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ABSTRACT

We assess the performance of a fleet of 411 utility-scale (i.e., >5 MWAC and ground-mounted) photovoltaic (PV) projects totaling 21.1
GWDC (16.3 GWAC) of capacity, which achieved commercial operations in the United States from 2007 to 2016. This fleet of projects con-
tributed more than 50% of all solar electricity generated in the United States in 2017. Using detailed information on individual project char-
acteristics, in conjunction with modeled irradiance data, we assess the extent to which actual first-year performance has lived up to both
modeled and stated expectations. We then analyze system-level performance degradation in subsequent years by employing a “fixed effects”
regression model to statistically isolate the impact of age on system performance. We find that this fleet of utility-scale PV projects has gener-
ally lived up to ex ante expectations for first-year performance but that subsequent system-level degradation—found to be �1.3%/year
(60.2%)—has, on average, been worse than both ex ante expectations (commonly �0.5%/year) and results from past studies (ranging from
�0.8%/year to �1.0%/year). We emphasize that �1.3%/year is a system-level estimate that captures more than just module degradation (e.g.,
including soiling, balance of plant degradation, and downtime for maintenance and/or other events). A side analysis of a variety of project
characteristics suggests that system-level degradation rates tend to be of lower magnitude among newer projects and larger projects and at
sites with lower long-term average temperatures.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0004710

I. INTRODUCTION

The deployment of photovoltaic (PV) modules in large, utility-
scale configurations is a relatively recent phenomenon. In the United
States, the first two utility-scale PV projects—defined here to include
any ground-mounted PV plant larger than 5 MWAC—achieved com-
mercial operations in late 2007, followed by another plant in 2008 and
three more in 2009. Thus, at the time of writing (in late 2019), the six
oldest utility-scale PV projects in the U.S. fleet have only nine to eleven
full calendar years of operating history—not a long track record for a
technology expected to have a useful life of 30 years or longer.
Moreover, the majority of the U.S. fleet has significantly less opera-
tional experience: among all utility-scale PV projects built in the U.S.
from 2007 to 2018, the median, mean, and capacity-weighted average
commercial operation dates (CODs) all fall within the year 2016,
implying just a few years of operating history.

Though relatively young, the market for utility-scale PV in the
United States has grown rapidly in recent years. From the humble
beginnings described above, with just six projects (totaling 97 MWDC)
built from 2007 to 2009, utility-scale PV became the largest sector (in
terms of installed capacity) of the overall solar market by 2012 and
remained so through 2018, with more than 33 GWDC operating in the
United States at the end of that year. Based on data from the Energy
Information Administration (EIA), more than half of all solar electric-
ity generated in the United States in 2018 (i.e., across all three
sectors—residential, commercial and industrial, and utility-scale—and
including concentrating solar thermal power) came from PV plants
with capacities greater than 5 MWAC (U.S. Energy Information
Administration, 2019a, 2019b). Analyst projections suggest that
utility-scale’s market dominance will continue for at least another five
years (Bolinger et al., 2019).
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With such a young fleet of utility-scale PV projects supplying the
majority of solar generation in the United States and with the utility-
scale sector projected to continue to dominate the market in the future,
it is crucial to understand how these utility-scale projects have per-
formed to date. Even at today’s much-reduced costs (Bolinger et al.,
2019), each utility-scale PV project still requires millions of dollars of
investment capital. As both the price and duration of power purchase
agreements (PPAs) continue to decline, more of the return on that
investment capital will shift into later, often post-PPA, years (Norton
Rose Fulbright, 2019), thereby increasing the importance of predict-
able performance and solid long-term reliability. In addition, the
planned phase-down of the federal investment tax credit (ITC) from
30% to 10% over the next few years will leave a greater share of inves-
tor capital at risk, further elevating the importance of performance
and reliability. In order to appropriately price their capital, investors in
utility-scale PV projects need to understand the degree of long-term
performance risk that they face, while insurers and other financial
intermediaries must have an even better understanding of the same
risks in order to accurately price the “solar revenue puts” and other
hedge-like products that they offer investors (Clarion Energy, 2019;
kWh Analytics, 2019).

Yet, to date, most analyses of PV project performance have
occurred among smaller, distributed PV systems—understandable
given the much longer operating history of that market segment.
Moreover, many of these studies have tended to focus primarily or
exclusively on module-level performance and degradation, ignoring
the potentially significant effect of “balance of plant” or “balance of
system” components on overall system-level performance. Finally,
some of these past studies have been conducted by specific module
manufacturers, comparing their own modules to other types or by cer-
tain project owners looking at their own portfolio of projects, rather
than taking a broader fleet-wide view. In light of this history and the
increasing importance of the utility-scale PV sector in the United
States, there is a clear need for more analysis of the performance of the
entire fleet of large- or utility-scale PV projects operating under real-
world conditions.

Through a variety of approaches, this paper assesses the system-
level performance of a fleet of 411 utility-scale (i.e., >5 MWAC and
ground-mounted) PV projects totaling 21.1 GWDC (16.3 GWAC) of
capacity, which achieved commercial operations in the United States
from 2007 to 2016 and, thus, have been operating for at least two
(2017 and 2018) and as many as eleven (2008–2018) full calendar
years. Using detailed information on individual project characteristics,
in conjunction with modeled irradiance data, we assess the extent to
which actual first-year performance has lived up to both modeled and
stated expectations. We then analyze system-level degradation in
energy output in subsequent years, by employing a fixed effects regres-
sion model to statistically isolate the impact of age on system perfor-
mance. We find that this fleet of utility-scale PV projects has generally
lived up to ex ante expectations for initial performance but that
system-level degradation has, on average, been worse than both ex
ante expectations and results from past degradation studies.

II. SYSTEM-LEVEL VS MODULE-LEVEL ANALYSIS

Before proceeding, it is worth emphasizing that all the data and
analysis presented herein are at the system-level, rather than at the
module-level. This distinction is important, particularly with respect

to the analysis of performance degradation, where much of the existing
research and literature have focused on module-level degradation.
Moreover, as will be demonstrated later in Sec. VI, PV investors, devel-
opers, and power purchasers often seemingly confuse the two, assum-
ing module-level performance degradation rates in instances where
system-level degradation rates of greater magnitude would instead be
more appropriate (e.g., within power purchase agreements). Thus, one
contribution of this article is to draw this distinction more clearly, in
order to inform the use of more-realistic inputs to financial models.

