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OVERVIEW

▪ Start: October 1, 2017
▪ End: September 30, 2021
▪ Percent Complete: 75%

Timeline

Budget
▪ Funding for FY20 – $5.5M

Barriers
▪ Cell degradation during fast charge
▪ Low energy density and high cost of

fast charge cells

▪ Argonne National Laboratory
▪ Idaho National Laboratory
▪ Lawrence Berkeley National Lab
▪ National Renewable Energy Laboratory
▪ SLAC National Accelerator Lab
▪ Oak Ridge National Lab

Partners



RELEVANCE

• Avoid Li plating when fast charging Li-ion batteries

• Understand when and where Li plating occurs within cells

• Assist in identifying solutions to Li plating during fast charging.

Impact

Objective
• Build an understanding of how Li plates as a function of depth in graphite

electrodes

• Map the distribution of Li plating within pouch cells

• Develop methods for operando, in situ, and ex situ detection and quantification of
Li within cells.



MILESTONES
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• MS 1: Identify and contrast strengths/weaknesses of nondestructive detection
techniques to use on pouch cells.

• MS 2: Identify and contrast strengths/weaknesses of localized and/or
destructive Li detection techniques. Identify where we can combine techniques
to span length scales.

• MS 3: Combining at least 2 techniques to study when, where, and/or how Li
plates on the same electrode. Combine to quantify techniques to discover
detection limits.

• MS 4: Link detection of onset of Li with cell performance and other cell/cycling
properties (aging).



APPROACH

• A method to quantify the amount of plated Li, while also providing
spatial and temporal insight into its presence, is sought to empower
battery researchers with a means to quantitatively compare the
efficacy of negative electrodes in handling fast-charge conditions
while minimizing performance loss. Here, three approaches are
taken to provide a quantitative spatial description of Li plating on
graphite negative electrodes:

(1) Mass spectrometry titration (MST): A post-test lab-based
chemical method that quantifies inactive Li from off-gases.

(2) Depth-profiling X-ray diffraction (XRD): A synchrotron
method for profiling along the depth of an electrode and
measuring mass fractions of Li and graphite phases.

(3) 2D area profiling XRD: A synchrotron method for mapping
the quantity of Li plating and graphite phases present across
the face of a pouch cell.

Creating a spatial description of Li plating

UC Berkeley

NREL

SLAC



3.5 M H2SO4

Ar Ar
H2
CO2

to MST

Li + H2O → LiOH + 12H2

LixC6 + xH2O → xLiOH + C6 + x2H
2

ROCOOLi + H+ → ROH + Li+ + CO2

TECHNICAL ACCOMPLISHMENTS
Mass Spectrometry titration (MST) Approach
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Region
Li + “dead” LixC6

(μmol/cm2)
Titration CO2
(μmol/cm2)

A 7.30 0.713

B 34.7 2.30

C 61.6 3.20

D 37.7 2.39

E 21.6 2.49

F 45.4 3.76

Capacity Fade: 22.4% Equivalent Li + LixC6 Capacity Fade: 16.4%
Capacity fade difference related to SEI formation

More carbonate species in high-Li regions 

TECHNICAL ACCOMPLISHMENTS
MST to quantify heterogeneity in Li plating



TECHNICAL ACCOMPLISHMENTS
• Modified 2032 coin cell with 4-mm diameter electrode

• 6C charge and discharge

• High-speed (100 Hz) and resolution (3 µm)
at ESRF – The European Synchrotron

• 0.5 seconds for complete depth scan

• 13 seconds between scans

High speed X-ray diffraction (XRD) depth profiling

Beam conditions:
• 60 keV beam
• 0.6 µm × 0.3 µm beam
• 3 µm step sizes
• 148 XRD points at 100 Hz
• 1.5 s per line scan
• 13 s between line scans

Negative electrode:
• 91.83 wt%
• Superior graphite SLC1520P
• Thickness: 101 µm
• Porosity: 36.2%
• Loading: 13.97 mg/cm2

• Coating density: 1.38 g/cm3

6C charge (red)
• 6C CC charge to 4.1 V, CV to C/5
2C charge (blue)
• 2C CC charge to 4.4 V, CV to C/5



TECHNICAL ACCOMPLISHMENTS

• Lithiation quantified for depth and time

• Contributions from distinct graphite
phases quantified
o Stage I (LiC6)
o Stage II (LiC12)
o Stage III (LiC30)

Quantifying lithiation gradients

Color-
coded 
depth

6C charge 6C charge
Contribution to x in LixC6
from distinct phasesLithiation state in depth 

and time



TECHNICAL ACCOMPLISHMENTS
• Li plating was detected but the signal

was faint

• Data were summed across 3 depths
and 5 times (15 point measurements)
to improve signal-to-noise ratio

• Weight fractions of Li were quantified
for depth and time.

