
step can be electrified with no loss in efficiency or additional equipment costs. We assume 
generated revenue of $150/ton CO2 (t-CO2) unless otherwise stated, based on the projected future 
price for DAC CO2.79 This revenue could be generated from tax credits, carbon markets, 
businesses that buy CO2 for use or upcycling, or some combination therein.  

Table 1 lists capital and operating parameters for the respective industries: the energy intensity 
per unit (EnergyIntensityper unit), nonenergy operating expenses (OPEX), capital expenditure 
(CAPEX), number of units said CAPEX can produce annually (Plant Size), and market price per 
unit of product (Priceproduct) for each industry. 

Table 1. Fixed Process Parameters Used to Model Industrial Energy Use 

Expenses Chlor-
Alkali65,66,80 

EAF81 Methane 
Pyrolysis72 DAC79 

EnergyIntensityper unit 

2.7 
MWh/ton 
ECU 

550 
kWh/ton29 

16.1 
kWh/unit 1.535 

MWh/t-CO2 

OPEX $202.50/ton 
ECU 

$407/ton $1.84/unit $23/t-CO2 

CAPEX ($ Million) 270 252 11.4 779.5 

Plant Size 182,000 ton 
ECU 

2 Million 
ton 

693,500 
units 

1 Million t-
CO2 

Priceproduct $968/ton 
ECU 

$613/ton $7/unit $150/t-CO2 

     
Several assumptions were made in obtaining these numbers. One electrochemical unit (ECU) of 
the chlor-alkali process produces 1 ton Cl2, 1.1 tons NaOH, and 0.03 ton H2, as dictated by 
stoichiometry. The energy intensity of chlor-alkali is taken for the membrane technology, but 
with an additional 0.3 MWh/ton ECU to concentrate the caustic soda to 50% by weight. The 
market price of an ECU ton of chlor-alkali is taken as the average price from 2009 to 2017.65,66 
For EAF steelmaking, the market price is taken as the average hot-rolled coil price for the 
Midwestern United States from 2014–2019.82 The authors also understand that the energy 
intensity for EAF utilizes a value that may be higher than the most advanced facilities, making 
the analysis conservative with regard to economic feasibility. In the case of methane pyrolysis, 
we assume that pyrolysis occurs via low-temperature plasma conversion at 700°C,72 and that one 
“unit” is equivalent to the stoichiometric decomposition of methane to solid carbon and 
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hydrogen gas, where the solid carbon product can be sold for $1.35/kg with 100% yield, the 
hydrogen can be sold for $1/kg, and three kg carbon are produced for every kg hydrogen. 

For the DAC numbers, we used data for the CaO/CaCO3 absorption loop used by carbon 
engineering.79 Again, we assumed all energy in the process could be electrified with no change 
in cost (the reported methodology utilized natural gas for the calcining [desorption] step). We 
used energy intensity numbers assuming the CO2 is delivered at 0.1 MPa and therefore not 
compressed, and CAPEX numbers for the nth plant, as opposed to the first plant built.  

Looking at the four chosen industries under fixed electricity prices at $30/MWh gives a sense of 
the relative sizes of CAPEX, energy, OPEX, and profit margin (Figure 1). The y-axis is 
normalized to the market price per unit. OPEX is assumed to be 100% variable, and CAPEX is 
straight-line depreciated over 10 years with no salvage value and divided by the maximum 
annual unit output in order to put CAPEX on a per-unit basis. An ideal industrial participant who 
was not utilizing storage would have as large an energy cost per unit as possible to entice a 
producer to utilize only low-cost electricity, and as small a per-unit CAPEX as possible such that 
the cost penalty to participate would be minimized. 

