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Abstract. This paper presents the results of a field campaign investigating the performance of wake steering
applied at a section of a commercial wind farm. It is the second phase of the study for which the first phase was
reported in Fleming et al. (2019). The authors implemented wake steering on two turbine pairs, and compared
results with the latest FLORIS (FLOw Redirection and Induction in Steady State) model of wake steering,
showing good agreement in overall energy increase. Further, although not the original intention of the study, we
also used the results to detect the secondary steering phenomenon. Results show an overall reduction in wake
losses of approximately 6.6 % for the regions of operation, which corresponds to achieving roughly half of the
static optimal result.
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1 Introduction

Fleming et al. (2019) described a new field campaign at a
commercial wind farm evaluating wake steering. It also pre-
sented initial results from the first phase of the campaign.
Following the completion of that first phase and the subse-

quent article describing it, researchers made improvements
to the engineering models, control design, and analysis meth-
ods. The Phase 2 campaign began in January 2019. This pa-
per reports on the combined results of both phases.

To avoid repeating many points already made in that paper,
we limit the introduction and background on wake steering
in general and in theory to only what has been updated since
that paper was first written. However, we will review the site
and test setup in this article.

2 Literature update

Since the publication of Part 1, a number of papers on wake
steering have been added to the literature. These papers add
updates to the engineering models, control design, and field
validation of wake steering, and we summarize them here to
add context to this quickly advancing line of research.
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2.1 Engineering models

Engineering models provide the tools to design and analyze
wind farm controllers. In this research, we rely on the FLOw
Redirection and Induction in Steady State (FLORIS) tool,
which includes several selectable wake models, as well as
the wind farm control design and analysis tools themselves
(NREL, 2019).

Important recent advances in the engineering modeling of
wake steering come from work that enables a more accu-
rate description of the aerodynamic effects of wake steer-
ing for turbine arrays of more than two turbines. In Fleming
et al. (2018a), it was shown that counter-rotating vortices are
expected to generate effects not captured in the version of
FLORIS used in Phase 1 of this study, which employed the
models of Bastankhah and Porté-Agel (2014), Niayifar and
Porté-Agel (2015), and Bastankhah and Porté-Agel (2016)
to describe wake recovery and deflection. Recent work has
developed models of wake steering that include counter-
rotating vortices that produce the aerodynamic effects that
are the main drivers of wake steering (Martínez-Tossas et al.,
2019).

In Bastankhah and Porté-Agel (2019), a detailed wind-
tunnel-based study showed that for arrays of turbines per-
forming wake steering, the best strategy is for each succes-
sive turbine in a column to have a reduced yaw offset from
the one directly upstream. Recently, the Gauss-curl hybrid
(GCH) model was introduced in King et al. (2020). This
model proposes an analytic implementation of the vortices
of the curl model of Martínez-Tossas et al. (2019) to modify
an underlying Gauss model of Bastankhah and Porté-Agel
(2014), Niayifar and Porté-Agel (2015), and Bastankhah and
Porté-Agel (2016). This latest model will be used in this
study and a brief overview of its theory will be included in
this paper; see King et al. (2020) for a full description.

2.2 Field validation

Since the first paper, an additional publication documenting
a trial of wake steering at a commercial wind farm was pub-
lished. Howland et al. (2019) implemented a wake-steering
controller on an array of six turbines at a commercial wind
farm and observed gains in power production for the waked
cases tested. Howland et al. (2019) differs from the current
study in that the yaw-offset angle is fixed (rather than con-
trolled via lookup) and applied to multiple turbines rather
than a single control turbine. However, we believe the resul-
tant gains are consistent with the current study.

2.3 Controller design

In the initial paper, we discussed the fact that the controller,
based on a lookup table of statically optimal yaw offsets that
does not account for dynamic wind direction variation or
the limits of the yaw controller, was likely underperforming
compared to a controller designed to account for dynamic

conditions. Several recent papers propose more dynamically
optimal approaches to wake steering. For example, Bossanyi
(2018) introduces a new dynamic model of wakes and wind
farm controls that can be used to assess the dynamic per-
formance of wind farm controllers. Kanev (2019) proposes
an elegant implementation of lookup-based yaw-offset wake
steering, which includes hysteresis, to show that, for the case
study in the paper, a well-designed dynamic controller might
achieve up to 67 %–75 % of the static optimal.

