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Executive Summary 
OpenFAST is an open-source, physics-based engineering tool applicable to the load analysis of 
land-based and offshore wind turbines, including floating offshore wind turbines. The 
substructure for a floating wind turbine has historically been modeled in OpenFAST as a rigid 
body with hydrodynamic loads lumped at a point, which enabled the tool to predict the global 
response of the floating substructure but not the structural loads within its individual members. 
This limitation is an impediment to designing floating substructures—especially newer designs 
that are more streamlined, flexible, and cost-effective. This report presents the development of 
new functionality in OpenFAST to model floating substructure flexibility and member-level 
loads, as well as the concepts and mathematical background needed to understand and apply it 
correctly. 
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1 Introduction 
To support innovative, optimized, reliable, and cost-effective floating offshore wind turbine 
designs, the wind industry and research communities rely on physics-based engineering software 
(i.e., design tools) capable of predicting the coupled dynamic loads and responses of the wind 
system. OpenFAST (formerly known as FAST), developed by the National Renewable Energy 
Laboratory (NREL) via support from the U.S. Department of Energy (DOE), is a state-of-the-art, 
open-source engineering tool (Jonkman and Sprague 2020). For floating offshore wind turbines, 
OpenFAST models the important physical phenomena and system couplings, including the 
environmental excitation (wind, waves, and current) and full-system dynamic response (rotor, 
drivetrain, nacelle, tower, substructure, moorings, and controller) under both normal (for fatigue) 
and extreme (for ultimate) loading conditions. 

The substructure of a floating offshore wind turbine has historically been modeled in OpenFAST 
as a rigid body with hydrodynamic loads lumped at a point, which enabled the tool to predict the 
global response of the floating substructure but not the structural loads within its individual 
members. To enable the design and optimization of the floating substructures—especially next-
generation floating wind technologies that show promise to be streamlined, flexible, and cost-
effective—substructure flexibility and member-level load calculations have been implemented in 
OpenFAST. This implementation is part of a larger effort at NREL to develop an open-source, 
multifidelity systems analysis capability for floating offshore wind turbine analysis and 
optimization that captures the relevant physics and costs that drive designs and trade-offs. 

To meet the modeling needs of most floating offshore wind turbine support structures—ranging 
from spar buoys, semisubmersibles, tension-leg platforms, and hybrid combinations of these—
functional requirements for the new capability were established by reviewing existing floating 
offshore wind turbine prototypes and proposed concepts and comparing their structural 
configurations and resulting physics-based modeling needs to the modeling capabilities already 
available in OpenFAST, as well as new capabilities that can be implemented within the time 
frame and funding available for the current effort. We assessed the floating support structure—
including the tower, substructure, and mooring systems—of the various floating offshore wind 
turbine technologies rather than innovations in the wind turbine itself, which are outside the 
scope of the current effort. We selected functional requirements that meet the modeling needs of 
most floating offshore wind turbine support structures, and we identified a few functional 
requirements that are important for only some floating offshore wind turbines that will require 
future development. We considered only modeling approaches that will maintain computational 
efficiency so that OpenFAST will still be capable of running the thousands of load-case 
simulations necessary for floating offshore wind turbine design and optimization. Jonkman et al. 
(2019) presents a detailed summary of the floating offshore wind turbine support structure 
modeling capability in OpenFAST that existed before the upgrade, the new functional 
requirements (including which floating offshore wind turbines these functional requirements 
pertain to), a qualitative description of the modeling approaches used to address the functional 
requirements, and functionality not considered. 

This report presents the mathematical details pertinent to the modeling approaches, including 
structural dynamics, hydrodynamics, and their coupling. Verification of the source-code 
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implementation is ongoing, and results will be presented in future work to highlight the 
functionality and demonstrate the verification. 

Note that in addition to OpenFAST, other physics-based engineering software tools have also 
been developed in the wind community to model the coupled dynamic responses of floating 
offshore wind turbines, and most of these also treat the floating substructure rigidly. Recent work 
by Borg et al. (2016) extended the Horizontal Axis Wind turbine simulation Code 2nd generation 
(HAWC2) to consider the substructure flexibility of large-volume floaters through a generalized-
modes approach. The approach presented here differs from Borg et al. (2016) because large-
volume bodies in floating substructures of floating offshore wind turbines are expected to be 
quite rigid, whereas the hydrodynamic interactions between multiple large-volume bodies and 
the flexibility of slender members are expected to be more significant. The approach presented 
here can be seen as a broader and open-source implementation of the approach taken by Luan, 
Gao, and Moan (2017) in Simo/Riflex/AeroDyn. 

The upgrades to OpenFAST involved further development of the SubDyn structural dynamics 
module for substructures, the HydroDyn hydrodynamics module, and their coupling to the 
ElastoDyn wind turbine structural dynamics module within the OpenFAST glue (driver) code. 
Although SubDyn was originally developed for fixed-bottom substructures, the module is 
upgraded here for application to floating offshore wind turbines (HydroDyn already applies to 
both fixed and floating offshore wind turbines). See Figure 1 for an overview of OpenFAST and 
its modules. 

 
Figure 1. OpenFAST and its modules  
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2 Structural Dynamics 
SubDyn—which models the structural dynamics of substructures using a linear beam finite-
element approach together with a Craig-Bampton (C-B) reduction and Static Improvement 
Method. SubDyn was previously available in OpenFAST for fixed-bottom substructures, but it is 
now extended to model the structural flexibility and member-level loads of floating 
substructures. In addition to the beam elements and cantilevered interconnections previously 
available, new element types and interconnections important to floating substructures have been 
added, including pretensioned cable and rigid-link elements and pin, universal, and ball joint 
interconnections, referred to as rotational joints. SubDyn does not include any geometric or 
material nonlinearities; instead, SubDyn is inherently linear. 

2.1 Implementation Choices and Limitations 
Rigid links and rotational joints define linear multipoint constraints between the degrees of 
freedom (DOFs). The direct elimination technique is used to account for these constraints, 
instead of the more common and general approach of Lagrange multipliers or similar methods 
that result in differential algebraic equations that are difficult to time-integrate. The former 
technique is intuitive for simple problems and has the advantage of reducing the number of 
DOFs and maintaining ordinary differential equations (without algebraic constraints) that are 
simple to time-integrate. Yet, the direct elimination technique requires significant bookkeeping 
for general problems. In the current study, only a limited set of constraints is intended to be 
supported, and additional limitations are introduced to ease the implementation. That is, it is 
assumed that rigid links and pretension cables are only connected to beams at their extremities, 
and that the connections to the beams are cantilever joints. With these assumptions, the 
constraints associated with rigid links and rotational joints involve nonoverlapping sets of DOFs. 
Consequently, the sets of DOFs can be dealt with independently for each constraint type. The 
direct elimination technique (Cook 1974) consists in forming a matrix, T, and a reduced set of 
DOFs, x�, such that the original DOFs, x, are expressed as: 

    x =  T x�       (1) 

Each constraint, 𝑐𝑐, involves an independent subset of this equation of the form x𝑐𝑐  =  T𝑐𝑐 x�𝑐𝑐. The 
matrix T is formed by assembling the different matrices T𝑐𝑐 (which from our assumption do not 
overlap), and, by introducing identity relationships for the DOFs that are not involved in any 
constraints, referred to as “uncommitted.” Each element used in SubDyn consists of two nodes, 
each node having six DOF corresponding to three translations and three rotations. A cantilever 
joint connecting several elements is a simple constraint, which maps all the nodal DOFs to only 
six DOFs for the joint. In the current implementation, the vector x is a “partially”-assembled 
vector of nodal DOFs, where cantilever constraints have been implicitly applied to reduce 
storage. After the partial assembly, the linear mass and stiffness matrices, M and K, and the force 
vector, F, are reduced as follows to account for the other constraints: 

  M� = TTMT, K� = TTKT, F� = TTF    (2) 

where the superscript 𝑇𝑇 denotes the transpose operator. Expressions for the matrices T𝑐𝑐 will be 
given in the sections below for the rigid link and the rotational joints. 
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2.2 Pretensioned Cable Element 
The finite-element representation of a pretensioned cable was obtained by defining the element 
with two nodes at each end of the cable extremities and by considering the balance of stresses in 
the element. The cable axis is assumed to be along the element axis, 𝑧𝑧. The representation 
consists of a specific element stiffness matrix, element mass matrix, and pretension force. The 
gravitational force is accounted for in a similar fashion as the beam representation and is not 
presented here. The user inputs for the cable element are: the undisplaced joint locations (while 
pretensioned), noted  𝐱𝐱1 and 𝐱𝐱2, the pretension force, 𝑇𝑇0 (greater than or equal to zero), and the 
elongation stiffness, 𝐸𝐸𝐸𝐸. The initial element length, 𝐿𝐿, the pretension stress, 𝜖𝜖0, and the length at 
zero stress, 𝐿𝐿0, are then respectively defined as: 

  𝐿𝐿 =∥ 𝐱𝐱2 − 𝐱𝐱1 ∥2, 𝜖𝜖0 = 𝑇𝑇0
𝐸𝐸𝐸𝐸

, 𝐿𝐿0 = 𝐿𝐿
1+𝜖𝜖0

    (3) 

With these notations, the element mass matrix, stiffness matrix, and pretension force are: 

 M𝑒𝑒 = 𝜌𝜌𝐿𝐿0

⎣
⎢
⎢
⎢
⎢
⎡
13/35 0 0 9/70 0 0

0 13/35 0 0 9/70 0
0 0 1/3 0 0 1/6

9/70 0 0 13/35 0 0
0 9/70 0 0 13/35 0
0 0 1/6 0 0 1/3⎦

⎥
⎥
⎥
⎥
⎤

  (4a) 

 K𝑒𝑒 = 𝐸𝐸𝐸𝐸
𝐿𝐿0

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜖𝜖0
1+𝜖𝜖0

0 0 − 𝜖𝜖0
1+𝜖𝜖0

0 0

0 𝜖𝜖0
1+𝜖𝜖0

0 0 − 𝜖𝜖0
1+𝜖𝜖0

0
0 0 1 0 0 −1

− 𝜖𝜖0
1+𝜖𝜖0

0 0 𝜖𝜖0
1+𝜖𝜖0

0 0

0 − 𝜖𝜖0
1+𝜖𝜖0

0 0 𝜖𝜖0
1+𝜖𝜖0

0
0 0 −1 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (4b) 

   f𝑒𝑒 = 𝐸𝐸𝐸𝐸𝜖𝜖0

⎩
⎪
⎨

⎪
⎧

0
0
1
0
0
−1⎭

⎪
⎬

⎪
⎫

      (4c) 

where 𝜌𝜌 is the mass per unit (unstretched) length of the cable element. 