 
Figure 1. Production cost normalized to the unit selling price for each respective industry  

1 ton ECU for Chlor-Alkali at average price from 2009–2017, 1 t-CO2 for atmospheric CO2 Capture ($150), 1 ton of 
steel for Electric-Arc Steel at average price from 2014–2019, and 1 kg H2 plus 3 kg solid carbon for Methane 

Pyrolysis. All OPEX is assumed to be 100% variable. All energy electrified and bought at a flat rate of $30/MWh. 
CAPEX is straight-line depreciated over 10 years with no salvage value and normalized by the maximum annual unit 

product. 

2.3 Economic Feasibility of Negative Control Without Paired Storage 
We modeled participating in negative control without paired storage by reserving a portion of a 
plant’s maximum operating capacity to remain idle during normal operation, such that capacity 
can be ramped up in times of surplus electricity production. Thus, we began by examining the 
net cost that plants in the four considered industries would endure in restricting manufacturing 
activity when electricity is not in oversupply.  

To do so, we formulated a linear optimization problem to schedule optimal plant hourly 
electricity purchases and manufacturing decisions over the course of a year. We solved the 
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optimization and calculated the corresponding profits for a baseline scenario and an idealized 
negative control scenario. The baseline scenario was modeled as a plant operating at 100% of 
nameplate capacity for 95% of the year and at 0% capacity for the remaining 5% of the year to 
account for downtime due to repairs. The negative control scenario modeled a plant operating at 
70% (restricted) capacity during hours of the year with nonzero electricity prices (to allow for 
ramping capacity when needed), and at 100% capacity during any hour of the year when 
electricity prices were at $0. Assuming that plants can run at full capacity during any $0 
electricity price hour is optimistic; it assumes that any hour with a $0 electricity price is an hour 
in which electricity is being oversupplied, the quantity of oversupply has the necessary depth to 
sustain a plant running at full capacity during those times, and the plant can utilize 100% of its 
capacity during those hours—all of which are not necessarily true. Accordingly, this assumption 
models the minimum cost a plant would endure to participate at this level of negative control 
energy. 

The profit-maximizing linear optimization problem can be formulated as maximizing the 
following objective function: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃ℎ ∗ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑦𝑦,ℎ ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ8736
ℎ=1  [1] 

where: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ ≤ 𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑢𝑢𝑒𝑒𝑝𝑝 ∗
𝑃𝑃𝑒𝑒𝑃𝑃𝑢𝑢𝑝𝑝𝑃𝑃𝑒𝑒𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

8760
 [2] 

Priceproduct, OPEXprocess, PlantSizeprocess, and EnergyIntensityprocess are constants that vary with the 
process assessed and can be found in Table 1. Optimal electricity purchase and manufacturing 
decisions were made on an hourly timescale using ERCOT hourly day-ahead wholesale prices. 
We assumed that all modeled industrial loads can operate continuously, can adjust production 
levels at the granularity of 1 hour, and will stop purchasing electricity only if electricity costs are 
prohibitively high and diminish profits. All of the industrial processes considered except for EAF 
can operate continuously. EAF is a batch process, but can process roughly 1 batch/hour,83 which 
matches the granularity of control assumed in the linear program.  

The hourly electricity price data used, Priceelectricity, h, was drawn from a set of future-looking 
(year 2050) hourly price duration curves for the ERCOT wholesale electricity market in a high 
variable renewable penetration scenario.84 The price duration curves were generated by Jadun et 
al., who used the Regional Energy Deployment System (ReEDS) capacity expansion model85 to 
estimate the evolution of the generator fleet with various levels of assumed willingness to pay for 
excess generation of electricity. The modeling methodology utilized in Jadun et al. assumed that 
market demand would raise electricity prices up to $0/MWh; namely, that a sufficiently deep 
demand of electricity purchasers would always be willing to offtake excess generation for free. 
The resulting fleet was input into the PLEXOS86 production cost model to estimate hourly grid 
operation, including the locational marginal prices (LMPs) of electricity. This analysis used the 
generated LMPs associated with a region in the ERCOT West Load Zone. Around 36% of the 
predicted electricity prices in the data set used were $0/kWh, which means we modeled plants as 
running at 100% of nameplate capacity for around 36% of the year. We also compared our 
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modeled price duration curve with the historical (2019) LMPs used later (See Figure A2-1 for 
details).  

