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Abstract—A significant difficulty associated with the use of
stochastic programming to solve optimal power flow problems on
a 5-minute timescale is the quality of renewable energy scenarios
input by the user. This is especially true when considering power
systems with high penetrations of renewable energy, e.g. wind
power. This paper introduces the use of stochastic programming
to solve the DC optimal power flow problem with scenarios drawn
directly from high-fidelity data sets. Hence, the proposed method
avoids the problem of lost physics by finding high-fidelity analogs
that can describe future states of the system. Furthermore, this
method can be simply extended to output multi-period scenarios
to the stochastic program. We demonstrate the effectiveness of
this technique by simulating dispatch operations on a synthetic
test system over the course of a week.

Index Terms—Stochastic optimization, high penetrations of
renewables, data-driven forecasting, scenario-based optimization

I. INTRODUCTION

As the penetration of renewable energy resources on power
grids increase, so does uncertainty in available generation.
Due to this fact, new methods for operating grids warrant
consideration. Power generation from wind provides an ex-
cellent example of this point: ramping events over the span of
minutes can cause large swings in the available power supply.
For grids with high penetrations of wind, such events can be
compared to losing multiple generators on a more conventional
network. Classically, events involving the loss of generators
are planned for via the use of security constraints, see e.g. [1].
However, when considering power grids with high penetrations
of wind, operational methodologies which explicitly consider
the uncertainty in wind power output should be considered. In
this paper we propose a tool for representing the uncertainty
caused by a high penetration of wind power on a grid.

This work was authored by the National Renewable Energy Laboratory,
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of
Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided
by the DOE’s Grid Modernization Lab Consortium and the Exascale Com-
puting Project. The views expressed in the article do not necessarily represent
the views of the DOE or the U.S. Government. The U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or allow
others to do so, for U.S. Government purposes.

Our approach to addressing uncertainty caused by high
penetrations of wind power begins with the application of
multi-stage stochastic programming to economic dispatch
problems. Stochastic programming is a well known tool to
the power systems community, having found applications in,
e.g. stochastic unit commitment problems, economic dispatch,
and power systems planning. Here we apply the technique to
multi-period economic dispatch under wind uncertainty at a
5-minute timescale.

A significant challenge when using multi-stage stochastic
programming is the construction of scenarios which accurately
represent uncertainties in the problem. In the case of wind
power, uncertainty scenarios must capture spatial and temporal
relationships between different wind power resources. Such
samples can be obtained by constructing and sampling a
high-dimensional joint probability density function (PDF).
Constructing a high-dimensional joint PDF is difficult for our
test case since it requires 132 dimensions (22 wind farms
and 6 time steps). One method for constructing joint PDFs
is to use copulas [2], [3]. However, copulas, to our knowl-
edge, do not scale well to such high dimensions. We pursue
another method: analog forecasting, where samples come from
either real wind data or high fidelity weather models. In
the remainder of this paper we present a technique which
leverages large volumes of high fidelity data to circumvent
the need to construct high-dimensional PDFs to represent wind
uncertainty.

This paper is divided into the following sections: in Sec-
tion II we briefly review two-stage stochastic programming
and the economic dispatch problem. In Section III we de-
scribe our approaches to conditioning on current power and
sampling multi-period wind power scenarios. In Section IV we
demonstrate our economic dispatch approach on the Reliability
Test System of the Grid Modernization Laboratory Consortium
(RTS-GMLC) [4]. In Section V we state our conclusions and
propose future work.

II. BACKGROUND

Computing effective solutions to 5-minute economic dis-
patch problems for power grids with high-penetrations of
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wind power requires a decision-making process that accounts
for the uncertainty inherit in renewable sources of energy.
There are many problem formulations and algorithms used
to address uncertainty in optimization problems. Robust op-
timization plans against all possible realizations of unknown
variables leading to potentially very conservative solutions [5].
Chance constrained problems, where constraints formulated
with unknown variables can be relaxed to hold with high
probability, offer a less conservative approach [5], [6], [7].
However, these problems are almost always computationally
difficult. The approach we choose to address uncertainties
caused by wind power generation in the 5-minute economic
dispatch problem is a two-stage stochastic program, which has
useful properties both in terms of computation and modeling
uncertainties in power grid operations.