Module-level degradation stems from a wide array of degradation
pathways, including but not limited to delamination, backsheet adhe-
sion loss, junction box failure, frame breakage, cell cracks, potential
induced degradation, high ambient and cell temperature, and cell hot
spots (K€ontges et al., 2014; Jordan et al., 2016b; Deceglie et al., 2019).
Different module types (e.g., x-Si vs CdTe vs copper indium gallium
selenide (CIGS)) may experience a higher or lower prevalence of cer-
tain pathways (Deceglie et al., 2019; Jordan et al., 2016b; Kraus et al.,
2019), as might modules of similar type made by different manufac-
turers (Anderson et al., 2013; Hasselbrink et al., 2013). This combina-
tion of multiple possible degradation pathways that manifest
differently in different module types and among different manufac-
turers has led to module-level degradation being widely studied and
dominating much of the extant literature on PV performance degrada-
tion (relative to system-level degradation). For example, Jordan et al.
(2016b) conducted a meta-analysis of more than 11 000 degradation
rates reported in almost 200 studies across 40 different countries,
and—at least among the 1537 reported rates for x-Si technology that
the authors considered to be of “high quality”—75% were module-
level, compared to just 25% that were system-level. Though there is, of
course, a range, a general rule of thumb is that module-level degrada-
tion is typically on the order of �0.5%/year (Jordan et al., 2016b), and
module manufacturers will often warrant that the output of their mod-
ules will not decline by more than�0.5%/year (which may be one rea-
son why financial models often assume �0.5%/year degradation in
output, even though a system-level degradation rate—likely of greater
magnitude—would be more appropriate).

Though critically important to study (given that modules are the
backbone of PV power plants), module-level degradation is just one
component of system-level degradation, which also includes any and
all other degradation pathways that could erode the output of the
entire system over time. For example, in addition to module-level deg-
radation, system-level degradation might stem from problems with
the balance of system—including trackers, inverters, wiring, fuses, and
breakers—or from the growth of vegetation that contributes to
increased shading over time. It might also reflect plant curtailment
imposed by grid operators due to a supply/demand imbalance and/or
transmission limitations (though, as described later, we take steps to
control for curtailment within our analysis).

To illustrate this critical difference between module- and system-
level degradation, Fig. 1 presents a fabricated, stylized buildup of
system-level degradation from a number of individual system compo-
nents experiencing some combination of efficiency loss, discrete out-
ages, and/or other degradation-related events. Starting at the top of the
figure, the dark blue shaded area represents typical module degrada-
tion of �0.5%/year. Next, the lighter blue shading represents inverter
downtime, which cuts output from part or perhaps even the entire
plant (the latter illustrated by the week-long, 100% reduction in output
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shown by the light blue vertical line in year three). Next, in gray, is sys-
tem curtailment, punctuated by two events that reduced system output
to 70%–80% of normal for some period (vertical gray bars). Trackers
might also occasionally get out-of-sync or stuck in sub-optimal posi-
tions, perhaps reducing output to �80% of optimal until they can be
fixed (pink area and vertical bar). In orange, fuses may fail, temporar-
ily reducing the output of half of the system. Finally, in red, a breaker
or transformer may go down, cutting the entire output of the plant for
a week or more.

Though merely illustrative, and not intended to be exhaustive,
the system-level degradation pathways shown in Fig. 1, along with the
frequency and magnitude of each, are nevertheless loosely based on
documented problems with PV systems that were funded under the
U.S. Treasury’s Section 1603 cash payment program, as analyzed and
reported in Jordan et al. (2020). As such, they provide a useful repre-
sentation of the potential difference between module-level and system-
level performance degradation over time—and also demonstrate how
a typical module degradation rate of �0.5%/year can potentially grow
to more than�1.0%/year once the entire system is considered.

Indeed, the comparatively few studies that have examined
system-level rather than (or in addition to) module-level degradation
have typically found degradation rates that exceed the commonly cited
�0.5%/year for module-level degradation. For example, the compen-
dium of degradation rates assembled by Jordan et al. (2016b) found
that x-Si module technology—which, as described later, is used in 80%
of our sample of utility-scale projects in the United States (Table II)—
exhibited an average degradation rate of �0.8%/year to �0.9%/year
(with a median of �0.5%/year to �0.6%/year). Module-level studies

generally fell at the lower/milder end of that range, while system-level
studies were generally at the upper/worse end—whether due to addi-
tional degradation in the balance of plant or the knock-on effect of
individual module degradation impacting entire strings (Jordan et al.,
2016b). More recently, Deceglie et al. (2019) analyzed more than 500
PV systems in the United States and found an average system-level
degradation rate of�0.8% among the non-residential systems (includ-
ing some utility-scale projects) in their sample, while degradation
among the residential sub-sample was worse, at �1.3%/year.
However, among the non-residential systems employing x-Si modules
(again, 80% of the projects in our sample use Si modules), the average
rate was�1.0%/year (Deceglie et al., 2019).

While module-level degradation is clearly important, it is overall
system-level performance degradation that ultimately affects the finan-
cial performance of PV plants. Module-level degradation is, of course,
a significant component of system-level degradation, but it does not
tell the whole story. As we will demonstrate, investors who assume
that the output of PV plants within their portfolio will degrade at rates
that are based on module-level studies are potentially in for an
unpleasant surprise as time passes.

III. DATA SAMPLE

The sample of utility-scale PV plants that we analyze consists of
411 plants totaling 21.1 GWDC (16.3 GWAC) installed across 28 states
from 2007 to 2016 (Tables I and II, Fig. 2). In aggregate, these plants
contributed>50% of all solar electricity generated in the United States
in 2017 (across all sectors—residential, commercial, and utility-scale—
and including concentrating solar thermal power) and 40% of all solar
electricity generated in 2018. They collectively offer 1536 project-years
of operational experience, more than a third of which are in California
(Table I). Operational history ranges from 2 to 11 full calendar years,
with an average of 3.7 years—once again indicative of the relative
youth of the utility-scale PV sector (Table II).