2.4 Economic Feasibility of Negative Control With Paired Storage 
To estimate the economic feasibility of negative control for industrial plants with on-site battery 
storage, we modeled on-site Li-ion batteries using a linear optimization model to optimize 
battery NPVs for each industry over different years (2019 and 2050) and battery sizes. We 
calculated the NPV using the following procedure:  

1. For each year in the battery lifespan: 
A. Find the optimal electricity purchases and manufacturing decisions for the year 
B. Calculate cash flow for the battery project as the cost savings accrued by utilizing 

the battery to arbitrage electricity purchases 
C. Recalculate the battery energy capacity for the following year based on battery 

cycling behavior and capacity degradation.  
2. Calculate the total NPV of battery cash flows from each year of the battery life. 

We limited the scope of battery costs considered to only system capital and operating 
expenditures. For example, we did not consider the cost of installing extra transmission capacity 
for a factory as it is highly location-dependent, though it could be required to accommodate 
electricity needed to charge the battery. On the other hand, we also only considered the potential 
revenue from electricity price arbitrage when calculating battery NPV. As mentioned above, only 
considering revenue from price arbitrage likely underestimates battery value.  

We drew the 2019 LMP data from the Judkins node in the ERCOT West Load Zone87 (a region 
currently with a fair amount of wind capacity) and used the same 2050 data set as described 
above. We assumed perfect foresight of electricity prices and use the same prices for each year 
of the battery lifespan. Numerous analyses of electricity price forecast impact on energy 
arbitrage profit have concluded that assuming perfect foresight overestimates resulting revenue 
by around 15%–20% as compared to simple but more realistic price forecast strategies.15  

To optimally size batteries for each process, we calculated NPVs for a range of battery sizes and 
select the batteries that yield the highest NPV. We characterized batteries in terms of their energy 
(MWh) and power (MW) capacities. We measured energy capacity as the number of hours of 
full-intensity production that a battery can power after being fully charged and measured power 
capacity in terms of its C-rate. We tested every combination of energy capacities in {.2, .4, .6, 
…, 8} hours of production and power capacities from {.25, .5, .75, 1} C-rates. To account for 
energy capacity degradation, we assumed a battery storage temperature of 25°C and cycle 
lifetime of 6,000 cycles based on Samsung SDI estimates88 and approximate capacity 
degradation with a linear function BatteryEnergyCapacityyear = BatteryEnergy ∗ (1 − β ∗
nCyclesElapsed
batteryCycleLife

) (Equation 14) that updates battery capacity at the beginning of each new year. 

The NPV optimization problem can be formulated as follows:  
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𝑁𝑁𝑃𝑃𝑁𝑁_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝐵𝐵𝑢𝑢𝑝𝑝𝑝𝑝𝐵𝐵𝑦𝑦,
𝐵𝐵𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑃𝑃𝑝𝑝𝐵𝐵𝑝𝑝𝑝𝑝

∑
(1−𝑝𝑝𝑃𝑃𝑡𝑡)�𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑒𝑒𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦 −𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑒𝑒𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦 −𝐶𝐶𝐶𝐶𝑃𝑃𝐵𝐵𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗𝐶𝐶𝐶𝐶𝐶𝐶� +𝑝𝑝𝑃𝑃𝑡𝑡∗

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑦𝑦𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝

(1+𝐷𝐷𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝐶𝐶𝑃𝑃𝑝𝑝𝑝𝑝)y

𝑏𝑏𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑏𝑏𝑒𝑒𝑃𝑃𝑝𝑝
𝑦𝑦=1  [3] 

where: 

𝐶𝐶𝐶𝐶𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 = �𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 $ 
𝑀𝑀𝑀𝑀ℎ

