From Atom to Engine: Understanding Fundamental Effects of Structure on Combustion Using Tandem Experiment and Computation

Nabila A. Huq (speaker), Katherine S. Lockwood, Sadie C. Stutzman, Sheikh Ahmed, Nicole J. Labbe, and Tom D. Foust

August 20th, 2020, 10am – 12pm PT
How do we identify a “good” fuel?

- Make and test it
- Predict its fuel properties
- Understand the fundamentals of its properties
Ignition needs vary with engine mode

Spark Ignition
Priority: **Spark**, not pressure, dictates ignition (knock resistance)

MultiMode Ignition
Priority: **Ease of mode-switching** between SI at high loads and CI at low loads

Compression Ignition
Priority: **Pressure** increase dictates ignition (minimize IDT)

Image sources: Co-Optima, Google Images
Fuel Combustion: Atomistic
Fuel Combustion: Atomistic

Fuel Molecule

- (H abstraction)
- (Oxidation)

alkyl radical
alkyl peroxy radical
internal H abstraction
hydroperoxyalkyl radical
second O_2 addition
internal H abstraction
ketohydroperoxide
chain branching

alkyl hydroperoxide
chain branching

$HO_2 + alkene$

$OH + O$-heterocycle

$ROOH + O_2$

$RO + OH$
Accurate understanding of the structure and chemistry = Accurate ignition models
Goal: Accurately describe fundamental chemistry that drives ignition and combustion

1. Identify products of unimolecular fuel pyrolysis

2. Produce PES’s of unimolecular breakdown and oxidation sites

3. Generate and compare ignition plots

Computed Potentials and Kinetics

Comparison to Experimental Ignition Data

Experimental Breakdown Pathway Identification

Approach

<table>
<thead>
<tr>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
</tbody>
</table>

Ignition Promotion
- OH production
- Chain propagating paths

Ignition Suppression
- HO₂ production
- Chain terminating paths
Computational kinetics of fuels provide a means of anticipating fuel properties related to combustion.

Ignition data estimations can be generated using rate constants typically produced using either:
- Reaction rate theory
- Computational chemistry

Zhang 2012 (model), Sarathy 2014 (model), Stranic 2012 (measured)
The computational piece of work presents a hybrid approach

1. First O_2 addition; assuming lowest E for subsequent QOOH pathways
2. Correct subsequent O_2 additions
3. Identify global trends
4. Connect fundamental reasoning to the global trends

\[
\text{n-butanol} \quad \rightarrow \quad \text{isopropanol} \quad + \quad O_2 \quad \rightarrow
\]

\[
\begin{align*}
\text{n-butanol ROO1} \\
\text{isopropanol ROO1}
\end{align*}
\]
N-butanol PES: ROO1

Lockwood & Stutzman et al. 2020 (in preparation)
<table>
<thead>
<tr>
<th>Isopropanol PES: ROO1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.86</td>
</tr>
<tr>
<td>11.41</td>
</tr>
<tr>
<td>36.15</td>
</tr>
<tr>
<td>38.38</td>
</tr>
<tr>
<td>33.83</td>
</tr>
<tr>
<td>30.0</td>
</tr>
<tr>
<td>20.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Huo et al. 2020 (in preparation)
N-butanol vs. isopropanol

First pass model expected to over-estimate IDTs

Assumed mostly HO2 downstream

Lockwood & Stutzman et al. 2020 (in preparation), Stranic 2012 (measured), Man 2014 (measured)
N-butanol

P = 19 atm

\[\text{P = 1.5 atm} \quad (\varphi = 0.5) \]

\[\text{P = 19 atm} \quad (\varphi = 0.5) \]

- Experimental
- Sarathy
- New

Lockwood & Stutzman et al. 2020 (in preparation); Sarathy 2014 (model), Stranic 2012 (measured)
N-propanol

$P = 16$ atm

\[\text{OH} \]

$\phi = 0.5$

$\phi = 1.0$

New

Experimental

Sarathy

Huq et al. 2020 (in preparation), Sarathy 2014 (model), Noorani 2010 (measured), Man 2014 (measured)
Changes in chain length

Huq et al. 2020 (in preparation), Sarathy 2014 (model), Man 2014 (measured)
Ongoing and Upcoming Work

- Completing downstream QOOH calculations to improve rate accuracy
- Evaluating full subset of small alcohols of varied structure
- Identify ignition trends and identify structural/radical origins
- Compare our computations to experimental AFIDA data
- Validate trends against measured properties of biobased fuel candidate molecules
Thank you also to...

Jon Luecke (NREL)
Stephen M. Tifft (NREL)
Seonah Kim (NREL)
Peter St. John (NREL)
Ken Reardon (CSU)
Saeid Aghahossein Shirazi (CSU)
Bill Pitz (LLNL)
Matt McNenly (LLNL)

Katherine S. Lockwood
CU Boulder

Sadie C. Stutzman
CU Boulder

Sheikh F. Ahmed
NREL

PI: Nicole J. Labbe
CU Boulder

PI: Thomas D. Foust
NREL

• Co-Optima through Program Award Number DE-EE0007983 and an Alliance Partner University Program contract UGA-0-41026-137 under prime Contract No. DE-AC36-08GO28308.
• K.S. Lockwood was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
• This work utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University.

Supported by the DOE Bioenergy Technology Office under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.

NREL/PR-5100-77595
References

• Sarathy propanol model- S.M. Sarathy et al., Alcohol combustion chemistry, Progress in Energy and Combustion Science 44 (2014) 40-402
• Sarathy butanol model- S.M. Sarathy et al., A comprehensive chemical kinetic combustion model for the four butanol isomers, Combustion and Flame 159 (2012) 2028-2055
• C.K. Law model propanol model- X. Man et al., An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures, Combustion and Flame 161 (2014) 644-656

• Expt. Data of slide 1: X. Man et al., An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures, Combustion and Flame 161 (2014) 644-656
• Expt. Data of slide 3: X. Man et al., An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures, Combustion and Flame 161 (2014) 644-656
• Expt Data of slide 4: I Stranic et al., Shock tube measurements of ignition delay times for the butanol isomers, Combustion and Flame 159 (2012) 516-527