Annoni et al. (2019) present a method of wind direction es-
timation using a consensus algorithm to combine the individ-
ual turbine measurements of wind direction into an overall
flow field. Combining this method with wake steering would
likely improve the accuracy and timeliness of offsets chosen
by wind direction as the so-called consensus wind direction
will more effectively estimate the wake direction of travel
versus a single-point measurement from the turbine’s nacelle.

Finally, Simley et al. (2020) propose new techniques for
evaluating the statistical variation of wind direction in terms
of the effect on wake propagation direction and use this
analysis to design new dynamically optimal controllers. This
work has been used in the current, second phase of the study.

3 Field campaign overview and update

The field campaign is located within a subsection of a larger
wind farm. The subsection was chosen because of the occur-
rence of wake losses in common wind directions. The sub-
section is shown in Fig. 1.

As discussed in Part 1 and shown in Fig. 1, the subsec-
tion includes five turbines. T2 and T4 are the controlled tur-
bines and implement wake steering. T3 is the downstream
turbine in the experiment. T1 and T5 are unaffected turbines
used as references. Further, several measurement devices are
added to the site including a profiling lidar, meteorological
tower, and two sodars (a north and south), whose locations
are shown in Fig. 1.

Figure 1 also indicates the names given to the two cam-
paigns. When the winds are from the north such that T2 is
yawed for the benefit of T3, this is referred to as the North
Campaign. Similarly, in the case of south winds, T4 is yawed
for the benefit of T3 (South Campaign).

The campaign can also be divided into two phases. Phase
1 was the focus of Fleming et al. (2019) and was conducted
primarily in the summer of 2018. In that period, because of
the seasonal variation of winds at this location, the winds
were primarily from the south, and only the South Campaign
was reported in that paper.

Following the completion of the first campaign, the yaw-
offset schedules were updated for both controlled turbines.
This update will be explained in greater detail in Sect. 4. Fol-
lowing the completion of the update, testing resumed in Jan-
uary 2019, and data for both north and south were collected.
We note that a sensor calibration issue identified toward the
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Figure 1. Layout of the experimental site. Turbine 2 (T2) and Turbine 4 (T4) have wake steering implemented to benefit Turbine 3 (T3),
whereas Turbine 1 (T1) and Turbine 5 (T5) are reference turbines. The position of the installed meteorological equipment is also shown.
Finally, the complexity of the terrain to the south and flat terrain to the north are indicated. © Google Maps.

end of Phase 1 indicated that the smaller amount of data col-
lected from the North Campaign in Phase 1 should not be
used. This was corrected before the start of Phase 2. Total
data accumulation for the two phases and both campaigns is
shown in Fig. 2.

4 Controller

In this section, we review the wake-steering controller used
in this study. Fig. 3 provides the controller, as presented in the
Part 1 paper. The controller computes an offset vane signal to
send to the (unmodified) turbine yaw controller – illustrated
in the figure – which is based on analysis of the first phase
(Fleming et al., 2019) and more detailed analysis in Simley
et al. (2020).

First, the filters on the input to the lookup table were ad-
justed such that the filter on wind direction has a time con-
stant of 30 s, whereas the filter on wind speed has a constant
of 60 s. The lookup table output filter was removed, as shown
in Part 1, because it introduced unnecessary lag to the re-
sponse. Note also that the controller is toggled on and off
hourly to provide comparable data sets between when the
controller is on and off.

The other important change to the controllers was the off-
set in the lookup tables themselves. In contrast to Phase 1, in
which the static optimal settings were directly deployed, the
lookup table values are computed in Phase 2 by using a blend
of static and robust optimization that accounts for some un-
certainty in wind direction. Simley et al. (2020) and Simley
et al. (2019) document this design process in greater detail.
Finally, based on analysis from Phase 1, offsets were applied

at higher wind speeds when allowed by the envelope of safe
operation.

It is most likely suboptimal to implement wake control by
manipulating the existing yaw controller through its vane in-
put rather than directly modifying it; however, this was not an
option for this work. Research conducted, such as by Kanev
(2019), indicates that future studies using carefully designed
direct modifications to yaw controllers can improve on this
work.