The matrices presented earlier are related to the three translational DOFs at each element 
extremity. The rotational DOFs are omitted here, but in the implementation, zeros are introduced 
at their corresponding locations in the matrices and vectors. The element variables are 
transformed to the global frame for the assembly in the global system, as already implemented in 
SubDyn. 
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2.3 Rigid-Link Element 
Several joints may be coupled together with rigid links. A rigid assembly of 𝑛𝑛 joints is here 
considered. Each joint, 𝑗𝑗, consists of six DOFs (from the assumption that rigid links connect to 
beams via cantilever joints) gathered into a vector x𝑗𝑗. The 6𝑛𝑛 DOFs of the rigid assembly can be 
condensed into six leader DOFs. The indexing of the joints in this paragraph is such that the first 
joint is selected as the leader joint. The expression of the constraint is thus: 

  x𝑐𝑐 = Tc x�𝑐𝑐 with x𝑐𝑐 = �

x1
x2
⋮

x𝑛𝑛

�  and x�𝑐𝑐 = x1    (5) 

For each joint 𝑗𝑗 ∈ {2,⋯ ,𝑛𝑛}, a matrix A1𝑗𝑗 is formed based on the global coordinates of nodes 1 
and 𝑗𝑗, noted (𝑥𝑥1 ,𝑦𝑦1 , 𝑧𝑧1) and (𝑥𝑥𝑗𝑗  ,𝑦𝑦𝑗𝑗  , 𝑧𝑧𝑗𝑗), respectively. The relation between the joint DOFs and 
the reduced leader DOF is then formed by stacking the A1𝑗𝑗 matrices as follows: 

T𝑐𝑐 = �

I6
A12
⋮

A1𝑛𝑛

� , with  A1𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 0 0 0 −�𝑧𝑧𝑗𝑗 − 𝑧𝑧1� −�𝑦𝑦𝑗𝑗 − 𝑦𝑦1�
0 1 0 −�𝑧𝑧𝑗𝑗 − 𝑧𝑧1� 0 −�𝑥𝑥𝑗𝑗 − 𝑥𝑥1�
0 0 1 −�𝑦𝑦𝑗𝑗 − 𝑦𝑦1� −�𝑥𝑥𝑗𝑗 − 𝑥𝑥1� 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (6) 

where I6 is the 6 × 6 identity matrix. 

A matrix Tc is formed for each set of rigid assemblies of the system and used to build the 
transformation matrix T presented in Section 2.1. Rigid links may also be attributed a mass, in 
which case the mass matrix of a beam element is used. 

2.4 Rotational Joints 
A rotational joint, linking 𝑛𝑛 elements of indices [𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛], is considered. The 3𝑛𝑛 translational 
nodal DOFs of each element connected at the joint are lumped into three joint DOFs in the 
partially assembled vector x. The 3𝑛𝑛 rotational nodal DOFs are kept in the assembled vector, and 
this subset is here gathered into the vector θc. The matrix Tc is used to reduce the number of 
DOFs to an independent set of DOF and thus account for the constraint introduced by the joint. 
The independent DOFs are written θ�𝑐𝑐 and their numbers are: 3 + 3(𝑛𝑛 − 1) = 3𝑛𝑛 for a ball joint, 
3 + 2(𝑛𝑛 − 1) = 1 + 2𝑛𝑛 for a universal joint, and 3 + (𝑛𝑛 − 1) = 2 + 𝑛𝑛 for a pin joint. The three 
rotational nodal DOFs of element 𝑒𝑒𝑗𝑗 are gathered in the vector θ𝑒𝑒𝑗𝑗. The constraint reduction is 
then written as: 

    θc = �
θe1
⋮
θen

� = T𝑐𝑐θ�𝑐𝑐     (7) 

The following subsections present the values of Tc and θ�𝑐𝑐 for each joint type. 
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2.4.1 Ball Joints  
For a ball joint, each connected element can rotate independently in all three directions. The 
constraints relation is then simply determined with: 

  θ�𝑐𝑐 = θc = �
θ𝑒𝑒1
⋮
θ𝑒𝑒𝑛𝑛

� ,  T𝑐𝑐 = �
I3 0

⋱
0 I3

�   (3𝑛𝑛 ×  3𝑛𝑛)   (8) 

where I3 is the 3 × 3 identity matrix. 

2.4.2 Universal Joints  
Universal joints transfer the rotational moment around two misaligned axes. A universal joint, 
linking 𝑛𝑛 elements of indices [𝑒𝑒1,⋯ , 𝑒𝑒𝑛𝑛], is considered. Unit vectors along the axis of each 
element are expressed in the global coordinate system and written 𝑧̂𝑧. Similar notations are used 
for the unit 𝑥𝑥� and 𝑦𝑦� axes, orthogonal to the 𝑧̂𝑧 axis of each element, about which no moment is 
transferred. The DOF corresponding to the shared rotation between the axes is written 𝜃𝜃�1. Each 
element contributes two independent DOFs that are free to rotate, noted 𝜃𝜃�𝑥𝑥 and 𝜃𝜃�𝑦𝑦. The 
constraint relationship between the original DOFs and the reduced DOFs is obtained by 
projecting the rotational DOFs of each element against the different axes. The relations are 
inverted using the pseudo-inverse, defined as 𝐴𝐴−1∗ = 𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇)−1. The constraints are then 
expressed with the following variables and transformation matrix: 

 θ�𝑐𝑐 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜃𝜃�1
𝜃𝜃�𝑥𝑥,𝑒𝑒1

𝜃𝜃�𝑦𝑦,𝑒𝑒1
⋮

𝜃𝜃�𝑥𝑥,𝑒𝑒𝑛𝑛

𝜃𝜃�𝑦𝑦,𝑒𝑒𝑛𝑛⎭
⎪⎪
⎬

⎪⎪
⎫

, T𝑐𝑐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡z�𝑒𝑒1
𝑇𝑇 /𝑛𝑛 ⋯ z�𝑒𝑒𝑛𝑛

𝑇𝑇 /𝑛𝑛
x�𝑒𝑒1
𝑇𝑇 0

y�𝑒𝑒1
𝑇𝑇 0
0 ⋱ 0
0 x�𝑒𝑒𝑛𝑛

𝑇𝑇

0 ⋯ y�𝑒𝑒𝑛𝑛
𝑇𝑇 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
−1∗

(3𝑛𝑛 × (1 + 2𝑛𝑛))  (9) 

2.4.3 Pin Joints  
A pin joint is characterized by a direction around which no moment is transferred. The unit 
vector indicating this direction is provided by the user and noted 𝑝̂𝑝. Two orthogonal unit vectors 
𝑝̂𝑝1 and 𝑝̂𝑝2 are then defined, forming an orthonormal basis with 𝑝̂𝑝, oriented arbitrarily. The two 
DOFs that correspond to the shared rotations between all elements are written 𝜃𝜃�1and 𝜃𝜃�2. Each 
element also has a free rotational DOF, noted 𝜃𝜃�𝑒𝑒𝑗𝑗 . The constraint relationship between the 
original DOF and the reduced DOF is obtained by projecting the rotational DOFs against the 
axes 𝑝̂𝑝1, 𝑝̂𝑝2 and 𝑝̂𝑝. The relations are inverted using the pseudo-inverse. The result is given as 
follows: 
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 θ�𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧𝜃𝜃
�1 
𝜃𝜃�2 
𝜃𝜃�𝑒𝑒1
⋮
𝜃𝜃�𝑒𝑒𝑛𝑛⎭

⎪
⎬

⎪
⎫

,  T𝑐𝑐 =

⎣
⎢
⎢
⎢
⎢
⎡p�1

𝑇𝑇/𝑛𝑛 ⋯ p�1𝑇𝑇/𝑛𝑛
p�2𝑇𝑇/𝑛𝑛 ⋯ p�2𝑇𝑇/𝑛𝑛

p�𝑡𝑡 0
⋱

0 p�𝑡𝑡 ⎦
⎥
⎥
⎥
⎥
⎤
−1∗

 (3𝑛𝑛 ×  (2 + 𝑛𝑛))  (10) 
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3 Hydrodynamics 
HydroDyn—which models the first- plus second-order hydrodynamics of substructures using a 
hybrid combination of strip theory for slender members and potential-flow theory for large-
volume members—has been extended to include member-level hydrostatics in the strip-theory 
solution (dependent on substructure displacement) and multiple potential-flow bodies (including 
optional interaction between these bodies). 

3.1 Member-Level Hydrostatics in the Strip-Theory Solution 
The strip-theory formulation for slender members has been modified to support nonlinear 
hydrostatic loads, calculating buoyancy, ballast, and marine-growth loads based on the member’s 
instantaneous position, orientation, and deflection. The buoyancy calculations are based on the 
integrated pressure on the member’s submerged surface area and are exact for both cylindrical 
and tapered members. In addition to hydrostatic loads, other strip-theory member loads (e.g., 
fluid-inertia, added mass, viscous drag, water ballast, and marine growth) have also been 
modified in HydroDyn to account for the new discretization and to improve their accuracy. For 
brevity’s sake, this is not discussed in this report. 