� ∗ 𝐵𝐵𝑚𝑚𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 + �𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 $ 
𝑀𝑀𝑀𝑀

� ∗ 𝐵𝐵𝑚𝑚𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 [4] 

CRF = Capital Recovery Factor = 𝐷𝐷𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝐶𝐶𝑃𝑃𝑝𝑝𝑝𝑝
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𝐵𝐵𝑚𝑚𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝐶𝐶ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡[6] 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡 = 𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗
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𝐶𝐶𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝 ∈ [. 25, .5, .75, 1] [9] 

𝐵𝐵𝑚𝑚𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 ∈ [. 2, .4, .6, … , 8] ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡 [10] 

We used a tax rate of 21%, corresponding to combined state and federal corporate taxes in 
Texas89 and a discount rate of 8.1%.22 BatteryLife is set to be 15 years based on Samsung SDI 
data,88 and EnergyIntensityprocess and PlantSizeprocess constants varied with the assessed process. 
The projected battery capital costs ($/MWh and $/MW) for 2019 and 2050 were drawn from the 
NREL 2020 Annual Technology Baseline.90 See Appendix for all constants used.  

The profit resulting from scheduling optimal electricity purchases for each year can be 
formulated as maximizing the objective function for the no-battery case with additional 
constraints added for battery operation. For this calculation, we assumed that plants both with 
and without batteries are capable of operating at 100% of capacity at all times. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚 �∑
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−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑦𝑦,ℎ ∗ (𝐶𝐶ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ)
8736
ℎ=1 � − 𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 [11] 

subject to the following constraints: 

𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ =  (1 − ⍺)𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ−1 +  𝜂𝜂𝐶𝐶ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ − 𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ [12] 

𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ ≤ 𝐵𝐵𝑚𝑚𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐶𝐶𝑚𝑚𝑝𝑝𝑚𝑚𝑃𝑃𝑃𝑃𝑡𝑡𝐸𝐸 𝑦𝑦𝑝𝑝𝑃𝑃𝑝𝑝 [13] 
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𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡 = 𝑚𝑚𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡,  𝐶𝐶ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑡𝑡) ≥ 𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑚𝑚𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ [18] 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑢𝑢𝑝𝑝𝐵𝐵𝑃𝑃𝑝𝑝𝑝𝑝, 𝑦𝑦 was assessed by setting the yearly battery energy capacity to 0. Priceproduct, 
OPEXprocess, and EnergyIntensityprocess constants vary with the process assessed. OPEXbattery 
values for 2019 and 2050 again were drawn from the NREL 2020 Annual Technology 
Baseline.90 BatteryCycleLife was set to 6,000 cycles and β, the battery end-of-life energy 
capacity degradation, was set to .2 based on Samsung SDI data.88 ⍺, battery self-discharge, was 
2% of capacity/month,39 and η, the battery roundtrip efficiency, was set to .9.22 All constants in 
this calculation can also be found in the Appendix.  
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3 Results and Discussion 
3.1 Economic Feasibility of Negative Control Without Paired Storage 
We found that without additional incentives, the considered industries would experience large 
losses from participating in negative control energy as modeled (Table 2). Therefore, utilities 
would have to pay prohibitively high compensations to make up for revenue lost from 
participating in our modeled form of negative control, and because these values are on a per-
plant basis, it does not appear the industries considered are a suitable target for negative control 
energy.  

Table 2. Modeled NPV Changes in Adopting Negative Control Strategies vs. No Negative Control 

Industry 
NPV 
Impact 
($MM) 

Chlor-alkali -$19 

EAF -$57 

Methane pyrolysis -$0.49 

DAC -$14 

3.2 Economic Feasibility of Negative Control With Paired Storage 
We examined calculated NPVs for optimally-sized batteries both in the present (2019) and future 
(2050). For 2050, we calculated NPVs for low, medium and high battery price projections90 (see 
Table A1- 3 for projected battery costs). Optimal NPVs were negative across all industries using 
2019 electricity and battery prices (Table 3), yet became meaningfully positive for 2050 across 
both medium and low battery cost projections. See Table A4- 1 for the optimal battery sizes 
found under the 2050 medium and 2050 low battery price scenarios; for scenarios with negative 
NPVs, the optimal battery size is no battery. 