4.1 Controller performance

This section reviews the performance of the controller in
achieving the desired offset behavior. Figure 4 reviews the
conventions to be used throughout this article. A positive
yaw offset is defined to be counterclockwise. When the con-
troller is toggled off, no offset is applied (called “baseline”),
whereas when the controller is on, an offset is applied (called
“controlled”). In all figures, blue is associated with the base-
line and magenta represents controlled. Note that the colors
are changed from Fleming et al. (2019) in order to improve
color-blindness accessibility. The hourly toggling in the con-
troller is performed to provide approximately equivalent dis-
tributions of wind speeds and directions for the baseline and
controlled data sets.

Figure 5 summarizes all of the yaw-offset data by wind
speed and direction for both campaigns and both phases ob-
served over the course of the campaign. The targeted offset
is shown in black, whereas the achieved offset is shown in
magenta. Note that the achieved offset is calculated with re-
spect to the reference wind direction (not the wind direction
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Figure 2. Data accumulation for both phases and campaigns. For both north and south, we consider only data that are in the range of wind
directions for which the control turbine would be activated and the data are usable in that they contain no faults or issues with any sensor
used in control or analysis.

Figure 3. Wake-steering controller used in the study. As in Phase 1, the controller produces an offset wind vane signal to be passed to the
yaw controller. In Phase 2, the filter at the lookup table output was removed.

Figure 4. Baseline results (shown in blue throughout this article)
are those in which the control turbine operates normally based on
the toggle setting in Fig. 3. Controlled operation includes all times
when the controller is enabled according to the toggle (regardless
of achieved offset); this is shown in magenta throughout this article.
Finally, the figure indicates a positive yaw offset that represents a
counterclockwise rotation of the turbine viewed from above.

measured by the turbine itself as this could be affected by the
yawing). The reference wind direction for the South Cam-
paign described in the Part 1 study was provided by the south
sodar. However, in the present work, we moved to an average
of measurements. For the North Campaign, this is the aver-
age of the wind direction measurements made by the lidar, as
well as T1 and T5 wind direction measurements computed
using the nacelle vane and measurements of yaw heading.
For the South Campaign, this is T1, T5, and the south so-
dar averaged. We prefer this average approach for several
reasons. First, by adding the turbine measurements, which
are updated at 1 Hz rather than the 10 min average of the so-

dar, we include finer refinement in time. Secondly, the spatial
separation of the measurements provides a wider look at the
direction of the inflow that transports the wake.

Shaded regions are overlaid in Fig. 5 to denote certain
wind direction areas. The total area of the shaded region
(orange and blue) indicates the range of wind directions for
which a yaw offset is observed and will be used in later plots
to indicate where control is and is not applied in analysis fig-
ures. The region is subdivided into a light blue region that
indicates that yaw offset is applied and desired, whereas the
orange region indicates that the yaw offset is achieved un-
intentionally. It is important to note that practically there is
always some error between targeted and achieved yaw offset,
so when saying an offset is achieved in a given region, we re-
fer to the fact that the mean offset is not zero. Given the con-
straints of the yaw control system, such a region is probably
somewhat inevitable if larger offsets are to be achieved at all.
However, as described earlier, optimal wake-steering control
is an area of active research, and analysis of the controller
ability to achieve the desired offset in the face of uncertain
wind direction variations is a subject of ongoing work (Sim-
ley et al., 2020; Kanev, 2019; Rott et al., 2018; Quick et al.,
2017; Bossanyi, 2018).

A final analysis considers the success of hourly toggling
in balancing (between the baseline and controlled) the inflow
conditions observed. This is shown in Fig. 6 in terms of his-
tograms of wind speeds and directions observed for the North
and South Campaigns. Dividing the data into the baseline and
controlled data sets shows that the two conditions are fairly
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Figure 5. Comparison of targeted versus achieved offsets for the
North and South Campaigns. The black lines indicate the targeted
offset for a given wind speed and direction. The magenta lines show
the average achieved offset (with 1 min average points shown to
indicate the spread in values going into that average). Colored bands
are used to indicate where a yaw offset is achieved intentionally
(light blue) and unintentionally (orange). The combined orange–
blue region is the range of directions wherein the controller is active.
The South Campaign, as discussed earlier, includes two phases of
control; however, this figure indicates that the achieved offsets are
similar.

well-balanced, with both settings seeing similar overall con-
ditions. In addition, one can observe that the North Campaign
experienced faster overall conditions, which is expected for
this location.

