Computational Fluid Dynamics Simulation of Compressible Non-Newtonian Biomass in a Compression-Screw Feeder

Mohammad Rahimi, Hari Sitaraman, James Lischeske, David Sievers, and Jonathan Stickel
National Renewable Energy Laboratory, Golden, CO
NREL/PR-2C00-75580

2019 AIChE Annual Meeting, Orlando, FL
November 10th, 2019
Motivation and Objectives

• Lignocellulosic biomass (such as forest and agricultural crop residues) is widely available (annually >0.5 bil tons) for conversion to energy sources (fuel/electricity)
• Compression-screw feeders are used in biorefineries to transport biomass feedstock from hopper to biomass-conversion reactors (pretreatment/pyrolysis reactors)
• Mechanical failure and feed plugging is one of the main challenges in the operation of screw feeder
• Our goal is to use simulation techniques to analyze the challenging operating conditions and predict the mechanical failure.
• Develop a more reliable design to avoid these operating failures
Experimental Setup
NREL Screw Feeder

HOPPER

CONVEYANCE SCREW SECTION

COMPRESSON SCREW SECTION & STATOR

PLUG THROAT

SQUEEZATE DRAIN HOLES

GEARBOX (MOTOR NOT SHOWN)
NREL Screw Feeder

- Forest residue feedstock milled to pass 3/8 inch screen
- ~ 30% moisture
- 16.6 Kg/h flow rate
- 10.3 and 6.9 rpm rotation speed
- Screw inlet diameter: 4 in
- Screw outlet diameter: 3 in
- Screw pitch: 2 inch
- Length: 12.5 inch
Numerical Model
Compressible Bingham Fluid

• Concentrated biomass is a complex multiphase fluid (solid/liquid/gas)
 1. Compressible behavior
 2. Non-Newtonian rheology

• Duncan et al. recently studied biomass behavior in a pressure driven flow.
• They developed a density dependent yield stress model for compressible biomass

The biomass feedstock is treated as a single compressible non-Newtonian fluid.

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{u} = 0
\]

Continuity

\[
\frac{\partial (\rho \vec{u})}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla P + \nabla \cdot \tau
\]

Conservation of momentum

\[
\tau = \mu_{\text{Bingham}} \left(2D - \frac{2}{3} \nabla \cdot \vec{u} \right)
\]

Stress tensor for Bingham fluid

\[
D = \frac{1}{2} \left(\nabla \vec{u} + (\nabla \vec{u})^T \right)
\]

Rate of strain tensor
Transport/rheology models

\[\mu_{\text{Bingham}} = \min(\mu_{\text{max}}, \mu_{p} + \tau_{y}/\dot{\gamma}) \]

Bingham fluid viscosity is capped to avoid infinity values at regions with very small strain rate

\[\tau_{y} = \tau_{y,\text{ref}} \left(\frac{\rho}{\rho_{\text{ref}}} \right)^b \]

Density-dependent yield stress (Duncan et al.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{\text{ref}})</td>
<td>395</td>
<td>kg/m(^3)</td>
</tr>
<tr>
<td>(\tau_{y,\text{ref}})</td>
<td>3E+5</td>
<td>Pa</td>
</tr>
<tr>
<td>(\mu_{\text{max}})</td>
<td>1E+5</td>
<td>Pa.s</td>
</tr>
<tr>
<td>(\mu_{p})</td>
<td>1E+3</td>
<td>Pa.s</td>
</tr>
<tr>
<td>(b)</td>
<td>6.2</td>
<td>-</td>
</tr>
</tbody>
</table>

Collaborators (Akbari et al.) from University of Toledo measured yield stress parameters for the feedstock
Equation of State

\[\rho(P) = \rho_{\text{ref}} \left(\frac{\rho_{\text{max}}}{\rho_{\text{ref}}} \right)^{1-(P/P_{\text{ref}})^{1-\chi}} \]

Pressure-dependent density equation (Duncan et al.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_{\text{ref}})</td>
<td>188</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(\rho_{\text{max}})</td>
<td>2290</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(P_{\text{ref}})</td>
<td>1</td>
<td>atm</td>
</tr>
<tr>
<td>(\chi)</td>
<td>1.146</td>
<td>-</td>
</tr>
</tbody>
</table>
CFD implementation

• Used OpenFOAM framework
• Implemented a new thermophysical model for biomass equation of state
• Modified the transient compressible rhoPimpleFoam solver to include the new constitutive model in the momentum equation with density dependent yield stress
• Screw feeder geometry CAD STL files were used in snappyHexMesh to generate the computational domain mesh
Model Verification

Pressure–driven channel flow

- Verifying the pressure-density relation based on the new EOS
- Verifying the Bingham plastic motion in the channel flow
- High strain rate --- low viscosity (wall)
- Low strain rate --- high viscosity (middle)
Screw Feeder
Simulation Results
Mesh and Boundary

- Mesh size: 1.1 mil cells
- CPU-time: 72 hours to simulate 600 s on 324 processors
- NREL’s Eagle HPC system (Intel Xeon Gold Skylake)
- Boundary
 - Inlet: fixed velocity profile to capture the experimental mass flow rate and fill fraction
 - Outlet: fixed pressure
 - Stator: no slip wall
 - Screw: rotating wall
 - Used codeFixedValue to set the velocity BC at inlet and rotating surface

Outlet boundary is moved further out to have a 1 atm uncompressed free flow
Flow Field Results

Subtask 2: Complete validation experiments in NREL's 4 in screw feeder.

Figure 2: Snapshots of (a) pressure (Pa), (b) density (kg/m3), (c) velocity magnitude (m/s), and (d) viscosity (Pa·s) in the AB screw feeder at steady-state for condition 3 in Table 1.
• The low rotation speed has higher fill fraction, leading to a higher biomass compression and shear stress.
• Both cases have same mass flow rate with different fill fraction
Axial torque is calculated on the screw wall surface, from both viscous shear stress and pressure.

<table>
<thead>
<tr>
<th>Screw speed (rpm)</th>
<th>Feed rate (kg/h)</th>
<th>Fill fraction</th>
<th>Measured screw torque (Nm)</th>
<th>Simulation torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>16.6</td>
<td>53%</td>
<td>290</td>
<td>265</td>
</tr>
<tr>
<td>6.9</td>
<td>16.6</td>
<td>80%</td>
<td>488</td>
<td>464</td>
</tr>
</tbody>
</table>
Summary

• Conclusions:
 – Developed a new compressible non-Newtonian fluid flow solver in OpenFOAM for biomass applications.
 – The constitutive model and rheology parameters used in this model are derived from experimental measurements.
 – The CFD simulations were able to predict NREL’s screw feeder measured torque data with less than 10% error.

• Future work:
 – Perform modeling and comparison with high pressure experiments
 – Design a better geometry for a more reliable system
Acknowledgements

• Funding provided by U.S. Department of Energy Bioenergy Technologies Office (BETO)
• Ehsan Akbari Fakhrabadi and Matthew Liberatore (University of Toledo)
• Chris Kajzer (Valmet, Inc.)
• The simulations were performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory
Thank you

www.nrel.gov