Table 3. Optimal NPVs in Millions of Dollars Across Years and Battery Prices 

 2019 2050 High 2050 
Medium 2050 Low 

Chlor-alkali -$1.9 -$0.5 $2.6 $17.5 

EAF -$4.0 -$0.8 $11.6 $45.2 

Methane pyrolysis -$0.04 $0.0 $0.1 $0.4 

DAC -$8.1 -$2.4 -$0.5 $35.6 

     
Optimal battery MWh and MW capacities ranged from 5.1MWh/1.3 MW to 876.1 MWh/219 
MW, which, while large, are on the scale of battery systems being built today.91* We calculated 
NPVs for battery systems as large as $45 million (See Appendix). We further assessed the 

 
 
* We note that the physical footprint of the battery may be a hindrance in specific land-constrained locations. 
However, we did not include this facet in our analysis. 
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sensitivity of the estimated NPVs to projected battery kWh and kW prices (Figure 2). For both 
2019 and 2050, we assessed optimal operational profits when pairing processes with a battery 
that provides 5.0 hours of production for the respective industry and a power capacity of .25°C: 
the optimal battery parameters found under the 2050 low battery cost scenario for all industries. 
We then varied the kWh and kW prices for the batteries, and calculated the total profit brought in 
by the battery after subtracting the corresponding capital expenditure. As can be seen, battery 
prices less than $110–130/kWh and upwards of $250/kW produce positive NPVs across all 
industries analyzed, with most industries able to profit at battery prices as high as $150/kWh 
installed. Therefore, if battery prices can continue to fall along the learning curve of the last 
decade92, and electricity rate structures incorporate additional dynamism, this analysis suggests 
that behind-the-meter batteries for industrial customers could become profitable long before 
2050. 



13 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 2. Battery NPV sensitivities to projected battery costs 
The four considered industries are represented in 2019 (left) and 2050 (right). The four markers on each plot 

represent: (circle) 2019 battery costs, (square) projected 2050 high battery costs, (diamond) projected 2050 medium 
battery costs, and (star) projected 2050 low battery costs, according to the NREL Annual Technology Baseline 2020 

report. 
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We conservatively estimated the payback periods needed to recoup battery costs under the 2050 
low battery cost scenario by finding the minimum number of years until the discounted, 
accumulated battery cashflows equal or exceed the total battery capital cost. By this method, 
battery savings will break even in 8 years for chlor-alkali, 7 years for EAF, 7 years for methane 
pyrolysis, and 10 years for DAC. We also estimated the internal rate of return for the battery 
under the 2050 low battery cost scenario by finding the discount rate at which the NPV becomes 
zero. Internal rates of return were equal to 15.2 % for chlor-alkali, 16.7% for EAF, 15.8% for 
methane pyrolysis, and 11.7% for DAC.  

We further examined the modeled optimal behavior of the processes with and without storage for 
individual years in the modeled battery lifetime. In Figure 3, we show load profiles for the first 
year of operation for the chlor-alkali process in the 2050 low battery cost scenario when paired 
with an optimally sized battery (280.5 MWh, 70.1 MW) versus operation with no battery. We 
can see the process drew a near-constant load without a paired battery. However, with a battery, 
the process varied its load to minimize the average electricity price bought from the grid. Figure 
3b shows the first 100 hours of operation to illustrate the arbitrage behavior in closer detail.  
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Figure 3. Load profiles chlor-alkali process with no battery vs. a paired optimally sized battery  
Top: Entire first year of operation; bottom: Zoom-in of the first 100 hours of operation. 