5 FLORIS

FLORIS is wind farm control software tool, which includes
wake models as well as wind farm control design and anal-
ysis tools (NREL, 2019). It is central to this work as it was
used to design the test controls for this study, and validating
its ability to predict gains from wind farm control is a key
outcome. FLORIS was codeveloped by the National Renew-

Table 1. FLORIS Gauss model parameterization.

Parameter Value

ka 0.38
kb 0.004
alpha 0.58
beta 0.077
ad 0
bd 0
Turbulence intensity north 0.1
Turbulence intensity south 0.08

able Energy Laboratory (NREL) and the Delft University of
Technology.

FLORIS includes several optional selections for the wake
model, including the original multizone model (see Gebraad
et al., 2016), the new vortex-based curl model discussed in
Martínez-Tossas et al. (2019), and the Gaussian wake model
of Bastankhah and Porté-Agel (2014), Niayifar and Porté-
Agel (2015), and Bastankhah and Porté-Agel (2016).

In Part 1, the Gauss model was selected for the design and
analysis of the experiment as it is the current standard at
the NREL often used in the literature. The model includes
several tunable parameters. In this work, we use the “de-
fault” settings for the wake deficit model provided in Niay-
ifar and Porté-Agel (2015) and Bastankhah and Porté-Agel
(2016) and tune only turbulence intensity (TI) separately for
the North and South Campaigns.

In Part 1, we allowed TI to be set for each observation
based on the south sodar measurement, but in the present
work, we select a best-fit overall TI. Specifically, the TI is
selected to provide a close match between the baseline wake
losses in FLORIS and those measured in the field. The se-
lected parameters are summarized in Table 1.

It is important to note that the chosen TI values for the
model are likely aggregating multiple atmospheric effects.
For example, the present version of FLORIS lacks a true
near-wake model, so this may explain the lower TI for the
South Campaign. FLORIS currently underestimates near-
wake losses, so this is currently corrected by a lower average
TI than is physically occurring. Improving near-wake models
is a focus of future work.

For the wake deflection model, we initially selected, in
Part 1, the deflection model described in Bastankhah and
Porté-Agel (2014), Niayifar and Porté-Agel (2015), and Bas-
tankhah and Porté-Agel (2016). The default model directly
provides no free parameter to tune the gain from wake steer-
ing, as is done in the model from Jiménez et al. (2010). In
previous work, a multiplication on the initial deflection an-
gle as a result of wake steering was added to allow for a bet-
ter match to the gain in power seen, for example, in Sim-
ulator fOr Wind Farm Application (SOWFA) simulations.
Thus, the Gauss model with a multiplication on deflection
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Figure 6. Comparison of wind speed and wind direction histograms, which is divided into baseline and controlled operation. Note that the
bands of desired and nondesired yaw offsets first shown in Fig. 5 are used here and throughout the article to illustrate the controlled region.

was employed to design the control strategy used in Phase 2,
along with the uncertain optimization of Simley et al. (2020).
A deflection multiplier of 2 provides a better fit to the 5D-
spaced North Campaign, whereas a multiplier of 1 fit better
with the 3D-spaced South Campaign. This inability to match
both ranges with a single parameter is likely because of the
fact that this gain on deflection does not capture the under-
lying physical mechanisms of wakes affected by wake steer-
ing. The changes to the wake, which include the generation
of counter-rotating vortices, are described more accurately in
the curl model of Martínez-Tossas et al. (2019).

More recently, the GCH model described earlier, which
starts at the base with the Gauss model of Bastankhah and
Porté-Agel (2014), Niayifar and Porté-Agel (2015), and Bas-
tankhah and Porté-Agel (2016) but is then modified ana-
lytically by equations adapted from Martínez-Tossas et al.
(2019), was introduced in King et al. (2020). This model
combines the advantages of fast computation and tunabil-
ity of the underlying Gauss model with the included physics
of counter-rotating vortices responsible for secondary steer-
ing (secondary steering is the name for the effect described
in Fleming et al., 2018b, wherein a steered wake interact-
ing with a non-steered wake apparently induces steering into
the non-steered wake) and yaw-added wake recovery, which
models the additional gains in power as an additional in-
crease in flow velocity driven by the counter-rotating vor-
tices. For a detailed description, see King et al. (2020).