The two-stage stochastic program [8], [7] is defined as:

min
x

f (x) + Eξ [L (x, ξ)] (1)

s. t. g(x) ≤ 0 (2)

where

L (x, ξ) = min
y

l (x,y, ξ) (3)

s. t. gξ(x, y) ≤ 0. (4)

The first stage of the program (1) is an optimization problem
with decision variables x, constraints g, and objective function
that includes the expectation of the second stage cost function
L (x, ξ), defined in (3), integrated against random variables
ξ. The second-stage optimization problem, L (x, ξ), is a
deterministic optimization problem with respect to the decision
variables x and random variables ξ. For this paper we restrict
ourselves to the DC optimal power flow model (DCOPF), and
thus only consider linear programs.

The expectation in (1) is not trivial to optimize over, thus
approximations are often employed to ensure computational
tractability. One example of such is the well-known sample
average approximation (SAA) [7], where a sample average
is used to approximate the expectation Eξ [L (x, ξ)] in (1).
More formally, given samples {ξi}Ni=1, the expectation is
approximated via Eξ [L (x, ξ)] ≈ 1

N

∑N
i=1 L (x, ξi). Using

the SAA with (1) and (3) reduces the two-stage stochastic
program to a structured deterministic program.

Computing solutions to two-stage stochastic programs via
the SAA requires scenarios that sufficiently capture the uncer-
tainty of the problem. Specifically, in the context of using the
SAA and two-stage stochastic programming to compute eco-
nomic dispatch solutions in the presence of high penetrations
of wind power, scenarios must accurately capture the uncer-
tainty in wind farm generation over time from geographically
distributed wind farms. Furthermore, the uncertainty must be
characterized in a manner compatible with the computational
tools used to solve the economic dispatch problem. E.g.,
if we are solving the AC or DCOPF problem, and thus
considering power flow physics, a characterization of wind

power uncertainty that only works for a copper sheet model
will not be sufficient.

The scenario creation problem has been studied for power
systems problems. See [9], [10] for work on scenarios for
stochastic unit commitment and [11], [12] for work on eco-
nomic dispatch scenarios.

III. TWO-STAGE STOCHASTIC ECONOMIC DISPATCH AND
DATA-DRIVEN SCENARIOS

A. Two-stage stochastic economic dispatch formulation

Our approach to solving the economic dispatch problem us-
ing stochastic programming is to assign generator set points as
first stage decision variables x, while relegating variables such
as wind dispatched ω, wind spilled ωspl, and slack variables
describing loss-of-load and overload y±i to the second stage.
Intuitively, this division makes sense: generator set points
must be decided before we know how much wind power
will be generated. However, the amount of wind dispatched
and spilled, slack variables, etc. are computed only once the
random variables describing wind power output are realized.

The division of constraints between the first and second
stage follows similar logic: ramping constraints in our model
only apply to the generator set points, thus they can be placed
either in the first or second stage. Constraints controlling
the balance between wind power, spilling, dispatched, and
forecast, along with power balance constraints at the nodes,
and power flow constraints are all relegated to second stage
constraints, as they are functions of the random variables
describing wind power output from the wind farms. We
note that while generator set points are first stage decision
variables in our model, adjustments to generator set points
to employ reserve quantities can be added as second stage
decision variables. In such models, ramping constraints should
be moved to the second stage to account for ramping in reserve
use.