We further examined the impact of the battery on electricity purchasing and manufacturing 
behavior for the considered industries (Table 3). When batteries are being charged, plants with 
paired batteries in all industries showed increased negative control energy potential: for 29% of 
the year, their loads were higher than their maximum possible load with no paired battery. Chlor-
alkali, EAF, and DAC also stopped pulling loads from the grid when electricity prices spiked 
(roughly 20% of the year), demonstrating positive control energy potential.  

All industries saw an electricity cost savings of around 47% when using batteries that are 
optimally sized for the respective industry. Accordingly, these savings increased the profit 
margins of the plants by the following amounts, averaged across the 15-year lifetime of the 
battery: Chlor-alkali 2.91%, EAF 2.19%, methane pyrolysis 2.96%, and DAC by 16.2%. This 
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may be especially impactful for developing industries such as DAC as they seek to increase 
profitability or enable prolific use of captured carbon. 

Table 4. Comparisons of First-Year Behavior When Pairing the Considered Process With an 
Optimally Sized Battery  

 
Total 

Electricity 
Cost 

($MM) 

Total # 
Units 

# of $0 
MWh 

Bought 

# 
Nonzero 

Load 
Hours 

Avg. 
MW Per 

Load 
Hour 

Profit 
Margin 

Chlor-alkali, NB 9.59 1.80×105 1.78×105 8,662 56.1 45.9 

Chlor-alkali, w/ B 5.12 1.82×105 2.95×105 6,995 71.9 46.7 

EAF, NB 21.5 1.98×106 3.98×105 8,662 126 23.5 

EAF, w/ B 11.5 1.99×106 6.61×105 6,995 161 23.7 

Methane Pyrolysis, NB 0.22 6.86×105 4.04×103 8,662 1.27 35.9 

Methane Pyrolysis, w/ B 0.12 6.92×105 6.71×103 8,662 1.32 36.6 

DAC, NB 30.0 9.89×105 5.55×105 8,662 175 9.5 

DAC, w/ B 16.0 9.97×105 9.23×105 6,995 225 12.4 
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4 Conclusions 
Our analysis shows that without storage, for the industries and scenarios analyzed here, capital-
intensive industrial energy consumption cannot profitably act as negative control energy to 
stabilize the electricity grid. Conversely, our analysis using projected Li-ion battery costs and 
electricity prices suggests that large behind-the-meter batteries can show positive NPVs in the 
tens of millions of dollars per industrial facility by 2050. This analysis only accounts for the 
lower overall electricity bill enabled by battery arbitrage and does not include what some have 
posited to be the more profitable aspects of large energy storage, particularly capacity deferral.22 
The battery energy and power characteristics required to achieve optimal NPVs are technically 
achievable, as they are of similar scale to battery systems being constructed today.91 

Our analysis finds that batteries profitably transform the considered industrial processes from 
constant to responsive loads, with more hours of electrical self-sufficiency. Large-scale batteries 
further benefit the grid in a number of ways: reducing the total amount of renewable capacity 
that needs to be built,17 reducing grid congestion,47 and providing quick ramping and 
stabilization capacity that will be needed as more renewable generation resources come online.3  

Future studies could improve upon some current modeling assumptions. They could create an 
endogenous model that does not take electricity price as static, but accounts for feedback 
between shifted load and electricity price. This model could also attempt to understand the 
economics for late storage adopters, once storage represents a significant fraction of the grid, to 
estimate the point at which it becomes economically infeasible for industry to install additional 
energy storage. This analysis could also help with characterizing the risk of constructing the 
analyzed battery systems, which need 7–10 years to recoup capital outlays in the current model. 
To improve the accuracy of the model, a series of electricity prices spanning the lifetime of the 
battery could be generated and used in the analysis, and NPVs could be calculated using an 
imperfect electricity price forecast. This work suggests, however, that industrial manufacturers 
can in the future increase their load flexibility by profitably incorporating energy storage on-site, 
providing myriad grid services while improving the bottom line of the manufacturer. 
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Appendix A. 
A.1 Constants Used in NPV Optimization  