For the remainder of this article, we will refer to three
wake models within FLORIS (Annoni et al., 2016). Gauss
is the implementation of Bastankhah and Porté-Agel (2014),
Niayifar and Porté-Agel (2015), and Bastankhah and Porté-
Agel (2016); Gauss-2x includes the gain on deflection, and
finally we refer to the new GCH model. Although the primary
purpose of the GCH model is to improve secondary steering
predictions, we also show that it can provide the needed in-

crease in energy gain formerly produced by multiplying the
deflection amount. Therefore, the plots will often include re-
sults for Gauss, Gauss-2x, and GCH.

6 Analysis

Having described the controller, field campaign, and engi-
neering model FLORIS, the remainder of this article will fo-
cus on comparing the collected results with predictions or,
more accurately, re-simulations of the results in FLORIS.

In this article, we use the same method for comparing
energy production, the “balanced energy ratio” method, de-
scribed in the previous paper (Fleming et al., 2019). The only
update is that in that paper, a single turbine provides the ref-
erence power, while a single sensor provides the wind direc-
tion. Experimentation showed that a more precise result was
obtained when the direction was set as the average wind di-
rection of the two reference turbines (T1 and T5), with the
wind direction measured by the lidar for the north and sodar
for the south (using a weighted average over the rotor heights
for the lidar and sodar). Similarly, the reference power is the
average of T1 and T5 instead of just T1 for the North Cam-
paign; however, it is only T1 for the South Campaign, as in-
cluding T5 into the analysis in this case made the baseline
energy ratio noisier, presumably because the wind from the
south arrives at T5 over complex terrain.

For the FLORIS re-simulations, the wind speeds, direc-
tions, and yaw offsets measured are applied to the various
models (Gauss, Gauss-2x, and GCH), and a predicted power
of the reference and test turbines is produced; then the anal-
ysis is identically performed as computed for the field data.
The Gauss, Gauss-2x, and GCH models are simulated us-
ing the measured offsets (comparing the nacelle position of
the control turbine with the wind direction). A final FLORIS
simulation is performed, again with GCH; however, it uses
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the targeted, rather than the achieved, yaw offsets. This sim-
ulation will be referred to as GCH optimal, as it is meant to
represent the result of the dynamic controller achieving the
static targets exactly.

A final note is that the Python implementation of the bal-
anced energy ratio method of comparison is included in the
FLORIS repository.

7 Results

The results from both the North and South Campaigns are
presented in this section using the methods explained in
Sect. 6. This analysis recovers Phase 1 data analyzed in Part
1 and combines with Phase 2, thereby replacing the results
with the full data set.

The energy ratios for the downstream turbine (T3) are pro-
vided for both the North and South Campaigns in Fig. 7,
whereas the difference between the baseline and controlled
energy ratios is shown in Fig. 8.

The results show a clear gain in energy production for
the downstream turbine for both the South and North Cam-
paigns. The peak gains are underforecasted by the Gauss
model in both cases and overforecasted in the Gauss-2x
model. The GCH model somewhat underpredicts the peak
gains but is in general a reasonable fit.

The optimal gain (the expected gain if desired offset is al-
ways achieved) is higher than the realized gain. As stated,
this field campaign uses a first-pass lookup-table method to
offset the vane signal provided to the usual yaw controller.
We believe the optimal performance can be more nearly
achieved by dynamic generation of the yaw set point (as in
Kanev, 2019), accounting for yaw control limitations in de-
sign (Simley et al., 2020), and by improving the measure-
ment of wind direction (for instance, using information shar-
ing between turbines; Annoni et al., 2019). Further, it would
no doubt be an improvement if the wake-steering controller
is implemented directly into the turbine yaw control logic.
However, perfectly realizing the optimal results is not possi-
ble as this would imply excessive yawing and perfect infor-
mation on the wind direction (Knudsen et al., 2014).

One point of ambiguity in the results shown in Fig. 7 and
Fig. 8 is the effect of “wrong-way steering,” (i.e., the region
of unintentional wake steering in the red-banded region). The
loss in this region is more than expected in the North Cam-
paign and less than expected in the South Campaign. Com-
paring the models shows that GCH expects fewer losses than
the previous models. However, this is likely related to an is-
sue in modeling near wakes, which both cases represent (3D
and 5D spacing) to some extent. In King et al. (2020), GCH
predicts wrong-way steering better at distances above 5D.