The mathematical formulation for the first stage of our
model is,

min
x

∑
g∈G

(cgxg + Eξ [L (x, ξ)]) (5)

s. t. xming ≤ xg ≤ xmaxg ∀ g (6)

−Rdowng ≤ xg − Ig ≤ Rupg ∀ g, (7)

where we have restricted ourselves to linear thermal generator
costs cg in (5), (6) are the minimum and maximum generation
bounds for each dispatchable thermal generator, and (7) are
the ramping constraints on the thermal generators that limit
the amount a generator set point can change in a time period
(Ig is the set point of generator g from the previous decision).
The second stage costs, L (x, ξ) in (5) are modeled by the
loss function

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2



L (x, ξ) =

min
y±,ω,ωspl

∑
w∈W

(
cwωw + csplw ωsplw

)
+ (8)∑

i∈φ

(
c+i y

+
i + c−i y

−
i

)
s. t. 0 ≤ y±i ∀ i ∈ φ (9)

0 ≤ ωw ≤ ωfcstw + ξw ∀ w ∈W (10)

ωsplw =
(
ωfcstw + ξw

)
(11)

− (ωw) ∀ w ∈W∑
w∈Wi

ωw +
∑
g∈Gi

xg +
∑

e∈Ein(i)

fe −
∑

e∈Eout(i)

fe

(12)

= di + y+i − y
−
i ∀ i ∈ φ.

F e ≤ fe ≤ F e ∀e ∈ E (13)
Be (θi − θj)− fe = 0 ∀e = (i, j) ∈ E . (14)

Equation (8) contains the second-stage costs for our model,
consisting of costs for slack variables c±i , wind generation cw,
and spilling wind csplw . Bounds on slack variables are expressed
in (9), while equations (10) and (11) contain bounds on the
amount of wind dispatched and power-balance equations for
the wind respectively, with ωfcstw being the forecast for wind
power and ξw the deviation of realized wind power from the
forecast at wind plant w in the set of wind plants W . The
power balance for each bus is modeled via (12), and the line
limits are modeled by (13), where φ is the set of buses, E
is the set of lines with arbitrary directions assigned, θi is the
voltage angle at bus i, and fe is the power flow on line e.
Finally, Ein(i) and Eout(i) represent directed lines into and
out of bus i respectively, while Wi and Gi represent wind and
thermal generators at bus i. For this work, we use the DC
approximation to AC power flow, as expressed by (14).

Equations (5)-(14) describe our model for evolving eco-
nomic dispatch problems by looking ahead for a single 5-
minute time period. However, the real power of combining
two-stage stochastic programming and data-driven scenario
creation (described in the next subsection) is the ability to
look ahead for multiple time periods. This approach allows us
to consider ramping events contained within scenarios during
the decision-making process. Updating our model to include
multiple periods involves introducing time-dependence in the
following variables,(

xg, ξw, ωw, ω
spl
w , y±i , di, fe, θi

)
7→(

xg,t, ξw,t, ωw,t, ω
spl
w,t, y

±
i,t, di,t, fe,t, θi,t

)
,

introducing sums in (5) and (8) over periods t1, . . . , tM , where
M is the number of periods that we look ahead, and modifying
ramping constraints such that

−Rdowng ≤ xg,tm − xg,tm−1 ≤ Rupg
for m = 1, . . . ,M and xt0 is equivalent to Ig in (7).

The benefits of taking ramping events and transmission
physics from scenarios into consideration during the decision-
making process become clear when choosing the amount
of generation room to hold. Setting aside a percentage of
generation capacity to hold for reserves does not take ramping
nor transmission constraints into account when the generator
set points are computed. Thus, while generation capacity is
held, the extra power may be limited by transmission physics
or ramping capabilities of generators. Since our multi-period
approach computes transmission-constrained economic dis-
patch decisions using scenarios with ramping events, generator
set points can be chosen to hedge against ramping events and
limitations due to power flow physics.

B. Data-driven scenarios

The process of producing meaningful deviations from per-
sistence forecasts for creating scenarios requires partitioning
the set of candidate scenarios based on the amount of wind
power present in the system. The reason for this partition is
that deviations from persistence depend strongly on the current
power. Wind-ramp events that increase power in a system that
is producing near its capacity should not occur. Similarly, if
there is a small amount of wind power supplied to a system,
i.e. the wind is barely blowing, ramp events that lead to large
decreases in power should not occur either.

