SMNR 40 - Who Said Thermal Storage Has to be Only in Tanks?
Thermal Storage in the Building Envelope

Energy Demand Management in Buildings using PCM-Integrated Wall

Ravi Anant Kishore, PhD
National Renewable Energy Laboratory, Golden CO
Ravi.Kishore@nrel.gov
+1 (303) 384 7538
+1 979-250-7002
Learning Objectives

• Describe the difference between latent and sensible storage
• Define Phase Change Materials
• Provide an overview of how PCMs can improve building thermal performance when incorporated to the building envelope
• Explain to HVAC designers how to become familiar with design issues unique to thermal mass
Background

- Buildings consume nearly 40% of primary energy use globally
- Building sectors in the US annually consume about 75% of total electricity consumption
- Building operation accounts for approximately 30% of greenhouse gas emissions

Heating and cooling loads account for nearly 1/3rd of buildings’ total energy use

Nearly 35% of heat leakage occurs through walls of a typical building

Source: Phase Change Composite Materials for Energy Efficient Building Envelopes
www.seas.ucla.edu/~pilon/PCMIntro.html

Source: Energy loss can cost you a fortune!
www.coynerco.com/our-process/energy-loss/
Demand vs Supply and Time-of-use Pricing

- Net Energy demand (Utility-scale) is not uniform over the course of a day
- Utilities could charge higher electricity rates during peak hours

- With increasing contribution of renewable energy in total energy mix, the timing imbalance between demand and supply is becoming critical

Complexity, Challenges, and Opportunity

- Buildings energy use peaks during peak hours
- Buildings load curve needs to be reshaped
- Thermal energy storage can be used to store excess energy in off-peak hours
Thermal energy storage (TES)

- A method of storing thermal energy by heating or cooling a storage medium
- Energy stored during off-peak hours can be used to partially/completely offset the peak load

- Three classes of TES:
 - sensible heat storage
 - latent heat storage
 - thermochemical storage

Source: Zero Energy Buildings should make nice with ice
TES using Buildings Thermal Mass

- Thermal mass of the building can be utilized for TES
- However, this method works well for high thermal mass buildings, such as those with concrete structures
PCM-integrated Wall

(A) Vertical cross-section of a typical building wall

(B) Vertical cross-section of a PCM-integrated building wall

Enthalpy

Temperature

Stored energy

Sensible heating

Latent heating

Transition temperature ($T_T \pm \Delta T/2$)

$T < T_T - \Delta T/2$ Solid

$T_T - \Delta T/2 < T < T_T + \Delta T/2$ Mushy

$T > T_T + \Delta T/2$ Liquid
Natural cooling versus Precooling

There is no control over the PCM as phase change is determined by exterior conditions.

Precooling provides control over phase change, providing us the ability to reshape the buildings cooling load.
Optimizing Precooling Profile for a PCM-integrated Wall in Baltimore

Interior temperature was varied sinusoidally to obtain various precooling profiles.

Each precooling profile results in a unique heat gain curve (Results obtained using heat transfer model in COMSOL Multiphysics).
Load Modulation using PCM-integrated Wall

PCM-integrated wall provides peak load shedding and shifting capacity

An optimized precooling profile can reduce the wall-related heat gains during peak hours to zero
Conclusions

• Integrating PCM in building envelopes is a recognized technique for thermal energy storage
• PCM-integrated envelope can provide substantial energy saving as well as peak load shedding and shifting in buildings
• The perform, however, depends on several factors such as building type, exterior and interior temperatures, and PCM’s thermophysical properties
• PCM-integrated envelopes should be optimized using suitable Building Energy Model (BEM) to maximize its energy saving potential