An interesting additional insight comes from dividing the
data in Fig. 8a into daytime and nighttime conditions. This
is shown in Fig. 9. This approach reveals a pattern of lower
gains in the daytime and higher gains in the nighttime. This

makes sense, given stable, low-TI conditions at night produc-
ing deeper wake losses and less meandering of the wakes. It
is a useful reminder that the overall results in Fig. 8a are the
average of two somewhat different conditions. FLORIS cur-
rently models the average, but a division into two separate
conditions, as is proposed in Ruisi and Bossanyi (2019), or
as an additional continually varying signal input to FLORIS
might enable more tailored control settings and improve re-
sults further. A future paper will analyze the differences in
performance relative to measured turbulence and stability
characteristics in greater detail. The turbulence and stability
characteristics of the site for the South Campaign are pre-
sented in Murphy et al. (2019).

The change in total energy production for the upstream
and downstream turbines combined is shown in Fig. 10. This
figure includes the losses from the upstream turbine with the
gains downstream. FLORIS currently models losses as a re-
sult of yawing via the pP exponent, which is the exponent
of the cosine of the yaw angle (i.e., if pP equals 2, power is
lost as a function of the cosine squared of the yaw angle.) In
this work pP is set to 1.9 based on an estimation from pre-
vious work (Damiani et al., 2018) on a similar turbine. The
results again show a good match between the field results and
the GCH model in FLORIS in the main wind directions for
improvement, but there are some losses on the outer regions.
One possibility in the South Campaign is that the wind direc-
tion estimate for T4 is slightly off, which is possible because
there are fewer measurements to compare to in the south, the
terrain is much more complex, and, finally, there are more
measurement data available for the north, including the lidar.
Although it does not show as an offset in Fig. 5, it would help
to explain the lack of loss in the unintended region, the shift
of the peak to the right, and the unnecessary losses above
152◦ in Fig. 10. It may also be that the flow from the south,
which passes over very complex terrain, is less homogeneous
and therefore interacts with the wakes in more complicated
ways.

7.1 Overall results

To assess the overall effect of wake steering, we define the
wake loss as the total difference in energy production by the
waked turbine (or the combined energy production of the
waked and controlled turbine) versus the reference turbine or
turbines. To control for the impact of differences in wind dis-
tributions between the baseline and controlled sets, we first
compute the average wake loss per wind speed and wind di-
rection bin and then compute a weighted sum across these
bins; the weight is the total number of points (baseline and
controlled) in each bin. The wake loss expressed as a percent-
age is then the ratio of this total amount over the total amount
of energy produced by the reference turbine or turbines.

Computing this result per wind direction bin produces the
plots shown in Fig 11. These plots confirm that the wake loss
calculation yields a similar result in plots against wind di-
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Figure 7. Energy ratio of T3 for the North and South Campaigns. For both campaigns, this represents the ratio of energy produced by T3
with respect to unwaked reference turbines. The banded region, as explained in Fig. 5, indicates regions of offset activity, either intended
(light blue) or unintended (orange).

Figure 8. Change in energy ratio for the downstream turbine (T3) with respect to the reference. FLORIS results include “controlled” gain,
which simulates the results in FLORIS using the measured offsets from the field campaign for each model, whereas the “optimal” gain is
computed using the targeted offsets for GCH only.
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Figure 9. Comparison of the change in the energy ratio of T3 for daytime versus nighttime conditions.

Figure 10. Combined change in energy ratio, which is the total energy production of T2 and T3 for the North Campaign and T4 and T3 for
the South Campaign.

Table 2. Overall percent reduction in wake losses across the con-
trolled region.

North South

T3 T2 and T3 T3 T4 and T3

Field 14.4 % 6.6 % 13.4 % 6.4 %

Gauss 9.1 % 2.9 % 9.1 % 3.5 %
Gauss-2x 17.3 % 11.0 % 16.2 % 10.4 %
GCH controlled 15.0 % 9.0 % 12.1 % 6.6 %

GCH optimal 24.4 % 12.7 % 18.2 % 10.4 %

rection as the energy ratio plots shown earlier. It is now pos-
sible to compute the overall effect on reducing wake losses
for both campaigns, which is the same calculation computed
in Fig. 11 but now across a weighted sum across wind direc-
tion bins as well, thereby yielding a total overall value. These
results are summarized in Table 2.