To support changes in the buoyancy load distribution as a member moves and deflects, the 
discretization of member loads has been changed. Each member is discretized uniformly over its 
length, into 𝑁𝑁 elements of length 𝑑𝑑𝑑𝑑. Members are no longer split at boundaries (i.e., at the 
waterplane, the water-ballast level, or the seabed). These transitions are instead handled within 
the load calculations of the boundary-crossing element, which can change as a member moves. 
Loads are now calculated in lumped form for each element. The loads on element 𝑖𝑖 are 
formulated with respect to node 𝑖𝑖 and then spread by factor 𝛼𝛼 to node 𝑖𝑖 + 1, as illustrated in 
Figure 2. 

 
Figure 2. Morison member discretization and lumping of distributed loads 

Each member has N+1 nodes. The member’s starting and ending radii are denoted 𝑟𝑟1 and 𝑟𝑟𝑁𝑁+1, 
respectively, and the vertical elevations (relative to the still level waterplane) of these nodes are 
𝑍𝑍1 and 𝑍𝑍𝑁𝑁+1, respectively. The variable 𝑙𝑙 indicates the coordinate along the length of the member 
in a relative sense. 

Because users may specify depth-dependent marine growth thicknesses, the nodes along each 
strip-theory member are individually assigned a marine growth thickness, 𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖, and marine 
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growth density based on their depth at initialization. The member radius inclusive of the marine 
growth at node 𝑖𝑖 is: 

    𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖     (11) 

The presence of marine growth means that the outer surface of each element along a member 
may be tapered uniquely, regardless of whether the member itself is tapered. The taper ratio 
(𝑚𝑚 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) of each element is calculated as: 

    𝑚𝑚𝑖𝑖 = �𝑟𝑟𝑖𝑖+1+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖+1�−�𝑟𝑟𝑖𝑖+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖�
𝑑𝑑𝑑𝑑

      (12) 

Loads are distributed based on the relative position of an element’s volumetric centroid between 
its two nodes. For a fully submerged cylindrical element that may be tapered and may have 
marine growth, the relative position of the centroid between node 𝑖𝑖 and node 𝑖𝑖 + 1 is: 

   𝛼𝛼𝑖𝑖 = �𝑟𝑟𝑖𝑖+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖�
2
+2�𝑟𝑟𝑖𝑖+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖��𝑟𝑟𝑖𝑖+1+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖+1�+3�𝑟𝑟𝑖𝑖+1+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖+1�

2

4��𝑟𝑟𝑖𝑖+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖�
2
+�𝑟𝑟𝑖𝑖+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖��𝑟𝑟𝑖𝑖+1+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖+1�+�𝑟𝑟𝑖𝑖+1+𝑡𝑡𝑀𝑀𝑀𝑀,𝑖𝑖+1�

2
�
  (13) 

where 𝛼𝛼𝑖𝑖 = 0 corresponds to the centroid being at node 𝑖𝑖 and 𝛼𝛼𝑖𝑖 = 1 corresponds to the centroid 
being at node 𝑖𝑖 + 1 (but typically 𝛼𝛼𝑖𝑖 falls within these limits). The quantities 𝑚𝑚𝑖𝑖 and 𝛼𝛼𝑖𝑖 are 
calculated for each element in the member at initialization in the reference (undisplaced) 
configuration.  

To simplify the calculations, hydrostatic loads are derived based on a two-dimensional 
representation and then converted back into three dimensions afterward. The member’s 
inclination angle from vertical is denoted 𝜙𝜙 and the heading of the incline is 𝛽𝛽 (although both of 
these angles may vary across elements when the member is deflected, indicated by subscript 𝑖𝑖). 
These are both calculated at every time step in the formulation that follows. 

Buoyancy loads are calculated differently for fully submerged and partially submerged elements. 
To avoid an abrupt (step) change in forces and moments when a node crosses the waterline, 
smoothing techniques are used and loads on a partially submerged element are lumped at the two 
closest nodes below the waterline. 

3.1.1 Buoyancy on Fully Submerged Element Sides 
The buoyancy loads on fully submerged elements are calculated based on the solution of a 
pressure integration around the side wall of the element. The net axial (𝑙𝑙) force, transverse (𝑟𝑟) 
force, and moment (about node 𝑖𝑖) on element 𝑖𝑖 are: 

𝐹𝐹𝑙𝑙  =  −2 𝜋𝜋 𝑚𝑚𝑖𝑖 𝜌𝜌 𝑔𝑔 𝑑𝑑𝑑𝑑 � 𝑍𝑍𝑖𝑖  𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖  + 1
2
�𝑍𝑍𝑖𝑖 𝑚𝑚𝑖𝑖  +  𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖 cos𝜙𝜙𝑖𝑖  �𝑑𝑑𝑑𝑑 + 1

3
𝑚𝑚𝑖𝑖  cos𝜙𝜙𝑖𝑖  𝑑𝑑𝑙𝑙2 �  (14) 

 𝐹𝐹𝑟𝑟  =  −𝜋𝜋 𝜌𝜌 𝑔𝑔 𝑑𝑑𝑑𝑑 �𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2  +  𝑚𝑚𝑖𝑖  𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖 𝑑𝑑𝑑𝑑 + 1

3
𝑚𝑚𝑖𝑖
2 𝑑𝑑𝑙𝑙2� sin𝜙𝜙𝑖𝑖   (15) 
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𝑀𝑀0  = −𝜋𝜋 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 �
1
4

 𝑑𝑑𝑙𝑙3 𝑚𝑚𝑖𝑖
4  +

1
4

 𝑑𝑑𝑙𝑙3 𝑚𝑚𝑖𝑖
2  +  𝑑𝑑𝑙𝑙2 𝑚𝑚𝑖𝑖

3 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖  

+
2
3

 𝑑𝑑𝑙𝑙2 𝑚𝑚𝑖𝑖 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖  +
3
2

 𝑑𝑑𝑑𝑑 𝑚𝑚𝑖𝑖
2 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖

2  +
1
2

 𝑑𝑑𝑑𝑑 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2  

+  𝑚𝑚𝑖𝑖 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
3 � sin𝜙𝜙𝑖𝑖 

(16) 

where 𝜌𝜌 is the water density and 𝑔𝑔 is the gravitational acceleration. These loads are illustrated in 
Figure 3. 

  
Figure 3. Loads on fully submerged element 𝒊𝒊 lumped at node 𝒊𝒊 then distributed to nodes 𝒊𝒊 and 𝒊𝒊 +

𝟏𝟏 

Once the force components and moment are calculated for the element, they are distributed 
between the adjacent nodes based on the relative location of the element’s center of buoyancy 
(submerged centroid) and the nodes’ water depths. The distribution factor is1: 

    𝛼𝛼𝑖𝑖∗ = 𝛼𝛼𝑖𝑖𝑍𝑍𝑖𝑖+1 
3

(1−𝛼𝛼𝑖𝑖)𝑍𝑍𝑖𝑖
3+𝛼𝛼𝑖𝑖𝑍𝑍𝑖𝑖+1 

3      (17) 

noting that 𝑍𝑍𝑖𝑖 < 0 and 𝑍𝑍𝑖𝑖+1 < 0 for a fully submerged element. The distribution factor 𝛼𝛼𝑖𝑖∗ 
approaches 𝛼𝛼𝑖𝑖 as the depth of the element increases. The resulting force distributions are of the 
form 𝐹𝐹𝑖𝑖+1 = 𝐹𝐹𝛼𝛼𝑖𝑖∗ and 𝐹𝐹𝑖𝑖 = 𝐹𝐹(1 − 𝛼𝛼𝑖𝑖∗), where 𝐹𝐹 is any force or moment mentioned above. 

Before distributing the moment, it must be adjusted to compensate for the moment created when 
distributing the radial force component: 

    𝑀𝑀  =  𝑀𝑀0 − 𝐹𝐹𝑟𝑟𝛼𝛼𝑖𝑖∗ 𝑑𝑑𝑑𝑑     (18) 

Lastly, the heading and inclination angle must be applied to convert the loads into the global 
coordinate system: 

 

 
 
1 The cube exponent is used for smoothing and may be adjusted after further exploration. 
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 𝐹⃗𝐹𝐵𝐵,𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡cos𝛽𝛽𝑖𝑖 −sin𝛽𝛽𝑖𝑖
sin𝛽𝛽𝑖𝑖 cos𝛽𝛽𝑖𝑖

1
cos𝛽𝛽𝑖𝑖 − sin𝛽𝛽𝑖𝑖
sin𝛽𝛽𝑖𝑖 cos𝛽𝛽𝑖𝑖

1 ⎦
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 + 𝐹𝐹𝑟𝑟 cos𝜙𝜙𝑖𝑖

0
𝐹𝐹𝑙𝑙 cos𝜙𝜙𝑖𝑖 − 𝐹𝐹𝑟𝑟 sin𝜙𝜙𝑖𝑖

0
𝑀𝑀
0 ⎭

⎪
⎬

⎪
⎫

(1 − 𝛼𝛼𝑖𝑖∗)  

𝐹⃗𝐹𝐵𝐵,𝑖𝑖+1 =

⎣
⎢
⎢
⎢
⎢
⎡cos𝛽𝛽𝑖𝑖 − sin𝛽𝛽𝑖𝑖
sin𝛽𝛽𝑖𝑖 cos𝛽𝛽𝑖𝑖

1
cos𝛽𝛽𝑖𝑖 − sin𝛽𝛽𝑖𝑖
sin𝛽𝛽𝑖𝑖 cos𝛽𝛽𝑖𝑖

1 ⎦
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 + 𝐹𝐹𝑟𝑟 cos𝜙𝜙𝑖𝑖

0
𝐹𝐹𝑙𝑙 cos𝜙𝜙𝑖𝑖 − 𝐹𝐹𝑟𝑟 sin𝜙𝜙𝑖𝑖

0
𝑀𝑀
0 ⎭

⎪
⎬

⎪
⎫

𝛼𝛼𝑖𝑖∗  (20) 

These are the buoyancy loads from element 𝑖𝑖 that are to be added to nodes 𝑖𝑖 and node 𝑖𝑖 + 1. 