Quantifying Li plating gradients



• 4C, 6C, and 9C charging rates
• 450 extreme fast charge (XFC)

cycles
• All scans done at 0% SOC (3.0 V)

• Round II cells

• Transmission mode scans → no teardown of cell;
all components of cell studied simultaneously

TECHNICAL ACCOMPLISHMENTS
Quantifying spatial heterogeneities in Li plating using X-ray 
diffraction (XRD)
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Loss mechanisms:

• Dead (irreversibly plated) Li

• Prevents deintercalation of Li
(trapped Li as C6Li) → loss of Li
inventory

• Dead anode regions → loss of
active surface area

• SEI-related reactions are not
accounted for
(nanocrystalline/amorphous)

TECHNICAL ACCOMPLISHMENTS
Spatial correlations between species



• Independence of intensity and location of regions of plated Li with angle of incidence
(between X-ray beam and pouch cell)

• Plated Li is polycrystalline, without any preferred crystallographic orientation.

TECHNICAL ACCOMPLISHMENTS
Crystallographic orientations of plated Li on graphite



Correlating Li plating to global cell performance

Irreversible Li plating α XFC capacity fade
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• 4C charged cells show lower
plating in general, irrespective
of capacity fade

• For 6C and 9C cells, the
capacity fade during XFC α
amount of irreversible Li plating

• Large heterogeneity in Li plating
(and performance) of 9C cells.

TECHNICAL ACCOMPLISHMENTS



RESPONSES TO PREVIOUS YEAR REVIEWERS’ COMMENTS
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• This topic was not reviewed last year



COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS
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• Mass Spectroscopy Titration experiments were led by Bryan McCloskey
at University of California Berkeley.

• Depth profiling X-ray diffraction experiments were led by Donal Finegan
at the National Renewable Energy Laboratory (NREL).

• X-ray diffraction of pouch cells was led by Partha Paul at Stanford
Linear Accelerator (SLAC).



REMAINING CHALLENGES AND BARRIERS
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• Understand why Li plates unevenly throughout pouch cells.

• Gain insight into how Li nucleates on graphite.

• Understand how Li plating changes over many cycles.

• Construct modelling methods that can predict experimental observations of
Li plating.



PROPOSED FUTURE RESEARCH

• Use retrieved data to guide and validate models to more accurately predict Li plating

• Integration of cathode analysis along with anode analysis → role of cathode in degradation in Round II cells

• XRD in pristine condition and after XFC cycling → role of initial cell state (as measurable by XRD) in plating heterogeneity
across the electrode

• Evolution of degradation mechanisms (dead and trapped Li) with increasing cycles → XRD on same cell after 10 s of cycles

• Mechanism for cell capacity (reversible plating/stripping vs. intercalation/deintercalation into graphite) → XRD on same cycle at
different SOCs

• Probe heterogeneity of plating along depth of the electrode → X-ray and neutron imaging on selected portions of the anode.

Any proposed future work is subject to change based on funding levels

MST FUTURE WORK
• Quantify inactive Li and SEI species spatially as a function of cycles

o Post-formation, 75, 225 cycle pouch cells from Idaho National Laboratory

• Correlate spatial degradation on anode and cathode
o Cut anode and cathode symmetrically, quantify carbonate species on cathode surface with similar titration
o Correlate high-carbonate areas on cathode to inactive Li and SEI on corresponding region of anode.

XRD FUTURE WORK



SUMMARY

• Lab-based and synchrotron techniques can effectively map the quantity and
location of Li plating

• Li plating occurs mostly near the separator interface of the graphite electrode,
reaching about 20 µm deep

• In pouch cells, Li plating occurs unevenly with higher quantities observed near
the center of the electrode sheets

• Some regions in the graphite anode become less active after cycling at high
rates

• Plated Li is polycrystalline without any preferred orientations.
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