Table 2 shows that the overall reduction for the combined
turbines of the North and South Campaigns is 6.6 % and
6.4 %, respectively. This corresponds to between half and
60 % of the static optimal gain predicted by GCH. Compared
to the model outputs using the actual achieved yaw angles,
the results are fairly close to GCH while being significantly
above Gauss and significantly below Gauss-2x.

8 Vortex behaviors and secondary steering

An additional output of this study is to use the three turbines
in a row (T2, T3, and T4) during the wake control to study
secondary steering. Recent research has focused on the im-
portant role that counter-rotating vortices created in wake
steering (Howland et al., 2016) play in determining the be-
havior of the steered wake (Vollmer et al., 2016), especially
for arrays of turbines larger than two (Fleming et al., 2018a;
Martínez-Tossas et al., 2019; King et al., 2020). Although
not the focus of the study at the beginning, the field data have
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Figure 11. Wake losses computed per wind direction bin for the North and South Campaigns. The wake losses in panels (a, c) are computed
for the downstream T3 only. In panels (b, d), the total wakes losses of the combined upstream and downstream power for the respective
campaign are computed. In both cases, the references are as before: T1 and T5 for the North Campaign and T1 for the South Campaign.

been analyzed to assess the presence of the effects in the field
data.

One important prediction from this research into vortex-
based explanations of wake steering is a phenomenon called
secondary steering (Fleming et al., 2018a). Secondary steer-
ing, as observed in large-eddy simulations of wake steering,
for example, shows that the wake of a non-steered turbine,
if it is itself in the wake of a turbine performing wake steer-
ing (and thereby generating the counter-rotating vortices that
propagate downstream), will in fact be steered. This means
that the version for FLORIS using the Gaussian wake model
of Bastankhah and Porté-Agel (2014) will underpredict the
change in energy on a third turbine in a row because it will
only account for the change in the wake of the first turbine
and not the change due to secondary steering. The GCH
model, on the other hand, will include this effect.

Figure 12 shows the energy ratios for the third turbine in
the row for the two campaigns, while the change is shown in
Fig. 13.

The first observation is that, based on Fig. 12 and Fig. 13,
the impact on the third turbine is clearly observed. For the
North Campaign, GCH improves the estimate of the increase
in power of the third turbine (T4) by including secondary
steering. The results are less clear for the South Campaign.

The shift in the field-measured nadir of baseline power to
the right implies that secondary steering would not increase
power until wind directions are more northerly than ex-
pected, but that only explains part of the discrepancy. The
very close spacing of T4 and T3, or the complex terrain in
the inflow to the South Campaign, could also be part of the
explanation.

Finally, in a presentation at the Wind Energy Science Con-
ference 2019, Safak Altun showed that wake steering can
produce a change in the wind direction downstream from the
turbine implementing the steering (Altun, 2019). In Fig. 14,
we compare T3’s alignment with respect to the reference
wind direction for the baseline and controlled sets. We ob-
served that it does appear to offset itself for the areas with
highest offsets for T2, suggesting that T3 is observing a
change in wind direction as a result of wake steering.

9 Discussion and conclusions

This article reports the results of a 16-month field campaign
assessing the ability of wake steering to increase the energy
production of turbines within a wind farm. The results show
that, for both the North and South Campaigns, the energy is
increased for the two turbine pairs when steering is applied.
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Figure 12. Energy ratios of the third turbine in the row for the North Campaign (T4) and the South Campaign (T2). The effect of secondary
steering is helpful on the right side of the nadir and harmful otherwise. The mismatch in the baseline nadir of the South Campaign suggests
directional calibration issues.

Figure 13. Change in the energy ratio of the third turbine in the row for the North Campaign (T4) and the South Campaign (T2).
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Figure 14. T3’s alignment with the reference wind direction in
baseline and controlled conditions indicates an apparent change in
wind direction for wind directions with maximal offset.

Further, the gains in the areas of the largest applied offsets
match the predictions of the engineering model FLORIS very
well.

Additionally, the presence of a third turbine in both cam-
paigns allowed for a demonstration of the secondary steering
effect in a commercial farm. We expect this effect to be crit-
ical for the design of wind farm controls for large arrays.
King et al. (2020) show that models without secondary steer-
ing increasingly underpredict power impacts as the number
of turbines in an array increases. Studies such as Bastankhah
and Porté-Agel (2019) demonstrate the important influence
these effects will have on the design of the optimal controller,
as accounting for the interaction of steered wakes leads to
different optimal angles than assumptions of independence
would imply.

