NREL Science Drives Innovation

Renewable Power
- Solar
- Wind
- Water
- Geothermal

Sustainable Transportation
- Bioenergy
- Vehicle Technologies
- Hydrogen

Energy Efficiency
- Buildings
- Advanced Manufacturing
- Government Energy Management

Energy Systems Integration
- Grid Integration
- Hybrid Systems
The National Solar Radiation Database (NSRDB)
The Wind Integration National Dataset (WIND Toolkit)

2008-09-03 07:00:00

NREL
Artificial Intelligence (AI) Today

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan</td>
</tr>
<tr>
<td>2</td>
<td>Feb</td>
</tr>
<tr>
<td>3</td>
<td>Mar</td>
</tr>
<tr>
<td>4</td>
<td>Apr</td>
</tr>
<tr>
<td>5</td>
<td>May</td>
</tr>
<tr>
<td>6</td>
<td>Jun</td>
</tr>
<tr>
<td>7</td>
<td>Jul</td>
</tr>
<tr>
<td>8</td>
<td>Aug</td>
</tr>
<tr>
<td>9</td>
<td>Sep</td>
</tr>
<tr>
<td>10</td>
<td>Oct</td>
</tr>
<tr>
<td>11</td>
<td>Nov</td>
</tr>
<tr>
<td>12</td>
<td>Dec</td>
</tr>
<tr>
<td></td>
<td>January</td>
</tr>
<tr>
<td></td>
<td>February</td>
</tr>
<tr>
<td></td>
<td>Marrruary</td>
</tr>
<tr>
<td></td>
<td>Aprruary</td>
</tr>
<tr>
<td></td>
<td>Mayruary</td>
</tr>
<tr>
<td></td>
<td>Junruary</td>
</tr>
<tr>
<td></td>
<td>Julruary</td>
</tr>
<tr>
<td></td>
<td>Augruary</td>
</tr>
<tr>
<td></td>
<td>Sepruary</td>
</tr>
<tr>
<td></td>
<td>Octruary</td>
</tr>
<tr>
<td></td>
<td>Novruary</td>
</tr>
<tr>
<td></td>
<td>Decruary</td>
</tr>
</tbody>
</table>

Where are we?
Google DeepMind’s AlphaGo

Game of Go:
361 possible moves
3^{361} unique board states

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.youtube.com/watch?v=WXuK6gekU1Y
“Autobidder provides independent power producers ... the ability to autonomously monetize battery assets”

https://electrek.co/2020/06/15/tesla-officially-approved-electric-utility-uk-why/
https://electrek.co/2020/05/03/tesla-autobidder-new-product-electric-utility/
Limitations of Mechanistic Cloud Models:
Using Theory to Guide Learning: Physics-Guided Neural Networks (phygnn)

\[Loss = \lambda_0 \text{Loss}(\hat{Y}, Y) + \lambda_p \text{Loss}_p(\hat{Y}) \]

Open source: https://github.com/NREL/phygnn

Example neural network loss surface
phygnn: reduces error, improves data product
What about in the field?
Geothermal Operational Optimization with Machine Learning

Partnership between:

- NREL
- Upflow
- U.S. Department of Energy
- Tuwharetoa mai Kawerau ki te Tai
- ORMAT
Step 1: Build a Digital Twin
Step 2: Hindcast Validation

Steam Delivery

Power Generation
Step 3: Reinforcement Learning

Agent(s) -> Action -> Environment -> Reward + Observation
Reinforcement Learning Experiment #1:

Agent controls:
- Line Pressures
- Wells
Lessons Learned

• Centering the reward at zero is an example of bad reward shaping (at least for this environment)

• The agent *learned how to terminate the episode quickly* to get the least amount of negative reward
Lessons Learned

• Centering the reward at zero is an example of bad reward shaping (at least for this environment)

• The agent *learned how to terminate the episode quickly* to get the least amount of negative reward

• In other words, the negative reward shaping *affected the agent’s will to live!*
Reinforcement Learning Experiment #2

Agent controls:
- Line Pressures
- Wells

Improved:
- Rewards
- Termination conditions
Agent Exploration in Action!

Graph 1: Normalized Power vs Time

Graph 2: Reward vs Training Steps
Agent Exploration in Action!
Agent Exploration in Action!
Thank you

Solar Data Team:
Mike Bannister, Aron Habte, Dylan Hettinger, Galen Maclaurin, Michael Rossol, Manajit Sengupta, and Yu Xie

GOOML Team:
Andy Blair, Jay Huggins, Ross Ring-Jarvi, Michael Rossol, Paul Siratovich, Nicole Taverna, Jon Weers

www.nrel.gov
Grant.Buster@NREL.gov
https://www.linkedin.com/in/grant-buster/

NREL/PR-6A20-77593

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Geothermal Technology Office Award Number DE-EE0008766 and the Solar Energy Technologies Office (Systems Integration Subprogram) Contract Number 36598. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.