3.1.2 Buoyancy on Partially Submerged Element Sides 
For partially submerged elements (those that cross the waterplane), the buoyancy load is 
calculated based on the displaced volume of that element. For the purposes of this calculation, a 
variable ℎ is used to represent the distance along the element axis from the submerged node 𝑖𝑖 to 
the still-level waterplane. The cone’s radius at the point its centerline intersects the waterplane is 
𝑟𝑟ℎ = 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖 + ℎ𝑚𝑚𝑖𝑖. 

The hydrostatic load is calculated based on knowing the submerged portion of the element’s 
volume, 𝑉𝑉, and centroid location, 𝑟𝑟𝑐𝑐 and ℎ𝑐𝑐. The calculations are not valid for horizontal 
members (𝜙𝜙 = 90°), so HydroDyn does not permit horizontal or near-horizontal strip-theory 
members at the waterline. The calculation of these quantities for tapered and nontapered 
members are derived differently.  

For a tapered cylinder, the centroid characteristics are: 

   𝑉𝑉 = 𝜋𝜋
3𝑚𝑚𝑖𝑖

�𝑎𝑎ℎ𝑏𝑏ℎ𝑟𝑟ℎ cos𝜙𝜙𝑖𝑖 − 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
3 �    (21) 

   𝑟𝑟𝑐𝑐 = 0.75 𝑎𝑎ℎ𝑏𝑏ℎ𝑚𝑚𝑖𝑖𝑟𝑟ℎ
2 sin𝜙𝜙𝑖𝑖

𝐶𝐶1𝐶𝐶2
     (22) 

  ℎ𝑐𝑐 = 0.75 𝑎𝑎ℎ𝑏𝑏ℎ𝑟𝑟ℎ
2 cos𝜙𝜙𝑖𝑖+0.75 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖

4 𝐶𝐶1+𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖𝐶𝐶1𝐶𝐶2
𝑚𝑚𝑖𝑖𝐶𝐶1𝐶𝐶2

     (23) 

where: 

    𝑎𝑎ℎ𝑏𝑏ℎ = 𝑟𝑟ℎ
2

𝐶𝐶1
3/2 cos𝜙𝜙𝑖𝑖

     (24) 

    𝐶𝐶1 = 1 −𝑚𝑚𝑖𝑖
2 tan2 𝜙𝜙𝑖𝑖      (25) 

(19) 
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   𝐶𝐶2 = 𝑎𝑎ℎ𝑏𝑏ℎ𝑟𝑟ℎ cos𝜙𝜙𝑖𝑖 − 𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
3       (26) 

These equations hold whether the taper is positive or negative and also provide the desired effect 
when the definition of the submerged volume includes a negative-volume region (i.e., when the 
plate at node 𝑖𝑖 is only partially submerged); however, they are not defined for a nontapered 
cylinder. 

For a nontapered cylinder, the calculations are based on a truncated cylinder geometry:  

    𝑉𝑉 = 𝜋𝜋𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2 ℎ      (27) 

    𝑟𝑟𝑐𝑐 = 1
4
𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2 tan𝜙𝜙𝑖𝑖

ℎ
      (28) 

   ℎ𝑐𝑐 = 1
2
ℎ + 1

8
𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2 tan2 𝜙𝜙𝑖𝑖

ℎ
     (29) 

Once the displacement volume characteristics are known, the buoyancy force and moment are 
calculated based on the displaced volume and the horizontal offset of its centroid relative to node 
𝑖𝑖: 

   𝑥𝑥𝑐𝑐 = 𝑟𝑟𝑐𝑐 cos𝜙𝜙𝑖𝑖 + ℎ𝑐𝑐 sin𝜙𝜙𝑖𝑖     (30) 

Because the element is part of a larger member, only the portion of load resulting from the 
pressure around the side wall of the element should be used. The contribution from the bottom 
plate that would be exposed to the water if the element were in isolation must be subtracted (this 
is done in the second terms in 𝐹𝐹𝑙𝑙 and 𝑀𝑀0 below). The total displacement-based forces and 
moments from element 𝑖𝑖 acting about node 𝑖𝑖 are therefore: 

   𝐹𝐹𝑙𝑙 = 𝜌𝜌𝜌𝜌�𝑉𝑉 cos𝜙𝜙𝑖𝑖 + 𝜋𝜋𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2 𝑍𝑍𝑖𝑖�    (31) 

    𝐹𝐹𝑟𝑟 = −𝜌𝜌𝜌𝜌𝜌𝜌 sin𝜙𝜙𝑖𝑖     (32) 

   𝑀𝑀0 = 𝜌𝜌𝜌𝜌 �−𝑉𝑉𝑥𝑥𝑐𝑐 + 𝜋𝜋
4
𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
4 sin𝜙𝜙𝑖𝑖�    (33) 

These loads need to be distributed to nodes in a continuous way, even as elements transition in 
and out of the water. This is done by modifying the original centroid-based distribution 
according to the nodes’ elevations, such that the force or moment goes to zero when a node is at 
or above the waterplane. The element’s loads are distributed to the element’s lower node and to 
the node below that one, as depicted in Figure 4. Noting that 𝑍𝑍𝑖𝑖 < 0 and 𝑍𝑍𝑖𝑖+1 ≥ 0 for a partially 
submerged element, the modified distribution factor is calculated as2: 

 
 
2 The cube exponent is used for smoothing and may be adjusted after further exploration. 
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Figure 4. Loads on partially submerged element 𝒊𝒊 lumped at node 𝒊𝒊 then distributed to nodes 𝒊𝒊 and 

𝒊𝒊-1 

    𝛼𝛼𝑖𝑖∗ = (1−𝛼𝛼𝑖𝑖)𝑍𝑍𝑖𝑖
3

(1−𝛼𝛼𝑖𝑖)𝑍𝑍𝑖𝑖
3−𝛼𝛼𝑖𝑖𝑍𝑍𝑖𝑖+1 

3      (34) 

and the loads from element 𝑖𝑖 are distributed according to 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝛼𝛼𝑖𝑖∗ and 𝐹𝐹𝑖𝑖−1 = 𝐹𝐹(1 − 𝛼𝛼𝑖𝑖∗). 

As with the fully submerged case, the moment needs to be adjusted to account for the 
distribution of the radial force down the member. Because the forces are shifted down an element 
length, the corrected moment is: 

   𝑀𝑀  =  𝑀𝑀0 + 𝐹𝐹𝑟𝑟(1 − 𝛼𝛼𝑖𝑖∗) 𝑑𝑑𝑑𝑑     (35) 

The last step is to convert back into global coordinates based on the heading of the member’s 
incline, following the same approach as for the fully flooded elements (20). 

This approach to the buoyancy loads provides exact net buoyancy quantities but is limited to 
members that are either fully submerged or partially submerged. Transitioning between the two 
states—i.e., an end element of a member crossing the water plane—is not supported. The load 
distribution accuracy improves with finer discretizations. The computation process is done 
member by member and element by element, with each element adding forces to the applicable 
nodes. Joint nodes attached to multiple members will then see forces from each member. 

3.1.3 Buoyancy on Submerged Member Ends 
The buoyancy forces and moments on submerged member ends are calculated as follows: 

 𝐹⃗𝐹𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 ,1 =

⎩
⎪
⎨

⎪
⎧
𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 cos𝛽𝛽𝑖𝑖
𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 sin𝛽𝛽𝑖𝑖
𝐹𝐹𝑙𝑙 cos𝜙𝜙𝑖𝑖
−𝑀𝑀 sin𝛽𝛽𝑖𝑖
𝑀𝑀 cos𝛽𝛽𝑖𝑖

0 ⎭
⎪
⎬

⎪
⎫

, 𝐹⃗𝐹𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑁𝑁+1 =

⎩
⎪
⎨

⎪
⎧
−𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 cos𝛽𝛽𝑖𝑖
−𝐹𝐹𝑙𝑙 sin𝜙𝜙𝑖𝑖 sin𝛽𝛽𝑖𝑖
−𝐹𝐹𝑙𝑙 cos𝜙𝜙𝑖𝑖
𝑀𝑀 sin𝛽𝛽𝑖𝑖
−𝑀𝑀 cos𝛽𝛽𝑖𝑖

0 ⎭
⎪
⎬

⎪
⎫

   (36) 

where the axial force and moment terms are: 

    𝐹𝐹𝑙𝑙 = −𝜌𝜌𝜌𝜌 𝜋𝜋𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
2 𝑍𝑍𝑖𝑖      (37) 

    𝑀𝑀 = −𝜌𝜌𝜌𝜌 𝜋𝜋
4
𝑟𝑟𝑀𝑀𝑀𝑀,𝑖𝑖
4 sin𝜙𝜙𝑖𝑖     (38) 
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If the member is only partially submerged, then the buoyancy load on the upper end (𝑁𝑁 + 1) is 
instead set to zero. 

3.2 Multiple Potential-Flow Bodies 
HydroDyn now supports multiple potential-flow bodies that can move relative to each other. 
Each body can have its own set of frequency-dependent hydrodynamic data files (typically 
generated by WAMIT (Lee and Newman 2006); the hydrodynamic data files are assumed by 
HydroDyn to be in WAMIT format regardless), or when considering full hydrodynamic 
interaction, the multiple bodies can have one common set of hydrodynamic data files (calculated 
via what is called the “NBody” option in WAMIT). The approach is dictated in HydroDyn by a 
flag called NBodyMod. 

When NBodyMod is set to 1, this indicates full hydrodynamic interaction (coupling) between the 
𝑁𝑁 bodies. A single set of hydrodynamic data is used for the bodies, meaning coupling terms are 
included. The hydrodynamic data has 6𝑁𝑁 load components and 6𝑁𝑁 modes of motion (surge, 
sway, heave, roll, pitch, and yaw for each body). 