A histogram of projects within our sample by capacity (Fig. 2)
shows the majority falling into the 20–50 MWDC capacity bin. Nearly
85% of projects are 100 MWDC or less, but a number of projects fea-
ture several hundred MWDC of capacity, with the largest being nearly
760 MWDC.

We normalize the performance of each individual plant in the
sample by calculating its “capacity factor,” which expresses the quan-
tity of electricity generated by each plant over a certain period relative
to the quantity that could have been generated if that plant were oper-
ating at full capacity over that entire period. Due to the seasonal nature
of PV generation, we only calculate capacity factors over full-year peri-
ods. Furthermore, due to certain data quality issues—i.e., the fact that
monthly generation profiles for some plants differ across different
sources, even though calendar-year totals match—we limit the full-
year periods over which we calculate capacity factors to calendar years.
Hence, the capacity factor (CF) equation is

CFy ¼
MWhgenerated in calendar year y

MWDC of capacity in calendar year y � number of hours in calendar year yð Þ : (1)

In order to calculate empirical capacity factors (and to simulate “ideal” capacity factors—i.e., controlling for weather and other variables), we com-
pile the following data for each plant in our sample:

FIG. 1. Illustrative buildup from module- to system-level degradation.
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• Key plant characteristics are used to calculate actual historical,
and to simulate ideal, capacity factors from 2008 to 2018 and
include module type (Si vs thin-film, primarily CdTe), module
manufacturer, mount type (fixed-tilt, single-axis tracking, or
dual-axis tracking), tilt (for fixed-tilt mounts), azimuth,

coordinates (latitude and longitude), commercial operation date,
capacity (MWDC and MWAC), and DC:AC ratio. These system-
level characteristics are sourced from Bolinger et al. (2019) and,
where possible, have been confirmed with project owners and/or
visually verified through satellite imagery. Table II summarizes

TABLE I. Geographic descriptive statistics of the sample.

States
No. of
Projects

No. of
MWDC

No. of
MWAC

MWAC/project
No. of

project-years

Years per project % of the US sample

Average Median Min Avg Max Projects MWAC Project-Years

CA 150 10 133 7958 53 20 539 2 3.6 9 36% 49% 35%
AZ 32 1915 1431 45 19 151 2 4.7 7 8% 9% 10%
NM 25 579 462 18 10 118 2 4.7 8 6% 3% 8%
NJ 28 297 243 9 8 113 2 4.0 7 7% 1% 7%
NC 31 1174 883 28 20 94 2 3.0 6 8% 5% 6%
NV 17 1841 1383 81 48 79 2 4.6 11 4% 8% 5%
TX 14 716 569 41 22 64 2 4.6 8 3% 3% 4%
GA 23 1240 953 41 30 61 2 2.7 5 6% 6% 4%
CO 12 420 338 28 16 50 2 4.2 11 3% 2% 3%
FL 8 436 283 35 19 41 2 5.1 9 2% 2% 3%
IN 11 116 87 8 9 40 2 3.6 5 3% 1% 3%
MD 7 109 84 12 13 27 2 3.9 6 2% 1% 2%
UT 12 1049 810 68 80 26 2 2.2 3 3% 5% 2%
MN 9 299 208 23 7 18 2 2.0 2 2% 1% 1%
IL 2 33 28 14 14 15 6 7.5 9 0% 0% 1%
OH 2 22 18 9 9 15 7 7.5 8 0% 0% 1%
OR 7 83 63 9 10 14 2 2.0 2 2% 0% 1%
TN 3 50 39 13 16 14 4 4.7 6 1% 0% 1%
DE 2 26 22 11 11 13 6 6.5 7 0% 0% 1%
MA 3 44 33 11 12 8 2 2.7 4 1% 0% 1%
VA 4 180 136 34 20 8 2 2.0 2 1% 1% 1%
NY 1 38 32 32 32 7 7 7.0 7 0% 0% 0%
PA 1 11 10 10 10 6 6 6.0 6 0% 0% 0%
SC 2 24 17 8 8 4 2 2.0 2 0% 0% 0%
ID 2 163 120 60 60 4 2 2.0 2 0% 1% 0%
AR 1 17 13 13 13 3 3 3.0 3 0% 0% 0%
AL 1 100 75 75 75 2 2 2.0 2 0% 0% 0%
KY 1 14 10 10 10 2 2 2.0 2 0% 0% 0%
Total 411 21 130 16 308 40 20 1536 2 3.73 11 100% 100% 100%

TABLE II. Temporal descriptive statistics of the sample.

COD year: 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total

No. of Projects 2 1 3 7 31 36 49 50 83 149 411
No. of MWDC 22 12 63 172 532 1133 2249 3564 3596 9785 21 130
No. of MWAC 19 10 54 144 448 886 1761 2726 2764 7496 16 308
Average DC:AC ratio 1.18 1.21 1.16 1.19 1.19 1.28 1.28 1.31 1.30 1.31 1.30
Average MWAC/project 9 10 18 21 14 25 36 55 33 50 40
% Projects with tracking 100% 0% 67% 14% 52% 50% 57% 62% 66% 74% 64%
% Projects with Si modules 100% 0% 67% 29% 74% 83% 82% 74% 76% 88% 80%
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some of these characteristics across the sample over time. All
projects in our sample use monofacial modules (no bifacial), and
as of the end of 2018, only two had been paired with battery stor-
age (with batteries added in early 2018 in both instances, thus
minimizing the possibility that battery degradation could have a
meaningful influence on overall system-level degradation).