Before defining the partitioning, the following definitions
are required: the set of candidate scenarios is denoted by
S = {sj}Nscen

j=1 , where sj ∈ RNw×Nt , Nscen is the number of
candidate scenarios, Nw is the number of wind farms, and
Nt is the number of time steps in each scenario, including
current state of the wind (consequently, all scenarios will have
Nt ≥ 2). To generate a partition of the candidate scenario set,
we first define the functional q (which enables us to condition
on power)

q
(
sj
)
=

Nw∑
w=1

sj (w, 1) ,

and constants pw,high > pw,low > 0. The set of candidate
scenarios are then partitioned such that

Slow = {sj | q
(
sj
)
< pw,low}

Smed = {sj | pw,low ≤ q
(
sj
)
≤ pw,high}

Shigh = {sj | q
(
sj
)
> pw,high}.

Given Slow, Smed, and Shigh, we modify the data so that the
partitions contain deviations from the persistence forecast.
This is accomplished by subtracting from each vector-element
in the time series the first vector sj (:, 1), i.e. the last known
state of wind power, and replacing the entries in the partitioned
data sets with

s̃j (:, n) = sj (:, n)− sj (:, 1) ∀n = 1, . . . , Nt.

We remark that s̃j (:, 1) = 0 for all j = 1, . . . , Nscen. These
vectors correspond to the current wind power on the system,
and the subsequent values of n correspond to the deviations
from the persistence forecast that assumes the wind power
does not change from its value at n = 1.
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C. Sampling from the scenario set

The process of drawing scenarios from partitions described
in the last subsection begins with the selection of a partition to
sample. A partition is chosen based upon which partition the
last recorded actual wind power value would fall into. Once
the appropriate data set to draw from has been chosen, samples
are drawn at random, with replacement, from the partition and
passed on to the two-stage stochastic program.

A powerful feature of our sampling technique is the ability
to extend our approach to generate multi-period scenarios.
This ability stems from how scenario sets S are stored in
memory during computation. Candidate scenarios are stored
as a list of time stamps that reference a historical data set.
Thus extracting a scenario involves using a time stamp as an
index and pulling out subsequent data. For single period, two
time steps are drawn (one for current power, one for deviation
from persistence). For multi-period, the only change required
is to draw more time stamps.

Using multi-period scenarios enables the two-stage stochas-
tic program to better incorporate ramping into the decision
making process. As an illustrative example, consider a system
operating near rated wind power, implying it is likely that
wind power will drop. If multi-period scenarios containing
significant wind power drops were passed to a two-stage
stochastic program, the program would compute steps to
economically mitigate ramp-down events therefore decreasing
the likelihood of loss-of-load events. This is accomplished by
holding extra thermal generation in a manner that preserves
headroom across multiple generators to enable fast thermal
ramping during subsequent time steps.

IV. COMPUTATIONAL TESTS OF PERFORMANCE

We tested our economic dispatch approach on a modified
version of the RTS-GMLC (see Figure 1). The RTS-GMLC
wind data were replaced by data from the Wind Integration
National Dataset (WIND) Toolkit [13]. Furthermore, solar
generation data were also replaced with WIND Toolkit data.
The RTS-GMLC data were replaced using the following
approach: for a bus with either wind or solar generation,
the nearest WIND Toolkit sites to the geo-spatial location
of the bus were aggregated and attached to the bus until the
maximum capacity of renewables from the RTS-GMLC at that
bus were met. Using WIND Toolkit data in place of the RTS-
GMLC renewables data enables access to 7 years of high-
fidelity synthetic data to run experiments with.

After replacing renewables data from the RTS-GMLC, we
divided the wind power data into two partitions: 1 year of
data were assigned to be a source of actuals, i.e. realizations
of the wind power during our test period. The other 6 years
were assigned as historical data, i.e. data that were used as the
source of scenarios. Examples of multi-period scenarios drawn
from the aggregation of WIND Toolkit sites are provided
in Figure 2. We emphasize that this approach conserves the
spatial-temporal fidelity of the WIND Toolkit data.