Overall, for the North and South Campaigns, we report a
reduction in wake losses of 6.6 % and 6.4 %, which is roughly
half of the static optimal values predicted by the GCH and
FLORIS models. At a high level, for the wind directions most
studied by large-eddy simulation (the regions of largest gain)
performance was nearly optimal, whereas in the outer regions
there was underperformance. There was too much loss in the
“unintended yawing” region for the North Campaign and too
much unproductive yaw activity in the partial wake region
(153–165◦) of the South Campaign.

We find this to be a very exciting result, as we believe
that there are still more opportunities for improved perfor-
mance for the next generation of wind farm controllers to ap-
proach higher percentages of the static optimum. This result
represents the gain in energy produced using a precomputed
lookup table to implement an offset control strategy using the
turbine’s measurement of wind speed and direction. We ap-
plied the offset by offsetting the vane signal provided to the
unmodified yaw control system.

There is an opportunity for continued research into the
robust optimal lookup table (as opposed to the static opti-
mal). Simley et al. (2020), Rott et al. (2018), and Quick et al.
(2017) present opportunities to design lookup tables that per-
form optimally for specific atmospheric characteristics and
turbine yaw control design given uncertainty assumptions in
the wind and controls.

Further, better performance is likely when the yaw-offset
control can be implemented directly rather than by manipu-
lating the vane input of the existing yaw controller. Designs
such as those presented in Kanev (2019) could then be im-
plemented. The underprediction in achieving desired yaw an-
gles in Fig. 5 is likely a consequence of having only indirect
control over yawing. In general, the ability to achieve larger
offsets in desired regions while avoiding them in undesired
regions can only be improved through greater direct control.

Obtaining better knowledge of the inflow conditions will
also improve performance. The consensus control algorithm
of Annoni et al. (2019) provides a means for turbines to co-
operate when estimating the wind flow in real time. This es-
timated consensus wind field can include spatial filtering and
even preview, which could be of much use to the typically
slow yaw controller. Other possibilities include incorporat-
ing the direct measurement of the inflow itself in the controls
(Raach et al., 2019). An additional possibility is through on-
line model estimation (Doekemeijer et al., 2017).

Finally, improved models of complex effects, such as vor-
tex behaviors and curl, provide opportunities for control
strategies to optimally exploit flow control and increased en-
trainment of energy into the wind farm. These improvements
will raise the estimate of gains of wake steering (King et al.,
2020).

Validation in realistic conditions is a hurdle to the broader
adoption of wake steering this article is attempting to ad-
dress. However, it does not address another barrier, which is
the impact on loads from wake steering. There is existing lit-
erature on the topic of how yaw misalignment impacts loads
(see, e.g., Kragh and Hansen, 2013, Damiani et al., 2018,
Schulz et al., 2017, and White et al., 2018); however, the re-
sults are complex. Yaw misalignment impacts various turbine
component loads differently (e.g., it can reduce or increase
blade loads), and the effect can depend on turbine details,
control settings, and conditions. Other studies seek to assess
the impact of loads including the effect of dewaking down-
stream turbines (for example, see Mendez Reyes et al., 2019).
Advances in the general understanding of the overall impact
on turbine lifetime and maintenance needs would be helpful.

Another issue noted in this article is that the model used
for the baseline in all cases is the Gauss model, and we note a
tendency toward underpredicting wake losses even when as-
suming a rather low fixed annual turbulence intensity. A near-
wake model, such as presented in Ishihara and Qian (2018)
or Blondel and Cathelain (2020), could improve the fit of the
closer-spaced turbines without relying on a lower turbulence
setting. For the cases of the third turbine in a row, we pro-
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pose that new turbulence models or deep-array models could
help increase the accuracy of wake losses in the model even
assuming higher turbulence.

Finally, the methods used to assess the performance of
wind farm controllers represent an interesting opportunity
to apply sophisticated statistical methods to assess the true
net gain in energy over the counterfactual case, in which the
wake-steering controller was not run in identical conditions.
As mentioned, the balanced energy ratio method used in this
work is included with the FLORIS repository.

Code availability. The FLORIS software framework used in this
paper can be found at https://doi.org/10.5281/zenodo.3820479
(Mudafort et al., 2020).
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