• Net generation data for each project are used to calculate actual
historical capacity factors and are compiled from a variety of
sources, each offering different temporal resolution and plant
coverage: Form EIA-923 (monthly), Federal Energy Regulatory
Commission (FERC) Form 1 (annual), FERC Electric Quarterly
Reports (quarterly, monthly, daily, hourly, or even sub-hourly,
depending on the filer), and the California Energy Commission
(annual). We generally default to using Form EIA-923 data—due
to its nationwide coverage of all plants >1 MWAC—but roll up
the reported monthly generation data to full calendar years, in
light of the problems described earlier with the monthly data in
some cases [a finding that others have commented upon as well
(DNV GL, 2019)]. We do, however, crosscheck the EIA data
against the other sources listed above and, as necessary, substitute
calendar-year data from one of those other sources in instances
where the EIA calendar-year net generation data appear suspect.

• Irradiance data for each site location (based on project coordi-
nates) are used to simulate the ideal capacity factor. Data for the
years 2008–2018 come from the National Solar Radiation
Database (NSRDB), which uses National Renewable Energy
Laboratory’s (NREL) Physical Solar Model to provide solar radia-
tion and meteorological data at 4-km horizontal resolution across
30-min intervals (NREL, 2019a).

• Hourly solar curtailment data are sourced from the California
Independent System Operator (CAISO) and the Electric
Reliability Council of Texas (ERCOT), are described in Bolinger
et al. (2019), and are used to gross up the historical capacity fac-
tors of plants that have been curtailed in California and Texas.
The other five independent system operators (ISOs) across the

United States do not yet report solar curtailment data (though all
seven ISOs do report data on wind power curtailment, perhaps
suggesting that solar curtailment has not yet risen to meaningful
levels in these other ISOs). There are also a number of plants in
the sample, that are located outside of ISO regions—we do not
have curtailment data for these plants, either. Thus, other than in
California and Texas, where we have data showing that curtail-
ment of solar plants has occurred, we assume no curtailment.
The implications of this simplifying assumption are likely mini-
mal, given that—as shown later—whether or not we account for
curtailment in California and Texas makes little difference in the
implied sample-wide system degradation rate. Furthermore, even
if it occurs, solar curtailment in other markets outside of
California and Texas is likely to be relatively minor, given only
modest market penetrations.

IV. ASSESSMENT OF FIRST-YEAR SYSTEM-LEVEL
PERFORMANCE

Based on the data described in Sec. III, Fig. 3 plots first-year
capacity factors from projects in our sample against two different rep-
resentations of expected capacity factors: one simulated and the other
empirical. The graph on the left [Fig. 3(a)] compares actual first-year
capacity factors to simulated ideal capacity factors. Because, at least for
this purpose, we are interested in comparing actual to expected capac-
ity factors in a typical year, we normalize both the actual and modeled
data by correcting for interannual variance in solar irradiance. This
involves dividing the actual first-year capacity factor for each plant by
a “solar index,” which is simply a ratio of the irradiance at that site in
that particular year relative to the long-term average irradiance at the
same site from 2007 to 2018 [irradiance values for each site over time
come from NSRDB (NREL, 2019a)]. Similarly, for the modeled capac-
ity factors, we use “typical meteorological year” (TMY) irradiance data
rather than data for a specific year.

FIG. 2. Histogram of individual project capacity within the sample.
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This normalized modeling approach allows us to approximate ex
ante capacity factor expectations for almost our entire sample—and
the correlation is strong (93%). Though clearly some projects exceed
while others fall short of the unity line, in aggregate, the actual first-
year capacity factors “underperform” the TMY-based simulations by
0.6% (median), 1.2% (simple mean), or 1.3% (capacity-weighted aver-
age), while 89% of projects generated more than 90% of their simu-
lated TMY estimate in their first full calendar year of operations. This
degree of shortfall is comparable to other estimates. For example,
among a sample of 39 utility-scale projects totaling 1.2GW, DNV GL
(2019) found that actual performance lagged preconstruction esti-
mates by 3.1%, with this performance gap declining to 1.7% if they dis-
carded the first full year (rather than just the first full month) of
production. Meanwhile, in successive analyses of PV systems sup-
ported by the Section 1603 cash payment program in the United
States, Jordan and Kurtz (2015) found that about 90% of systems with-
out reported issues generated more than 90% of their preconstruction
estimates, while Jordan et al. (2020) found that 80%–90% of an
expanded sample performed within 10% of expected output. Some of
this “underperformance” could simply reflect the þ3% to þ5% global
horizontal irradiance (GHI) bias in NSRDB identified by Hansen et al.
(2015).

The graph on the right [Fig. 3(b)] looks at a smaller sub-sample
of projects for which we have collected ex ante capacity factor expecta-
tions as published in power purchase agreements. The correlation in
this case is significantly weaker (53%), but the errors seem to be mostly
random, though slightly skewed toward actual first-year capacity
factors outperforming stated expectations. Indeed, for this sub-sample
of 77 projects totaling 8.0 GWDC, actual first-year performance
outperforms the stated expectations by 3.4% (median), 5.8% (capacity-
weighted average), or 6.3% (simple mean), while 88% of projects
generated more than 90% of their stated expectations in their first full
calendar year of operations. It is not particularly surprising to see

actual first-year capacity factors outperform expectations as stated in
PPAs, given that these stated expectations typically serve as the bench-
mark for contractual performance guarantees, presumably causing
developers to err on the conservative side when establishing them. On
the other hand, most PPAs also penalize significant over-delivery by
setting a lower price for each MWh delivered beyond a certain thresh-
old (e.g., over 120% of expected annual generation), which serves to
limit the degree of conservatism in setting performance expectations.

Together, Figs. 3(a) and 3(b) demonstrate that, across our sam-
ple, actual first-year capacity factors—which range widely from 11% to
28% (in DC terms)—have generally matched expectations fairly well
(at least in the case of the TMY simulations) and without significant
bias (in both cases).

V. ASSESSMENT OF SYSTEM-LEVEL PERFORMANCE
DEGRADATION

Having established that first-year performance across our sample
has generally not strayed too far from expectations, we now turn to
assessing system-level degradation in subsequent years. Following a
description of our approach and methodology, we present the result-
ing average sample-wide system degradation rate and findings from a
side-analysis of potential degradation drivers.