When NBodyMod is set to 2 or 3, coupling terms between the bodies are neglected. In these 
cases, each body will have a distinct set of hydrodynamic data for its own six loads and six 
modes of motion. The case with NBodyMod set to 2 requires frequency-domain potential-flow 
analyses to use bodies centered at the origin rather than at their displaced and rotated locations 
within the substructure. The offset of the bodies relative to the tower centerline is then applied 
through transformations performed within HydroDyn. This can be used to model large-volume 
bodies whose reference point is offset from the turbine tower. The case with NBodyMod set to 3 
requires the frequency-domain potential-flow analyses to use bodies already offset to their proper 
positions within the substructure. No further offsets are applied in HydroDyn. Neglecting 
hydrodynamic interaction between the bodies is often acceptable (depending on the volume of, 
and spacing between, the bodies) and reduces computational expense. 

Regardless of the NBodyMod setting, whenever a body has a nonzero heading relative to the 
substructure reference coordinate system, the hydrodynamic data needs to undergo a rotational 
transformation. If 𝜃𝜃 is the heading angle of the body, the rotation matrix from the global 
reference frame to the body’s heading is 

𝐑𝐑 = �
cos 𝜃𝜃 sin𝜃𝜃 0
− sin𝜃𝜃 cos 𝜃𝜃 0

0 0 1
� (39) 

The handling of Fourier-transform-based wave excitation, convolution-based wave radiation, and 
hydrostatics for multiple potential-flow bodies are described in the upcoming sections. Similar 
adjustments for state-space-based wave excitation and radiation for multiple potential-flow 
bodies have also been implemented but are excluded here for brevity. 

3.2.1 Wave Excitation 
Because wave-excitation coefficients do not involve any interaction between load components, 
no adjustments are required in how these coefficients are structured. For 𝑁𝑁 bodies, there are 6𝑁𝑁 
wave-excitation coefficients, six for each body. 
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𝑋⃗𝑋⏟
6𝑁𝑁

(𝜔𝜔,𝛽𝛽) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑋⃗𝑋1�

6

(𝜔𝜔,𝛽𝛽)

𝑋⃗𝑋2�
6

(𝜔𝜔,𝛽𝛽)

⋮
𝑋⃗𝑋𝑛𝑛�
6

(𝜔𝜔,𝛽𝛽)
⎭
⎪⎪
⎬

⎪⎪
⎫

= �

𝑋𝑋1(𝜔𝜔,𝛽𝛽)
𝑋𝑋2(𝜔𝜔,𝛽𝛽)

⋮
𝑋𝑋6𝑁𝑁(𝜔𝜔,𝛽𝛽)

�  (40) 

where 𝜔𝜔 is the wave frequency, 𝛽𝛽 is the wave heading and each body’s coefficients are: 

𝑋⃗𝑋𝑛𝑛(𝜔𝜔,𝛽𝛽) =

⎩
⎨

⎧𝑋𝑋1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)

𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)
⋮

𝑋𝑋6𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)⎭
⎬

⎫

body 𝑛𝑛

(41) 

The hydrodynamic data in WAMIT output files are oriented with the body, so the wave-
excitation vector must be transformed to give output in the global orientation frame: 

𝑋⃗𝑋𝑛𝑛(𝜔𝜔,𝛽𝛽) =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐑𝐑⊤  �

𝑋𝑋1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)
𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)
𝑋𝑋3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)

�

𝐑𝐑⊤  �
𝑋𝑋4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)
𝑋𝑋5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)
𝑋𝑋6𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽)

�
⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧𝑋𝑋1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) cos𝜃𝜃 − 𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) sin𝜃𝜃
𝑋𝑋1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) sin𝜃𝜃 + 𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) cos 𝜃𝜃

𝑋𝑋3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝜔𝜔,𝛽𝛽]
𝑋𝑋4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) cos𝜃𝜃 − 𝑋𝑋5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) sin𝜃𝜃
𝑋𝑋4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) sin𝜃𝜃 + 𝑋𝑋5𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔,𝛽𝛽) cos 𝜃𝜃

𝑋𝑋6𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽) ⎭
⎪⎪
⎬

⎪⎪
⎫

(42) 

 
When NBodyMod is set to 2, additional adjustments are needed to account for the offsets and 
heading of each body because the wave-excitation data in this case is based on each body being 
centered and unrotated at the origin. The offset is achieved with a phase shift in the wave-
excitation frequency components to adjust the incident wave point from the global origin to a 
different (undisplaced) location (𝑋𝑋,𝑌𝑌). For first-order excitation, this phase shift is: 

𝐹𝐹𝑋𝑋𝑋𝑋
(1)(𝜔𝜔,𝑋𝑋,𝑌𝑌) = 𝑒𝑒−𝑗𝑗 𝑘𝑘(𝜔𝜔) (X cos𝛽𝛽(𝜔𝜔)+Y sin𝛽𝛽(𝜔𝜔)) (43) 

where 𝑘𝑘(𝜔𝜔) is the wave number. The heading adjustment is made by using 𝛽𝛽∗ = 𝛽𝛽 − 𝜃𝜃 when 
identifying wave-excitation coefficients from the hydrodynamic tables (for the other NBodyMod 
cases, 𝛽𝛽∗ = 𝛽𝛽 and 𝑋𝑋 = 𝑌𝑌 = 0). 

The overall adjustment for any six-component set of first-order wave-excitation coefficients is: 
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 𝑋⃗𝑋𝑛𝑛(𝜔𝜔,𝛽𝛽) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑋𝑋1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) cos 𝜃𝜃 − 𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) sin𝜃𝜃
𝑋𝑋1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) sin𝜃𝜃 + 𝑋𝑋2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) cos𝜃𝜃

𝑋𝑋3𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗)
𝑋𝑋4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) cos 𝜃𝜃 − 𝑋𝑋5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) sin𝜃𝜃
𝑋𝑋4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) sin𝜃𝜃 + 𝑋𝑋5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) cos 𝜃𝜃

𝑋𝑋6𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔,𝛽𝛽∗) ⎭
⎪⎪
⎬

⎪⎪
⎫

𝐹𝐹𝑋𝑋𝑋𝑋
(1)(𝜔𝜔,𝑋𝑋,𝑌𝑌) (44) 

Once the first-order wave-excitation coefficients have been adjusted, the time-dependent wave-
excitation forces are calculated just as they were in prior versions of HydroDyn. That is, the first-
order wave-excitation coefficients are multiplied by the discrete Fourier transform of the time-
dependent wave elevation at the global origin and an inverse discrete Fourier transform is used to 
calculate the wave-excitation load time series for each load component (size 6𝑁𝑁 for multiple 
bodies). 

The application of multiple bodies for second-order wave excitation follows an analogous 
approach to that for first-order excitation.  

3.2.2 Wave Radiation 
The handling of the wave-radiation forces depends on the setting of NBodyMod. 

When NBodyMod is 1 (multiple bodies with full hydrodynamic coupling), two nonsparse global 
matrices are needed for added mass (A) and damping (B). Each is of size 6𝑁𝑁 × 6𝑁𝑁 to represent 
the interactions of every mode of motion of every body:  

𝐀𝐀⏟
6𝑁𝑁×6𝑁𝑁

(𝜔𝜔) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐀𝐀11�
6×6

(𝜔𝜔) 𝐀𝐀12�
6×6

(𝜔𝜔) ⋯ 𝐀𝐀1𝑁𝑁�
6×6

(𝜔𝜔)

𝐀𝐀21�
6×6

(𝜔𝜔) 𝐀𝐀22�
6×6

(𝜔𝜔) ⋯ 𝐀𝐀2𝑁𝑁�
6×6

(𝜔𝜔)

⋮ ⋮ ⋱ ⋮
𝐀𝐀𝑁𝑁1�
6×6

(𝜔𝜔) 𝐀𝐀𝑁𝑁2�
6×6

(𝜔𝜔) ⋯ 𝐀𝐀𝑁𝑁𝑁𝑁�
6×6

(𝜔𝜔)
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(45) 

where 𝜔𝜔 is the body oscillation frequency and each diagonal submatrix is the 6×6 matrix of each 
body (the effect of the body’s modes of motion on itself) and each off-diagonal submatrix 
represent couplings between bodies (the effect of one body on another). 

When NBodyMod is 2 or 3, (multiple bodies treated as hydrodynamically independent), there are 
no off-diagonal submatrices in the global added mass or damping matrices and these matrices are 
instead just composed of individual matrices for each body, for example: 

𝐀𝐀⏟
6𝑁𝑁×6𝑁𝑁

(𝜔𝜔) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐀𝐀1�
6×6

(𝜔𝜔) 0⏟
6×6

⋯ 0⏟
6×6

0⏟
6×6

𝐀𝐀2�
6×6

(𝜔𝜔) ⋯ 0⏟
6×6

⋮ ⋮ ⋱ ⋮
0⏟
6×6

0⏟
6×6

⋯ 𝐀𝐀𝑁𝑁�
6×6

(𝜔𝜔)
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(46) 
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In this situation, each body’s radiation calculations are handled independently through 𝑁𝑁 distinct 
6 × 6 matrix calculations. 

Because the wave-radiation retardation-kernel matrix is calculated from the frequency-dependent 
damping matrix, its structure follows that of the damping matrix. For coupled bodies, it is a 
single global 6𝑁𝑁 × 6𝑁𝑁 matrix. For uncoupled bodies, it is 𝑁𝑁 distinct 6 × 6 matrices. 

In all NBodyMod cases, when a body’s heading is nonzero, a correction must be made to 
transform the matrices from local to global coordinates. This can be done by transforming each 
6 × 6 added mass and damping submatrix individually. In the following transformation, 𝐑𝐑𝑖𝑖 and 
𝐑𝐑𝑗𝑗 are the rotation matrices for the headings of body 𝑖𝑖 and body 𝑗𝑗, respectively. When 
NBodyMod is 2 or 3, only the diagonal submatrices are used so 𝑖𝑖 = 𝑗𝑗.  