The tests consisted of solving the 5-minute economic dis-
patch problem for the RTS-GMLC over the course of a

Fig. 1: RTS-GMLC network: 51 buses (black dots), 22 buses
with wind generation (blue dots), 445 WTK wind sites (heat
map), 104 transmission lines (black lines)

Fig. 2: Examples of deviations from persistence for wind
power on the RTS-GMLC. (Left) 10 scenarios of total wind
power on the grid,

∑
w s

j(w, t), j = 1, . . . , 10. (Right) A
single scenario displayed for all 22 wind farms, s1(w, t), w =
1, . . . , 22.

simulated week. Tests were run using two types of scenarios:
single-period and six-period. Operational costs, including first
and second stage costs, are provided in Table I and Table II.
Plots of second stage costs are provided in Figure 3. In
the tables, stochastic economic dispatch is compared with a
deterministic approach that uses a persistence forecast. We
observe that stochastic programs using both types of scenarios
outperform (i.e. operations are conducted with a lower cost)
the deterministic approach over the course of the week in terms
of second stage and total costs. However, we remark that in
every case the first stage operational costs of the stochastic
economic dispatch are more expensive than the deterministic
approach. This difference is small compared to the amount of
savings from the second stage optimization problems. Thus
the total costs of operations are lower.

The phenomena of stochastic economic dispatch producing
slightly higher first stage costs and much lower second stage
costs is due to the pricing of loss-of-load compared with the
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Fig. 3: Second stage costs from one-week economic dispatch
experiments including (top) and excluding (bottom) determin-
istic results. We observe that both our stochastic approach and
increasing the number of periods lowers operational costs.

TABLE I: Single Period Economic Dispatch Costs

Single Period Dispatch Costs ($)
# of Scenarios 1st stage 2nd stage Total Costs
deterministic 3.138× 106 1.455× 107 1.769× 107

20 3.181× 106 8.813× 105 4.062× 106

40 3.190× 106 4.714× 105 3.661× 106

80 3.201× 106 1.976× 105 3.399× 106

price of overload or spilling wind. Loss-of-load is by far the
most expensive ($833 per MW compared to $42 per MW for
overload, spilling wind is essentially free), thus the inclusion
of the expectation of the loss function L (x, ξ) in (5) enables
the algorithm to hedge against the potential of loss-of-load
by increasing the values of the first stage decision variables
subject only to resource, overload, and wind-spilling costs.

We also notice that increasing the sampling rate in the
stochastic economic dispatch experiments leads to lower sec-
ond stage costs. This is due to our use of relatively low
sampling rates for scenarios. Assuming the existence of a
probability distribution function describing the space of multi-
period scenarios, it is highly unlikely that we are sampling at
sufficient rates to compute the expectation to a high degree of
accuracy. Despite this shortcoming, our approach still shows a
dramatic improvement over using only a persistence forecast.
For details on sufficient sampling for the SAA see [7].

V. CONCLUSION

In this work we have demonstrated that coupling stochastic
programming with scenarios drawn from high-fidelity syn-
thetic data sets yields an effective approach to computing 5-
minute economic dispatch solutions. Such an approach could

TABLE II: Multi-Period Economic Dispatch Costs

Multiple Period Dispatch Costs ($)
# of Scenarios 1st stage 2nd stage Total Costs
deterministic 3.138× 106 1.455× 107 1.769× 107

20 3.180× 106 8.083× 105 3.988× 106

40 3.189× 106 4.072× 105 3.596× 106

80 3.198× 106 1.543× 105 3.3523× 106

also be applied to a power grid with historical wind power
data. Our experiments illustrate an example where using sce-
narios built from data with stochastic economic dispatch leads
to more cost-effective dispatch decisions than those produced
with a simple economic dispatch using only a persistence
forecast. Due to the expense of loss-of-load, the stochastic
program decides to strategically over-produce, preferring to
incur cheaper overload and wind-spilling costs instead of
risking loss-of-load events.

Future work will include refinement of how to select scenar-
ios from the provided population of time series data. Due to
the structure of the loss function, some scenarios will not affect
the expectation term in the first stage loss function and should
not be selected from the population for use in the stochastic
program. Also of interest for future work is the application of
these techniques to problems with real wind data.
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