A. Degradation methodology

As noted earlier, concerns over the quality of monthly generation
data (i.e., different data sources show different monthly generation
profiles for the same plant, even though their calendar year totals
match) have forced us to resort to analyzing annual generation data,
by calendar year. This, in turn, limits the approaches available to mea-
sure system-level degradation. For example, with annual data, there
are simply not enough data points to successfully employ a year-over-
year approach, as described by Anderson et al. (2013), Hasselbrink

FIG. 3. Normalized first-year capacity factor vs (a) modeled and (b) stated expectations.
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et al. (2013), and Jordan et al. (2016a) and (2018), and which forms
the basis for NREL’s open-source RdTools platform (NREL, 2019d).

Instead, we adopt a regression-based approach using a fixed
effects model. Fixed effects regression is well suited to the analysis of
panel data like ours, which consist of both cross-sectional (i.e., varia-
tion in capacity factor “across” plants in each time period) and time
series (i.e., variation in the capacity factor “within” each plant over
time) data. Because our interest here is solely in the time series or the
“within-plant” variation, we need to control for all the cross-sectional
or “across-plant” variation. We do this, in part, by using what we
know about each plant’s (and site’s) characteristics to model the ideal
capacity factor for each plant in each time period and include it as an
explanatory variable [CFi,t

ideal in Eq. (2)]. Even with the inclusion of
CFi,t

ideal in Eq. (2), however, there most likely remains some unob-
served heterogeneity across plants and/or plant sites that we need to
control for if we are to isolate the impact of age on performance. For
this reason—i.e., the likelihood of omitted variables that are correlated
with one or more of the explanatory variables included in the equa-
tion—ordinary least squares (OLS) regression will likely suffer from
endogeneity problems in the form of omitted variable bias.

Fortunately, fixed effects regression eliminates omitted variable
bias, via the transformation illustrated in Eqs. (2)–(4). To our knowl-
edge, fixed effects models have not previously been employed in prior
studies of PV performance degradation but have been used in several
recent studies of the long-term performance of wind power plants in
various countries (Hamilton et al., 2020; Germer and Kleidon, 2019;
Olauson et al., 2017; Staffell and Green, 2014; Hughes, 2012). Using
annual data, this approach regresses actual historical capacity factors
on ideal capacity factors, along with fixed effects for each plant, Sf, and
for each whole year of plant age, At, according to the following model:

CFf ;t
hist ¼ bCFf ;t

ideal þ Sf þ At þ �f ;t ; (2)

where CFf,t
hist is the historical capacity factor of plant f at age t (t in

whole calendar years), b is the coefficient of performance, CFf,t
ideal is

the ideal capacity factor of plant f at age t, Sf is the site-specific fixed
effects for plant f, At is the age fixed effects at age t, and �f ;t is the ran-
dom error for plant f at age t. Equation (2) is known as a fixed effects
regression because it holds constant or “fixes” the average “effects” of
each variable. We can illustrate this through two transformations of
Eq. (2). First, Eq. (3) calculates the average over time for each variable
in Eq. (2). Because Sf does not vary over time in Eq. (2), the average of
Sf over time in Eq. (3) is simply equal to Sf,

CFf hist ¼ bCFf ideal þ Sf þ A þ �f : (3)

Subtracting Eq. (3) from Eq. (2) yields the following equation:

CFf ;t
hist � CFf hist ¼ b CFf ;t

ideal � CFf ideal
� �

þ Sf � Sfð Þ

þ At � A
� �

þ �f ;t � �fð Þ: (4)

In Eq. (4), the site-specific fixed effects (Sf) cancel, dropping out
of the regression and leaving only those explanatory variables that
vary with time. In other words, by subtracting the means, we limit all
variations to the within-plant variation and eliminate all unobservable
across-plant variations—a key source of omitted variable bias. As
such, Eq. (4) can now be solved without violating OLS constraints.

In populating the variables of Eq. (2) (i.e., the un-transformed
version of the fixed effects regression, which is the version we imple-
ment), we calculate historical capacity factors (CFf,t

hist) by dividing the
annual net generation data for each plant in each calendar year by the
product of that plant’s capacity (in DC terms) and the number of
hours in each calendar year, per Eq. (1). However, for projects located
in Texas and California, we first gross up the annual net generation
data as necessary to account for curtailment (in an attempt to control
for curtailment, rather than allowing it to contribute to our estimate of
system degradation). In Texas, this adjustment is straightforward, as
we have hourly plant-level curtailment data over the full operating
history of each plant and so know exactly which plants have been cur-
tailed, when, and by how much. In California, however, we only have
system-wide (as opposed to plant-specific) solar curtailment data and
only back through 2015, requiring the development of a method
to extrapolate system-wide curtailment back further in time and to
allocate it across individual plants.

We extrapolate curtailment to years earlier than 2015 by applying
2015’s ratio between solar curtailment and installed solar capacity to
installed solar capacity in those earlier years. Given that CAISO solar
curtailment in 2015 was already modest (just 0.7%), this simple
extrapolation yields low levels of curtailment prior to 2015 (and almost
none prior to 2012). The first step in the plant-level allocation process
is to associate each utility-scale PV plant in CAISO with a nearby pric-
ing node for which we have historical locational marginal prices
(LMPs) on an hourly basis. We then use an iterative process to allocate
known system-wide solar curtailment across those solar plants facing
the lowest LMPs, on the theory that these lowest-value projects will be
the first to be curtailed. This process begins by focusing on projects
that face negative LMPs; if those projects are unable to absorb the full
amount of known system-wide curtailment, we then focus on projects
facing very low positive LMPs (e.g., $0–$5/MWh) to allocate the
remainder, progressively ratcheting up the LMP threshold as needed
until all system-wide curtailment has been allocated to specific
projects.