Table A1- 1. NPV Financial Parameters 

Constant Value 

Tax 0.21 

discountRate 0.081 
 

Table A1- 2. Battery Technical Parameters 

Constant Value 

batteryLife 15 years 

batteryCycleLife 6,000 cycles 

β (battery end-of-life energy 
capacity degradation) 0.2 

α (battery self-discharge) 2% 
capacity/month 

η (battery round-trip efficiency) 0.9 
 

Table A1- 3. Battery Cost Data93 

Year and Price Scenario $/kWh $/kW Annual 
OPEX ($) 

2019 317 276 38.6 

2050 low 71 62 8.63 

2050 medium 126 110 15.32 

2050 high 177 154 21.55 
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A.2 Electricity Data 

 
Figure A2- 1. Price duration curves for the electricity price data sets used (2019 and 2050) 

 

 

Figure A2- 2. Zonal load vs. nodal LMP for the Judkins node in ERCOT West Load Zone, 2019  
Load and observed electricity price for the given region used are very weakly correlated. Calculated correlation 

coefficients: Pearson correlation coefficient of 0.046 (p-value: 1.5 × 10-5), Spearman correlation coefficient of 0.15 (p-
value: 6.5 × 10-47), and Kendall rank correlation coefficient of 0.1 (p value: 2.4 × 10-47). 

A.3 Calculation for Minimum Selling Cost (MSC) 
 

𝑀𝑀𝐸𝐸𝐶𝐶 = 𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +
𝑂𝑂𝑒𝑒𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝𝑒𝑒𝑝𝑝𝑦𝑦 ∗ 𝐶𝐶𝑃𝑃𝑃𝑃𝑡𝑡𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑦𝑦,𝑃𝑃𝑎𝑎𝐵𝐵 + 𝐶𝐶𝐶𝐶𝑃𝑃𝑂𝑂𝑂𝑂𝑝𝑝𝑒𝑒𝑃𝑃𝑢𝑢𝑝𝑝,𝑦𝑦𝑝𝑝𝑃𝑃𝑝𝑝 + 𝐶𝐶𝐶𝐶𝑃𝑃𝑂𝑂𝑂𝑂𝑏𝑏𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦,𝑦𝑦𝑝𝑝𝑃𝑃𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑦𝑦𝑝𝑝𝑃𝑃𝑝𝑝
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A.4 Optimal Battery Sizes Found for 2050 Low and Medium Battery 
Cost Scenarios 

Table A4- 1. Optimal Battery MWh and MW Capacities for 2050 Low and Medium Battery Cost 

Industry/Price Scenario Low Medium 

Chlor-alkali 
280.5 
MWh, 70.1 
MW 

224.4 
MWh, 56.1 
MW 

EAF 
627.9 
MWh, 157 
MW 

527.4 
MWh, 
131.8 MW 

Methane pyrolysis 6.4 MWh, 
1.6 MW 

5.1 MWh, 
1.3 MW 

DAC 
876.1 
MWh, 
219.0 MW 

0 MWh, 
0MW 
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Figure A4- 1. NPVs across different battery energy and power capacities  
a. Chlor-alkali, b. EAF, c. Methane pyrolysis, d. DAC in the 2050 low battery price scenario. Battery energy capacities 

are measured in terms of # of hours of process power that the battery can support at full charge; battery power 
capacities are measured in terms of the % of battery that can be charged in 1 hour. Optimal NPVs are highlighted in 

green. 
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Figure A4- 2. NPVs across different battery energy and power capacities  
a. Chlor-alkali, b. EAF, c. Methane pyrolysis, d. DAC in the 2050 medium battery price scenario. Battery energy 

capacities are measured in terms of # of hours of process power that the battery can support at full charge; battery 
power capacities are measured in terms of the % of battery that can be charged in 1 hour. Optimal NPVs are 

highlighted in green. 
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