𝐀𝐀𝑖𝑖𝑖𝑖�
6×6

(𝜔𝜔) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐑𝐑𝑖𝑖
⊤ �
𝑎𝑎11(𝜔𝜔) 𝑎𝑎12(𝜔𝜔) 𝑎𝑎13(𝜔𝜔)
𝑎𝑎21(𝜔𝜔) 𝑎𝑎22(𝜔𝜔) 𝑎𝑎23(𝜔𝜔)
𝑎𝑎31(𝜔𝜔) 𝑎𝑎32(𝜔𝜔) 𝑎𝑎33(𝜔𝜔)

�

𝑖𝑖𝑖𝑖

 𝐑𝐑𝑗𝑗 𝐑𝐑𝑖𝑖
⊤ �
𝑎𝑎14(𝜔𝜔) 𝑎𝑎15(𝜔𝜔) 𝑎𝑎16(𝜔𝜔)
𝑎𝑎24(𝜔𝜔) 𝑎𝑎25(𝜔𝜔) 𝑎𝑎26(𝜔𝜔)
𝑎𝑎34(𝜔𝜔) 𝑎𝑎35(𝜔𝜔) 𝑎𝑎36(𝜔𝜔)

�

𝑖𝑖𝑖𝑖

𝐑𝐑𝑗𝑗

𝐑𝐑𝑖𝑖
⊤ �
𝑎𝑎41(𝜔𝜔) 𝑎𝑎42(𝜔𝜔) 𝑎𝑎43(𝜔𝜔)
𝑎𝑎51(𝜔𝜔) 𝑎𝑎52(𝜔𝜔) 𝑎𝑎53(𝜔𝜔)
𝑎𝑎61(𝜔𝜔) 𝑎𝑎62(𝜔𝜔) 𝑎𝑎63(𝜔𝜔)

�

𝑖𝑖𝑖𝑖

𝐑𝐑𝑗𝑗 𝐑𝐑𝑖𝑖
⊤ �
𝑎𝑎44(𝜔𝜔) 𝑎𝑎45(𝜔𝜔) 𝑎𝑎46(𝜔𝜔)
𝑎𝑎54(𝜔𝜔) 𝑎𝑎55(𝜔𝜔) 𝑎𝑎56(𝜔𝜔)
𝑎𝑎64(𝜔𝜔) 𝑎𝑎65(𝜔𝜔) 𝑎𝑎66(𝜔𝜔)

�

𝑖𝑖𝑖𝑖

𝐑𝐑𝑗𝑗
⎦
⎥
⎥
⎥
⎥
⎥
⎤

(47) 

Wave radiation calculations in the time domain for multiple bodies requires applying the 
standard linear hydrodynamics (Cummins) equation to the appropriate form of the coefficients. 
The generic equation for wave radiation loads is: 

𝐹⃗𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = −𝐀𝐀∞ 𝑞̈⃗𝑞(𝑡𝑡) −� 𝐊𝐊(𝑡𝑡 − 𝜏𝜏) 𝑞̇⃗𝑞(𝜏𝜏) 𝑑𝑑𝑑𝑑
𝑡𝑡

0
(48) 

where 𝐀𝐀∞ = 𝐀𝐀(∞) is the added mass matrix at infinite frequency and each element of the wave 
radiation retardation kernel, 𝐊𝐊(𝑡𝑡), is calculated using a cosine transform: 

𝐊𝐊𝑖𝑖𝑖𝑖(𝑡𝑡) =
2
𝜋𝜋
� 𝐁𝐁𝑖𝑖𝑖𝑖(𝜔𝜔) cos(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑
∞

0
(49) 

If hydrodynamic interactions between bodies are included (NBodyMod set to 1), Eq. 48 is 
applied to the global vectors and matrices to give the full list of 6𝑁𝑁 radiation forces/moments: 

⎣
⎢
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⎢
⎡𝐹⃗𝐹1

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)
𝐹⃗𝐹2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)

⋮
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⎥
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 𝑑𝑑𝑑𝑑𝑡𝑡
0         (50) 
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For bodies with independent hydrodynamics (NBodyMod set to 2 or 3), Eq. 48 is applied to each 
body separately; each body undergoes a process that is essentially the same as the previously 
available single-body radiation force calculation.  

3.2.3 Hydrostatics 
Hydrostatics data and calculations follow the form of the wave-radiation matrices as determined 
by 𝑁𝑁 and NBodyMod. When NBodyMod is 1, the hydrostatic matrix is expanded to have 6𝑁𝑁 
rows and columns. When NBodyMod is 2 or 3, distinct hydrostatic matrices are used for each 
body. Each row or column of the hydrostatic coefficient matrix/matrices corresponds to a load 
component or mode of motion in the respective body’s local coordinate system. Accordingly, the 
hydrostatic submatrices, 𝑪𝑪𝑖𝑖𝑖𝑖, are transformed similarly to the added mass and damping matrices: 

𝐂𝐂𝑖𝑖𝑖𝑖�
6×6

=
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⎢
⎢
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⊤ �
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⎥
⎤

(51) 

Because there is never hydrostatic coupling between bodies (𝐂𝐂𝑖𝑖𝑖𝑖 = 0 when 𝑖𝑖 ≠ 𝑗𝑗), no further 
change is needed in how hydrostatic forces are calculated, regardless of the NBodyMod setting. 
The hydrostatic matrix is multiplied by the displacement/rotation vector/vectors in global 
coordinates after the hydrostatic matrix has been expressed in global coordinates. 

𝐹⃗𝐹𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) = 𝐹⃗𝐹0
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐂𝐂 𝑞⃗𝑞(𝑡𝑡) (52) 

where—for each body—the hydrostatic force and moments at the platform’s undisplaced 
position are changed to account for each body’s offset position: 

  𝐹⃗𝐹0
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝜌𝜌𝜌𝜌∀0  

⎩
⎪
⎨

⎪
⎧

0
0
1

(𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑌𝑌)
−(𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑋𝑋)

0

 

⎭
⎪
⎬

⎪
⎫

        (53) 

where ∀0 is the undisplaced volume of the body and 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶 are the undisplaced body’s 
center of buoyancy relative to the global origin. 
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4 Coupling 
The OpenFAST glue code—which connects the modules to enable coupled aero-hydro-servo-
elastic interactions—was extended to ensure the new functionality within SubDyn and 
HydroDyn is properly coupled together with the other OpenFAST modules. The new 
functionality applies to both nonlinear time-domain solutions and full-system linearization. 

4.1 Module-to-Module Coupling 
The modules of OpenFAST (SubDyn, HydroDyn, and so on) correspond to different physical 
domains of the coupled aero-hydro-servo-elastic solution, most of which are separated by spatial 
boundaries. Figure 5 shows how the control volumes associated with each module for floating 
offshore wind turbines change with the addition of floating platform flexibility and member-level 
loads. Though not shown, finite-element blade structural dynamics are optionally available 
through the BeamDyn module. Previously, SubDyn had been used only for fixed-bottom wind 
turbines, but this has been changed to allow SubDyn to be enabled for floating offshore wind 
turbines. 

When SubDyn is enabled for floating offshore wind turbines, the coupling between the flexible 
substructure and the wind turbine, the coupling between the flexible substructure and 
hydrodynamic loads, and the coupling between the flexible substructure and the mooring 
reaction loads is modeled in the OpenFAST glue code as follows (the first two items are identical 
to coupling previously available for bottom-fixed offshore wind turbines, but the last item is 
new): 

• SubDyn receives the motions (including accelerations) of the boundary nodes at the top 
of the substructure (transition piece), which is coincident with the tower base/platform 
from ElastoDyn, and ElastoDyn receives the substructure reaction loads from SubDyn at 
each coupling time step. It is also possible to model the entire support structure with 
SubDyn such that the coupling to ElastoDyn is at the yaw bearing/nacelle (eliminating 
the tower and rigid platform from ElastoDyn), but geometric nonlinearities are then 
absent from the support structural dynamics. 

• HydroDyn receives the motions (including accelerations) of the flexible substructure 
from SubDyn, and SubDyn receives the hydrodynamic loads from HydroDyn at each 
coupling time step. 

• The mooring module (MAP++, MoorDyn, or FEAMooring) receives the position of the 
fairleads from SubDyn, and SubDyn receives the reaction loads (tensions) at each 
fairlead from the mooring module at each coupling time step. 
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Figure 5. Change in OpenFAST control volumes for floating offshore wind turbines—before (top) 

and after (bottom) (BeamDyn not shown) 

The inputs and outputs of ElastoDyn, HydroDyn, SubDyn, and MAP++ pertinent to floating 
substructure coupling are summarized in Table 1 (the internal module states also shown in Table 
1 are discussed in the next subsection). Each of these inputs and outputs reside on a spatial 
boundary, which in the FAST modularization framework are defined in terms of a mesh. The 
module-to-module, input-output coupling relationships in the OpenFAST glue code are algebraic 
and include spatial mesh-to-mesh mappings. 
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Table 1. States, Inputs, and Outputs Pertinent to Floating Substructures 

Module States Inputs Outputs 
ElastoDyn 
(ED) 

• Position and orientation 
and translational and 
rotational velocities of 
the transition piece 
(continuous states) 

• Applied point forces and 
moments lumped on the 
transition piece 

• Translational displacements, 
orientations, translational and 
rotational velocities, and 
translational and rotation 
accelerations of the transition 
piece 

• User-selected structural 
outputs 

HydroDyn 
(HD) 

• State-space-based wave-
excitation states 
(continuous states) 

• State-space-based wave-
radiation states 
(continuous states) 

• Translational 
displacements, orientations, 
translational and rotational 
velocities, and translational 
and rotational accelerations 
of strip-theory analysis 
nodes distributed along the 
substructure 

• Translational 
displacements, orientations, 
translation and rotational 
velocities, and translational 
and rotational accelerations 
of potential-flow bodies 

• Disturbance of wave 
elevation at the platform 
reference point 

• Hydrodynamic-applied point 
forces and moments at strip-
theory analysis nodes 
distributed along the 
substructure 