Finally, we establish the age, t, of each project in each calendar
year by defining the first full calendar year following the project’s com-
mercial operation date (COD) as “age one.” This effectively means
that we are disregarding anywhere from zero to twelve months of
initial operations (a period that we refer to as “age zero”), depending
on whether the project achieved commercial operations late or early in
the calendar year, respectively. On average, projects within our sample
achieved commercial operations in September, which suggests that we
exclude 3–4months of age zero data on average. Although discarding
up to a year of a project’s initial output is not ideal—particularly given
the short track record of many of the projects in our sample—this data
sacrifice is necessary due to our focus on calendar year data, which
itself stems from inconsistencies in the quality of monthly generation
data for some projects, as noted earlier. In addition, excluding this age
zero period provides somewhat of a buffer against other potential data
quality problems (e.g., the COD actually occurring a bit later than
reported) and normal “teething issues” (e.g., power quality or inter-
connection issues that typically get ironed out in the first few months
following the COD) inadvertently biasing our analysis.

Whereas our historical capacity factors are empirical, our ideal
capacity factors [CFf,t

ideal in Eq. (2)] are simulated and control for
both the interannual variation in the solar resource (at each plant’s
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coordinates) and known plant-specific characteristics (e.g., capacity,
tracking vs fixed-tilt mount, tilt, azimuth, and DC:AC ratio).
Specifically, drawing upon our extensive database of project character-
istics described earlier, in conjunction with site-specific irradiance data
from the NSRDB, we simulate hourly solar generation for each project
using NREL’s System Advisory Model (NREL, 2019b), which, in turn,
relies upon performance algorithms from NREL’s PVWatts (NREL,
2019c). Although Hansen et al. (2015) found that NSRDB overstates
global horizontal irradiance (GHI) by 3%–5%, for present purposes,
we are less-concerned about absolute bias and more-interested in
NSRDB’s ability to capture year-to-year variability, which Habte et al.
(2017) described as reasonably good. Modeling inputs for which we
use known characteristics that vary by plant include capacity, DC:AC
ratio, tilt, azimuth, module type, and mount type; all other parameters
are left at prepopulated default values. We roll up the estimated hourly
generation to an annual timescale and then calculate capacity factors
as described above (without any adjustments for curtailment in this
case).

The site-specific fixed effects [Sf in Eq. (2)] control for all remain-
ing (but unknown) differences across projects and sites that are not
already incorporated into and reflected by the ideal capacity factor. In
practice, these site-specific fixed effects are implemented as a dummy
variable and are expressed as an absolute deviation from a reference
plant.

Finally, the age fixed effects [At in Eq. (2)] capture the average
influence of age on the capacity factor in each year, implemented as a
dummy variable and expressed as an absolute deviation from the aver-
age historical capacity factor at age one (i.e., the reference age). Adding
the age fixed effects to the average historical capacity factor at age one
results in an annual time series of average capacity factors for the sam-
ple as a whole, which we normalize by indexing the first year (i.e., age
one) to 1.0.

If not already clear from the preceding descriptions of the varia-
bles in Eq. (2), it is worth emphasizing that the age fixed effects (At)
are applicable only to the entire sample of plants being analyzed and

are not specific to any individual plant. Differences between individual
plants are, instead, captured by the simulated ideal capacity factor
(CFf,t

ideal) and the site-specific fixed effects (Sf). The more-accurate the
simulated ideal capacity factor, the fewer the remaining differences
across plants that need to be explained by the site-specific fixed effects.
As a result of this model construct, the fixed effects model yields a sin-
gle curve that illustrates the average impact of age on plant perfor-
mance for the entire sample. Though this curve need not be linear, in
practice, it is approximately so; as a result, we take a best-fit line across
the normalized curve, weighted by the number of observations (plants)
at each age, to yield a single, linear average degradation rate, with con-
fidence intervals, for the entire sample.

B. Degradation results

Figure 4 plots the age fixed effects (i.e., the indexed capacity fac-
tor) for the full sample (blue circles), bounded by 95% confidence
intervals (blue shaded area), along with a best-fit line (blue dashed
line) that is weighted by the number of observations (i.e., plants) in
each year. Over the full eleven-year period, the slope of the best-fit line
is highly significant, at �1.3%/year (60.2%/year with 95% confi-
dence). At first glance, the 60.2% uncertainty around the best-fit line
might seem too narrow, in light of the high degree of uncertainty
surrounding the individual age fixed effects for ages 8 through 11 (the
blue-shaded area widens considerably as sample size dwindles). We
reiterate, however, that the best-fit line is weighted by the number of
plants for each age. As such, ages 8 through 11 receive very little
weight, enabling a relatively tight confidence interval around the best-
fit line (in fact, a best-fit line spanning just ages 1–7 yields an almost
identical slope as for the full eleven-year period). To further check for
robustness, we re-ran the model on just the central 80% of plants (in
terms of each individual plant’s degradation rate)—i.e., excluding the
top and bottom 10%—and found similar results as for the full sample,
suggesting that our results are relatively insensitive to possible outliers.
The lack of apparent degradation at age 2 is perhaps an indication that

FIG. 4. Age fixed effects and best-fit line for final model specification.
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we are not fully excluding the initial “teething period” for all projects
(despite defining age 1 as the first full calendar year following COD). If
we exclude the first year (age 1) due to these potential ongoing teething
issues and focus just on ages 2–7, the slope steepens somewhat to
�1.6%/year (orange dashed line).

To reiterate, Fig. 4 shows the output of our final fixed effects
model specification—i.e., after correcting all projects for the interan-
nual variation in irradiance and some projects in California and Texas
for curtailment. Figure 5, meanwhile, shows the incremental effect of
these two corrections—without which the implied degradation rate
would be worse than shown in Fig. 4. Specifically, if we do not adjust
the historical capacity factors in Eq. (2) for curtailment in California
and Texas and remove the ideal capacity factor from the right-hand
side of that equation, the slope from ages 1 to 11 is considerably worse,
at �1.7%/year (see the green triangles, 95% confidence intervals, and
best-fit line in Fig. 5). Adding the ideal capacity factor to the right-
hand side of the equation improves the slope to �1.4%/year (orange
squares), and then controlling for curtailment in California in Texas as
well results in a modest further improvement to the �1.3%/year
(60.2%) shown in both Figs. 4 and 5 (blue circles). Not surprisingly,
the irradiance correction—which affects all projects in the sample—
has a larger impact than the curtailment correction, which only affects
certain projects in California and Texas.

C. Degradation drivers

The low temporal (i.e., annual) and spatial (i.e., project-level) res-
olution of our generation data prohibits identification of specific deg-
radation pathways, but we did nevertheless look for statistically
significant relationships between a range of project-level characteristics
and degradation rates. The specific project characteristics that we
tested include the commercial operation date, project capacity, DC:AC
ratio, mount type (fixed-tilt, single-axis tracking, and dual-axis track-
ing), module manufacturer (SunPower, First Solar, and others), and

the long-term average irradiance and temperature at each project site
(sourced from NSRDB). We analyzed these potential drivers in two
ways.

First, for many of these project characteristics, we divided the full
project sample into two sub-samples (e.g., for the commercial opera-
tion date, we divided the full sample into projects built pre-2013 vs
post-2012) and then ran the fixed effects model on each sub-sample,
assessing whether the slopes of the “age fixed effects” for each sub-
sample, as well as the difference between the slopes of each sub-sample,
are statistically significant. This exercise yielded five pairings of statisti-
cal significance:

(1) post-2012 projects (�0.9%/year, 60.3%) degrade less than pre-
2013 projects (�1.5%/year, 60.2%);

(2) projects of 25 MWAC or larger (�0.8%/year, 60.3%) degrade
less than projects less than 25 MWAC (�1.5%/year, 60.2%);

(3) projects with an average site temperature of less than 15 �C
(�0.9%/year, 60.4%) degrade less than projects at warmer sites
(�1.4%/year, 60.2%);

(4) projects at sites with an average long-term global horizontal
irradiance of less than 210 W/m2 (�0.8%/year, 60.3%) degrade
less than projects at sunnier sites (�1.4%/year, 60.2%); and

(5) projects with a DC:AC ratio of 1.25 or greater (�1.2%/year,
60.2%) degrade less than projects with lower ratios (�1.4%/
year, 60.2%).

Although the specific thresholds chosen for each variable (2013,
25 MWAC, 15�, 210W/m2, and 1.25 DC:AC ratio) are somewhat arbi-
trary, these findings are intuitive. For example, photovoltaic technol-
ogy should improve over time, larger projects presumably receive
more attention than smaller projects in terms of maintenance and
repair protocols, and higher temperatures and irradiance have been
found to be positively correlated with performance degradation. In
addition, higher DC:AC ratios will tend to mask some system-level
performance degradation due to power clipping (i.e., if degraded DC

FIG. 5. Age fixed effects and best-fit lines for three different model specifications.
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power output is further reduced or “clipped” by an inverter operating
at its maximum capacity, then that degraded DC output will not nega-
tively impact system-level performance).

The bivariate nature of the fixed effects sub-sample analysis
described in the preceding paragraph, however, does not allow one to
control for variables other than the single variable being directly exam-
ined (e.g., commercial operation date, project size, average site temper-
ature and irradiance, and DC:AC ratio). To protect against the
possibility of other variables driving the results (e.g., if newer projects
are also generally larger and have a higher DC:AC ratio, then it is diffi-
cult to interpret the fixed effects results described in the previous para-
graph), we also ran a multivariate regression on the same set of project
characteristics. Two variables stood out as highly significant: commer-
cial operation date and long-term average site temperature (long-term
average site irradiance was also significant, but only at the 10% level,
and it is highly correlated with the more-significant long-term average
site temperature). Newer projects were found to degrade less, while
hotter sites were found to degrade more; once again, both results are
intuitive and are consistent with the fixed effects results in the preced-
ing paragraph.

VI. DISCUSSION

Although the first-year performance of our sample seems roughly
in line with expectations [particularly as represented by TMY-based
modeling—see Fig. 3(a)], the �1.3%/year average system-level degra-
dation rate implied by Fig. 4 is generally larger in magnitude than
found in previous studies. It is also significantly worse than ex ante
expectations, as revealed by expected degradation rates published
within power purchase agreements. Figure 6 shows the distribution of
expected degradation rates found within a sample of PPAs for 93
utility-scale PV plants totaling 7.36 GWAC. Nearly half of these PPAs
codify an expected degradation rate of �0.5%/year, while nearly two-
thirds expect either�0.5%/year or better. Only one PPA in the sample
expects degradation to be worse than�1.0%/year.

While the significant misalignment of these expected degradation
rates with our findings of �1.3%/year is alarming, it is, once again,
worth considering the source of these expectations—power purchase
agreements—and whether that might have any bearing on the discrep-
ancy. If, as discussed earlier, developers are somewhat conservative
when establishing first-year generation expectations, then they can
afford to be less-conservative when setting expectations about degra-
dation—this could explain some of the discrepancy between our find-
ings in Fig. 4 and the expectations shown in Fig. 6. In other words,
performance guarantees within PPAs are based on an assessment of
actual vs expected generation over time, with those expectations
dependent on both the first-year generation estimate and the expected
degradation rate. If the first-year generation estimate is conservative
enough, then one could potentially assume no degradation at all and
still meet contractual performance requirements. Of course, another
possible explanation is that the PPA counterparties are simply con-
fused about module- vs system-level degradation.

It is possible that the discrepancy between our �1.3%/year
system-level degradation estimate and the somewhat milder degrada-
tion rates found in earlier studies and memorialized in PPAs is meth-
odological and/or related to data resolution. In particular, though a
necessity due to the monthly data problems described earlier, our reli-
ance on annual generation data could nevertheless be problematic,
given that such low resolution restricts visibility into potentially
important events occurring over finer timescales—e.g., seasonal soil-
ing, maintenance events, and other downtime—and also complicates
filtering of anomalous data. Such soiling and availability-related events
can lead to apparent higher-than-typical degradation rates (Jordan
et al., 2020). That said, our modeling of ideal capacity factors does
occur on an hourly timescale and—once rolled up to the annual
level—matches actual performance reasonably well [e.g., see Fig. 3(a),
earlier].