• Hydrodynamic-applied point 
forces and moments at each 
potential-flow body 

• User-selected hydrodynamic 
outputs 

SubDyn 
(SD) 

• Displacements and 
velocities of the 
substructure Craig-
Bampton modes 
(continuous states) 

• Translational 
displacements, orientations, 
translational and rotational 
velocities, and translational 
and rotation accelerations 
of the transition piece 

• Applied point forces and 
moments at finite-element 
nodes distributed along the 
substructure 

• Reaction point forces and 
moments lumped at the 
transition piece 

• Translational displacements, 
orientations, translational and 
rotational velocities, and 
translational and rotational 
accelerations of finite-
element nodes distributed 
along the substructure 

• User-selected structural 
outputs 

MAP++ 
(MAP) 

• Horizontal and vertical 
tensions at the fairlead of 
each mooring line 
(constraint states) 

• Positions of each connect 
node (constraint states 
for multisegmented 
mooring 

• Translational displacements 
of each fairlead 

• Reaction point forces 
(tensions) lumped at each 
fairlead 

• User-selected mooring 
outputs 
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4.2 Full-System Linearization 
While most physics involved in wind energy are linear, linearization of the underlying nonlinear 
wind-system equations is often important for understanding the system response and exploiting 
well-established methods and tools for analyzing linear systems. Previous OpenFAST 
linearization work focused on: (1) structuring the OpenFAST source code to enable linearization; 
(2) developing the general approach to linearizing the mesh mapping within the module-to-
module, input-output coupling relationships, including rotations; (3) linearizing core (but not all 
features) of the land-based and floating offshore modules of OpenFAST for rigid substructures 
(InflowWind, AeroDyn, ServoDyn, ElastoDyn, BeamDyn, HydroDyn, MAP++) and their 
coupling; and (4) verifying this implementation by applying the tool to sample cases (Jonkman 
and Jonkman 2016; Jonkman, Jonkman, and Platt forthcoming; Jonkman et al. 2018; Johnson et 
al. 2019). This work extends these efforts to SubDyn, the recent extensions to HydroDyn, and 
their coupling. 

The overall linearization approach that the FAST modularization framework was designed to 
support is explained in Jonkman (2013) and is consistent with the present implementation. 
Details on prior linearization development and verification is explained in Jonkman and Jonkman 
(2016); Jonkman, Jonkman, and Platt (forthcoming); Jonkman et al. (2018); and Johnson et al. 
(2019). Without replicating most of the information, this section uses the same approach and 
nomenclature of Jonkman and Jonkman (2016), Jonkman, Jonkman, and Platt (forthcoming), 
Jonkman et al. (2018), and Johnson et al. (2019), adding details about the linearization of the 
new functionality in OpenFAST to model floating substructure flexibility and member-level 
loads. While not the focus of the present work, due the addition of SubDyn to the list of 
linearizable modules within OpenFAST, the new linearization functionality of OpenFAST also 
applies for the first time to bottom-fixed offshore wind turbines with flexible substructures. 

The linearization of OpenFAST involves: (1) finding an operating point (OP); (2) linearizing the 
underlying nonlinear equations of each module about the OP; (3) linearizing the module-to-
module input-output coupling relationships in the OpenFAST glue code about the OP; and (4) 
combining all linearized matrices into the full-system linear state-space model and exporting 
those matrices and the OP to a file. Each step is highlighted in the following subsections. 

4.2.1 Operating Point Determination 
OP (or fixed-point) determination is an important first step in the linearization process because a 
linear representation of a nonlinear system is only valid for small deviations (perturbations) from 
an OP. In the current release of OpenFAST, an OP can be defined by given initial conditions 
(time zero) or a given time (or times) in the nonlinear time-marching process. Work is ongoing 
in parallel to the present effort to automate the OP determination, including trim of control inputs 
(but is out of the scope of this report). It is usually important for the OP to be a static-equilibrium 
condition (for parked/idling turbines) or steady-state condition (for operating turbines); 
otherwise, it may have an undesirable effect on the linear system matrices. 

An OP is defined by given values for the continuous time states, op
x , discrete-time states, d

op
x , 

inputs, op
u , and time, op

t , for each module. Equations 1a, 1c, and 1d from Jonkman (2013) can 
then be used to calculate the OP values of the first time derivative of the continuous-time states, 
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op
x , constraint (algebraic) states, op

z , and outputs, op
y , for each module. Each of these variables 

can be perturbed (represented by ∆ ) about their respective OP values as given by Eq. 11 from 
Jonkman (2013) (e.g., for module inputs op

u u u= + ∆ ). Jonkman and Jonkman (2016) and 
Jonkman, Jonkman, and Platt (forthcoming) clarify how this operation is extended to rotations 
(orientations) in three dimensions, which do not reside in a linear space. The number of states, 
inputs and outputs (i.e., the size of the vectors x , dx , z , u  and y ) depend on the features 
enabled in OpenFAST. 

4.2.2 Module Linearization 
As explained in Jonkman (2013), the FAST modularization framework supports a very general 
(need not be linear) state-space formulation, with any combination of continuous-time-state, 
discrete-time-state, constraint- (algebraic-) state, other- (e.g., logical) state, and output equations; 
however, for a module to support linearization, the formulation is limited to a hybrid semiexplicit 
differential-algebraic equation of index 1, which has the following limitations: (1) the 
continuous-time-state derivatives and discrete-time-state updates must be written as an explicit 
function of the states, inputs, and parameters; (2) the constraints must be of index 1; and (3) 
other states are used only for time-integration or when acting as parameters in the linearization 
process. 

To support linearization, a module must also be able to export Jacobian matrices for the state and 
output equations with respect to the states and inputs. The OpenFAST module states, inputs, and 
outputs kept in the linearization process for the floating substructure flexibility and member-level 
load features linearized to date are summarized in Table 1. The OpenFAST module features 
linearized to date include only continuous-time and constraint states (no features with discrete-
time states have yet been linearized). 

The linearized form of a general module is given by Eq. 12 and 13 from Jonkman (2013); the 
forms for the land-based modules InflowWind, AeroDyn, ServoDyn, ElastoDyn, and BeamDyn 
are given in Jonkman and Jonkman (2016) and Jonkman, Jonkman, and Platt (forthcoming) and 
the forms for the prior linearization of offshore modules HydroDyn and MAP++ are given in 
Jonkman et al. (2018). 

When adding floating substructure flexibility and member-level loads, the linearization of 
MAP++ is identical to what is given in Jonkman et al. (2018) and the linearization of HydroDyn 
is nearly identical to Jonkman et al. (2018), except that the state, input, and output vectors are of 
different size due to the existence of multiple potential-flow bodies (compare Table 1 in this 
report with Table 1 from Jonkman et al. (2018). The resulting HydroDyn Jacobians contain the 
linearized contributions from: (1) state-space-based wave excitation for multiple potential-flow 
bodies; (2) hydrodynamic added mass; (3) state-space-based wave-radiation damping for 
multiple potential-flow bodies; (4) hydrostatic restoring (including from the strip-theory 
solution); and (5) linearized viscous drag. The linearization of SubDyn is new and given next. 

The SubDyn module has continuous-time states, there are no restrictions to linearization, and the 
linearization form of the equations of motion and output equations is given by: 

   ( ) ( ) ( ) ( ) ( )SD SD SD SD SDx A x B u∆ ∆ ∆= +     (54a) 
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   ( ) ( ) ( ) ( ) ( )SD SD SD SD SDy C x D u∆ ∆ ∆= +     (54b) 

Because SubDyn is inherently linear already, the linearization of SubDyn is straightforward. The 
continuous-state matrix, input matrix, continuous-state output matrix, and the input-transmission 
matrix are the Jacobians of the state and output equations relative to the states and inputs about 
the OP. The Jacobians of the state equations are implemented analytically and the Jacobians of 
the output equations are computed numerically via a central-difference perturbation technique, as 
shown in Eq. 55, which uses nomenclature from Damiani, Jonkman, and Hayman (2015)—
where mΩ  is a diagonal matrix of eigenfrequencies of the retained C-B modes, ς  is a diagonal 
matrix of C-B mode damping ratios, mBM  is a partition of the substructure mass matrix after 
applying boundary constraints, and T

mΦ  is the transpose of the matrix containing the retained C-B 
eigenmodes—and where ( )SDX  is the continuous-state functions and ( )SDY  is the output functions 
of SubDyn. The numerical processing of the output equations, which are already in a linear form, 
was selected for ease in processing the user-selected structural outputs (to minimize 
bookkeeping). For inputs that are rotations in three dimensions (i.e., u Λ=  and u∆ ∆θ=

 ), it is 

implied that ( ) ( )SD SD
opu u∆+ , ( ) ( )SD SD

opu u∆−  and ( )SD2 u∆  are written as ( )( ) ( )( )SD SD1
op

f f∆Λ ∆Λ Λ ∆θ− +


, 

( )( ) ( )( )SD SD1
op

f f∆Λ ∆Λ Λ ∆θ− −


 and ( )HD2∆θ


, respectively. In Eq. 55a and 53 b, the column order is 

dictated by the order of SubDyn states and inputs and 0  and I  are appropriately sized zero and 
identity matrices, respectively. For the numerically computed Jacobians, the default perturbation 
sizes are hard-coded within SubDyn (but can be customized by recompiling) and are ≈0.035 for 
states, ≈0.035 m for translational inputs, 2˚ for rotational inputs, ≈0.035 N for force inputs and 
≈0.035 N-m for moment inputs. The Jacobians contain the contributions from mass, stiffness and 
damping of the substructure. 