In an attempt to validate our annual fixed effects regression
model and its annual resolution, we analyzed a sub-sample of 16

FIG. 6. Histogram of degradation rates contained in PPAs for utility-scale PV plants.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 043501 (2020); doi: 10.1063/5.0004710 12, 043501-10

VC Author(s) 2020

https://scitation.org/journal/rse


projects totaling 2.1 GWDC for which we have hourly generation data
going back in time. Specifically, we ran our fixed effects model on the
rolled-up calendar year generation data for all 16 of these projects and
compared the results to an analysis of the hourly data conducted using
NREL’s RdTools open-source platform (NREL, 2019d). Using annual
data, the fixed effects model found an average degradation rate of
�1.23%/year for this sub-sample, while the average across RdTools’
estimates using hourly data were �0.99%/year—a gap of 0.24%/year.
Again, it is worth noting that for both datasets, we lack visibility into
soiling and availability, which can exacerbate system-level degradation
estimates if not properly controlled for. Here, though, we are most
interested in the relative difference between the annual and hourly
results, rather than the absolute numbers for each.

Figure 7 shows the individual plant-level comparisons for each
plant-method pairing. Because the fixed effects model cannot be used
for individual plants (i.e., it is only useful when analyzing a portfolio of
projects), the annual results presented in Fig. 7 are instead based on a
simple regression of the irradiance-normalized capacity factor against
project age for each plant (and so are not directly comparable to the
fixed effects approach or results presented earlier). The two
approaches—i.e., the simple regression using annual data and the
RdTools analysis of hourly data—are in good agreement on some
plants but further apart on others. Where discrepancies exist, they
could be caused by each approach analyzing slightly different time
periods—e.g., in some cases, the hourly data did not go back as far as
the annual data, and/or RdTools made use of partial-year hourly data
that were excluded from the annual analysis.

For all 16 plants, the median absolute difference in degradation
rates across the two methods is 0.22%/year, with the annual data
showing greater degradation (consistent with the fixed effects model

results of �1.23% compared to the hourly data average of �0.99%/
year). Though we would not expect these two different methods (and
different data resolutions) to yield identical results, this comparison
nevertheless suggests that we cannot rule out the possibility that we
find a greater degradation rate than past studies due, in part, to meth-
odological differences and/or our use of low-resolution annual genera-
tion data. We also emphasize once again the fact that we estimate
degradation at the system-level rather than at the module-level, which
opens up many more degradation pathways. For example, based on
recent news of tracker replacements after just six years of operations
(Weaver, 2019), the high degradation rate of plant number 2 in Fig. 7
(i.e., the Alamo 1 project in Texas) is likely the result of malfunction-
ing trackers rather than of sub-par modules.

Whatever the cause of the apparent difference, we note that the
gap between the �1.3%/year system-level degradation rate that we
find, the�0.8%/year to�1.0%/year range found in earlier studies, and
the �0.5%/year rate most-often stated in PPAs is significant from a
financial perspective. Using an in-house financial pro forma model
and assuming the following parameters—$1.2/WAC CapEx, $20/
kWAC-year OpEx, 30% net capacity factor (in AC terms), 4% debt
interest rate, 2.5% inflation, 27% combined federal and state income
tax rate, 30% ITC, and a capital structure (debt/equity ratio) that varies
based on a debt service coverage ratio of 1.3—we find that a generic
utility-scale PV project with a levelized 25-year PPA price of $31.5/
MWh would generate an internal rate of return of 10% assuming a
degradation rate of �0.5%/year, but only 5.1% if actual degradation
turned out to be �1.0%/year and only 2.6% if actual degradation
turned out to be �1.3%. In other words, worse-than-expected degra-
dation of the magnitude found in this analysis can claw back most or
all of an investor’s return in a utility-scale PV project.

FIG. 7. Degradation rate comparison: annual (regression) vs hourly (RdTools) data.
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VII. CONCLUSIONS

Our analysis of the performance and reliability of a large sample
of utility-scale PV projects built from 2007 through 2016—and which,
in 2017, generated more than 50% of all solar electricity in the United
States—finds that first-year generation has generally matched ex ante
expectations but that subsequent energy yield degradation has been
greater than expected on average. Compared to past studies, which
have generally found system-level energy yield degradation to be in
the �0.8%/year to �1.0%/year range, and a sample of PPAs, two-
thirds of which expect degradation rates of �0.5%/year or better, we
find an average fleet-wide degradation rate of �1.3%/year (60.2%).
This rate is an improvement over the �1.7%/year found prior to cor-
recting for interannual variance in irradiance and curtailment. A side
analysis of a variety of project-level characteristics suggests that degra-
dation rates tend to be lower in magnitude (i.e., closer to estimates
from past studies but still worse than rates assumed in most PPAs)
among newer projects and at sites with lower long-term average tem-
peratures (both intuitive results).

Some of the difference between our results and those of previous
studies could be methodological and/or related to our use of low-
resolution annual data. Yet, for large-scale, ex post studies of fielded
performance—which are of great interest to both potential and current
solar project investors—the use of publicly available, low-resolution
generation data may be par for the course. While our coarse data reso-
lution prohibits us from properly attributing and allocating the esti-
mated -1.3%/year system-level degradation rate among its probable
causes—e.g., module-level degradation, balance of plant degradation,
soiling, and availability—from an investor’s perspective, this break-
down is perhaps less important than the topline estimate of �1.3%/
year (60.2%) in terms of affecting the bottom line.

Even if our estimated degradation rate of �1.3%/year is some-
what excessive—as potentially suggested by a comparison to RdTools
analysis of a sub-sample of plants for which we have hourly data—the
absolute magnitude of the difference to RdTools results (0.24%/year)
would still put our adjusted system-level degradation rate at the high
end of the range of past studies. Perhaps more importantly, our
results—and the results of past studies—are significantly higher than
the expected degradation rates most-often memorialized within PPAs.
Basic financial analysis suggests that an actual degradation rate of
�1.0%—which is twice the rate expected within the majority of PPAs
we sampled—can wipe out roughly half of an investor’s return in a
utility-scale PV project. For utility-scale PV to live up to its potential in
helping to de-carbonize the electricity sector, investors and other stake-
holders need a better understanding of the long-term reliability of these
plants’ performance over time. This study—which introduces a new
approach based on publicly available, low-resolution data—represents
an initial step in that direction.
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