  ( )
( )SD

SD
2

op m m

0 IXA
x 2Ω ςΩ

 ∂
= =  
∂ − −  

  (55a) 

  ( )
( )SD

SD
T

op mB m

0 0 0XB
u 0 M Φ

 ∂
= =  
∂ −  

  (55b) 

 ( )
( ) ( ) ( ) ( )SD
SD

op op op op op opSD

op

Y x x,u ,t Y x x,u ,tYC
x 2 x

∆ ∆

∆

+ − −∂
= =
∂

   (55c) 

 ( )
( ) ( ) ( ) ( )SD
SD

op op op op op opSD

op

Y x ,u u,t Y x ,u u,tYD
u 2 u

∆ ∆

∆

+ − −∂
= =
∂

   (55d) 
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4.2.3 Module-to-Module Coupling Linearization 
The general approach to linearizing the mesh mapping within the module-to-module, input-
output coupling relationships within OpenFAST, including rotations, is detailed in Jonkman and 
Jonkman (2016) and Jonkman, Jonkman, and Platt (forthcoming). 

The linearized input-output transformation functions, U , are given by Eq. 8 from Jonkman and 
Jonkman (2016) or Eq. 15 from Jonkman (2013), repeated in Eq. 56 for convenience. 

  
op op

U U0 u y
u y

∆ ∆∂ ∂
= +
∂ ∂

 with 
op

U 0
u

∂
≠

∂ 
    (56) 

As is evident from Table 1 and from Jonkman et al. (2018), the InflowWind, ServoDyn, 
ElastoDyn, AeroDyn, BeamDyn, HydroDyn, SubDyn, and MAP++ modules were developed so 
that for the most part—other than mapping between independent spatial discretizations—the 

input of one module equals the output of another. It follows that with 
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, the Jacobian matrices evaluated at the OP from Eq. 56 for 

these seven modules are given by Eq. 57, where the sub-Jacobian matrices are composed of I s, 
0 s, and the linearized matrices from the mapping transfers given in Jonkman and Jonkman 
(2016) and Jonkman, Jonkman, and Platt (forthcoming). 
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Because of their large size, the sub-Jacobian matrices are not shown here, but are described 
qualitatively instead: 

• The first, second, fourth, and fifth equations of Eq. 56 for InflowWind inputs, ( )IfW0 U= , 
ServoDyn inputs, ( )SrvD0 U= , BeamDyn inputs, ( )BD0 U= , and AeroDyn inputs, ( )AD0 U= , 
are described in Jonkman and Jonkman (2016), Jonkman, Jonkman, and Platt 
(forthcoming), and Jonkman et al. (2018). 

• The third equation of Eq. 56 for ElastoDyn inputs, ( )ED0 U= , is described in Jonkman and 
Jonkman (2016), Jonkman, Jonkman, and Platt (forthcoming), and Jonkman et al. (2018), 
except that when substructure flexibility is enabled, the equation now also includes terms 
expressing the contributions of SubDyn. That is, this equation expresses that the applied 
point force and moment perturbations distributed along the blades and tower as input to 
ElastoDyn are derived from the aerodynamic-applied line (per-unit length) force and 
moment perturbations distributed along the blades and tower as output from AeroDyn. 
This linearized load-mapping transfer also depends on the translational-displacement 
perturbations of analysis nodes along the blades and tower output from ElastoDyn. And 
when BeamDyn is enabled, point force and moment perturbations on the hub as input to 
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ElastoDyn are derived from the blade-root reaction point force and moment output from 
BeamDyn, which also depends on the translational-displacement perturbation of the hub 
reference point output from ElastoDyn. Additionally, the blade-pitch-angle-commands, 
nacelle-yaw-moment, and generator-torque perturbations as input to ElastoDyn are 
derived from the equivalent outputs from ServoDyn. The point force and moment 
perturbations on the transition piece as input to ElastoDyn are derived either from outputs 
of SubDyn or HydroDyn and MAP++, depending on whether the substructure is modeled 
flexibly or rigidly, respectively. When the substructure is modeled flexibly, the point 
force and moment perturbations on the transition piece as input to ElastoDyn are derived 
from the reaction point force and moment perturbations at the transition piece as output 
from SubDyn, which also depends on the translational-displacement perturbation of the 
transition piece output from ElastoDyn. When the substructure is modeled rigidly (within 
ElastoDyn), point force and moment perturbations on the transition piece as input to 
ElastoDyn are derived from the hydrodynamic-applied point force and moment 
perturbations distributed along the substructure as output from HydroDyn and the 
reaction point forces (tensions) lumped at each fairlead as output from MAP++, which 
also depends on the translational-displacement perturbation of the transition piece output 
from ElastoDyn. 

• The sixth equation of Eq. 56 for HydroDyn inputs, ( )HD0 U= , expresses that the 
translational displacement, orientation, translational and rotational velocity, and 
translational and rotational acceleration perturbations of analysis nodes distributed along 
the floating platform as input to HydroDyn are derived from motion outputs either from 
SubDyn or ElastoDyn, depending on whether the substructure is modeled flexibly or 
rigidly, respectively. For the former, the motion outputs at finite-element nodes 
distributed across the substructure from SubDyn are used; for the latter, the motion 
outputs at the transition piece from ElastoDyn are used. 

• The seventh equation of Eq. 56 for SubDyn inputs, ( )SD0 U= , expresses that translational 
displacement, orientation, translational and rotational velocity, and translational and 
rotational acceleration perturbations of the transition piece as input to SubDyn are 
derived from the motion outputs at the transition piece from ElastoDyn. Additionally, the 
applied point force and moment perturbations at finite-element nodes distributed along 
the substructure as input to SubDyn are derived from the hydrodynamic-applied point 
force and moment perturbations distributed along the substructure as output from 
HydroDyn and the reaction point forces (tensions) lumped at each fairlead as output from 
MAP++, which also depend on the translation-displacement perturbation of the finite-
element nodes distributed across the substructure from SubDyn. 

• The eighth equation of Eq. 56 for MAP++ inputs, ( )MAP0 U= , expresses that the 
translational displacement perturbations of each fairlead as input to MAP++ are derived 
from the motion outputs either from SubDyn or ElastoDyn, depending on whether the 
substructure is modeled flexibly or rigidly, respectively. For the former, the motion 
outputs at finite-element nodes distributed across the substructure from SubDyn are used; 
for the latter, the motion outputs at the transition piece from ElastoDyn are used. 

The Jacobian, 
op

U
u

∂
∂ 

, has ones along its entire diagonal and it is easily shown that its determinant 

from Eq. 57 is nonzero. 
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4.2.4 Final Matrix Assembly 
Once all individual modules and input-output relationships are linearized about the OP, the 
linearized model of the complete coupled system can be assembled. Linearization of the full-
system model produces a linear state-space model representation of the complete nonlinear 
system about the OP, including the influence of system state and input perturbations on the 
system response and outputs. The general linearized form of the complete coupled system is 

given by Eq. 18 and 19 from Jonkman (2013). With 
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, the form for the OpenFAST 

features linearized to date (without discrete-time states and with ElastoDyn, BeamDyn, and 
HydroDyn as the only modules with continuous-time states) is given by Eq. 58, where u∆ +  is the 
additional input perturbations (explained further in Jonkman (2013)). 

    x A x B u∆ ∆ ∆ += +      (58a) 

    y C x D u∆ ∆ ∆ += +      (58b) 

The full-system state-space matrices are given in Eq. 59, where 
opG —explained more in 

Jonkman (2013) for the general case—for the OpenFAST linearization to date is given by Eq. 
59. The matrix 

opG  has ones along its entire diagonal and it is easily shown that its determinant 

from Eq. 59 is nonzero, which means that the matrix inverse, 
1

opG
−

 
 

 from Eq. 59, exists and is 

bounded in the neighborhood around the OP. 
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with 
opG 0≠

The input-transmission matrices impact all matrices of the linearized coupled system, 
highlighting the important role played by direct feedthrough of input to output in the coupled 
system response. For example, while the continuous-state matrix of ElastoDyn, ( )EDA , contains 
mass, stiffness, and damping only directly associated with the structural model of the wind 
turbine and tower, the full-system continuous state matrix, A , contains mass, stiffness, and 
damping associated with coupled aero-hydro-servo-elastics, including the wind turbine, tower, 
substructure and mooring system for floating offshore wind turbines. 

When the linearized full-system matrices A , B , C , and D  are exported to a file by OpenFAST, 
the additional input perturbations, u∆ + , can be chosen by the user to be: (1) the inputs of all 
modules; (2) none of the module inputs (removing B  and D  from the file); or (3) a standard 
subset of these inputs, which include the standard wind turbine control inputs of nacelle-yaw 
moment, generator torque, and blade-pitch-angle commands (both independent and rotor-
collective); the standard wind-inflow disturbances of horizontal wind speed, power-law shear 
exponent, and wind-propagation direction; and the standard incident-wave disturbance of wave 
elevation. Likewise, the output perturbations, y∆ , can be chosen by the user to be: (1) the 
outputs of all modules; (2) none of the module outputs (removing C  and D  from the file); or (3) 
only the subset of output variables selected by the user through the OpenFAST module input 
files. Regardless of what the user selects to be exported to a file, all of the module inputs and 
outputs are used to form the linearized full-system matrices in Eq. 59, but only a subset of these 
matrices are exported based on the user selection. 

(60)
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5 Conclusions 
This report presents the development of new capabilities in OpenFAST to model floating 
substructure flexibility and member-level loads to enable the design and optimization of the 
next-generation floating wind technologies that show promise to be streamlined, flexible, and 
cost-effective. Based on the structural dynamic and hydrodynamic modeling approaches and 
their coupling qualitatively presented in Jonkman et al. (2019), the mathematical details needed 
to understand and apply them correctly have been presented. It is envisioned that the new 
capability in OpenFAST will enable the design and optimization of advanced floating wind 
technologies. This implementation is part of a larger effort at NREL to develop an open-source, 
multifidelity systems-analysis capability for floating offshore wind turbine analysis and 
optimization that captures the relevant physics and costs that drive designs and trade-offs. 

Verification of the source-code implementation is ongoing, and results will be presented in future 
work to highlight the functionality and demonstrate the verification. 
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