2020 JISEA Virtual Meeting Presenter Profile

Jordan Macknick is the Lead Energy-Water-Land Analyst for NREL. He is a member of the Strategic Energy Analysis Center's Systems Modeling team within the Resources and Sustainability Group. His primary work addresses the environmental impacts of energy technologies, while seeking opportunities for energy and ecological synergies. In his energy-water-land leadership capacity, Macknick analyzes national and regional implications of different energy pathways in the context of water and land resources, evaluates opportunities to improve the energy management of water infrastructure, and explores innovative approaches to co-locating solar and agricultural activities.

James McCall is a member of the Resources and Sustainability Group in the Strategic Energy Analysis Center. His interests include technoeconomic analyses for various renewable technologies, economic and employment impacts, and systems analysis associated with the energy-water-food-nexus. Prior work experience was as a researcher at a utility law think tank at ASU and a project manager/facilities engineer for an upstream oil and gas producer

J
 ISEA

Joint Institute for
Strategic Energy Analysis

Jordan Macknick and

 James McCallSpanning the Nexus: Integrated Energy Research on Agriculture \& Water Challenges

JISEA Virtual Meeting April 9, 2020

COLPE COLDADOSCHOOLOFMINES.

Colorado
 State

University of Coloradc Boulder

Energy and Agriculture

Challenge: Land Use of Achieving SunShot Solar Deployment Goals

- SunShot Annual Capacity Rebuilds (left axis) - SunShot Annual Capacity Growth (left axis) - SunShot Cumulative Capacity (right axis)

Figure 3-6. Cumulative Installed PV and CSP Capacity in the SunShot Scenario in 2030 and 2050 2030 PV Capacity: $\mathbf{3 0 2}$ GW

2050 PV Capacity: 632 GW

Challenge: Farm Profitability

Gross farm income, production expenses, and net farm income, inflation adjusted, 2000-19F

Note: F = forecast. Values are adjusted for inflation using the chain-type GDP deflator, 2019=100.
Source: USDA, Economic Research Service, Farm Income and Wealth Statistics. Data as of March 6, 2019.

American Bankers Association and the Federal Agricultural Mortgage Corporation release results of joint survey

Potential Solution: Agrivoltaics

Agrivoltaics $=$ agriculture + photovoltaics

Farms That Harvest the Sun-Twice

*photovoltaics (PV)= renewable energy production from solar panels

Ground mounted solar: What does it look like?

Vision: Low-Impact Solar Development

Low-impact site preparation
Pollinator and native vegetation solar Solar-agricultural co-location

Department of Energy Funded (2015-2021) Extensive Industry Partnerships Field and Analytical Modeling Work

InSPIRE Project Overview

Field-based research topics:
(1) Economic viability of solar-agriculture colocation configurations
(2) Increasing agricultural yields in arid environments
(3) Energy, water, and food security in remote, off-grid areas
(4) Pollinator habitat and ecological services

Analytical research topics:
(1) Satellite imagery analysis of current land groundcover practices
(2) Cost-benefit analysis of O\&M ground cover practices
(3) Quantification of ecological services of groundcover options

InSPIRE Project Sites

Select from the options below to display all sites using that technology.

- Beekeeping

Beneficial Predators

- Co-location of Solar and Agriculture
- Dryland Agriculture Co-location
- Native Vegetation
- Solar-Integrated Greenhouse

:ANREL

InSPIRE Project Sites

Specific research activities for field studies

Data Collection and Analysis

Temperature Probe
Relative Humidity Probe

Agrivoltaics: Growing Crops Underneath Solar Panels

Massachusetts Test Facility

Preliminary results (broccoli)
Harvested August 10, 2019

InSPIRE Research Site: Agrivoltaics at the Biosphere 2 Living Lab

- Elevated (10 ft) solar panels
- Outside of Tucson, AZ
- Professor Greg Barron-Gafford
- Growing peppers, tomatoes, basil, carrots, broccoli, lettuce, melons, flowers, chard (plus more!) in full sun and underneath solar arrays

Food - a win for fruit production!

Water - a win for irrigation savings!

Microclimate change under the panels
= water lasts longer in the soil

Soil moisture levels in agrivoltaic system after 2 days = control setting after about 2-3 hours

Can marginal lands now become arable lands?

Bottom Line:

- Peppers need 50\% less water
- Tomatoes need 30% less water

Can we actually reduce our irrigation water use?

Barron-Gafford et al. (2009) Nature Sustainability

Energy - a win for PV production!

Cooler temperatures $=$ Increased PV efficiency and less wear-and-tear

Summer time average cooling $\sim 9^{\circ} \mathrm{C}$

Bottom Line:

- 2% higher solar output due to crops

Climate - a win for carbon uptake!

Key Highlight: Solar-Integrated Grazing

Sustainable grazing practices can improve soils Cost reductions from standard mowing practices Ongoing work evaluating pastureland performance

Over 800,000 acres of agricultural land would benefit if existing solar facilities had pollinator-friendly vegetation

Pine Gate Renewables, Old Sol Apiaries create largest solar farm apiary in America

By Kelsey misbrener I June 15. 201 utily-scale solar deve oper Pine Gate Renewables, headquarterec Char otte, North Carclina, is peased to announce that noney ees are now IVng on Eage Poin scar farminjackson county. Itegon, thenis to che comparys sotarcuture intiative. environmenta stenardship environmenta stena oship ustanable agncuture and olloosations weth the
\qquad
or smarter solar devecorment.

Key Highlight: Solar-Powered Honey Production

Hives can be located in or outside of project fence Innovative branding and marketing opportunities Ongoing work evaluating honeybee and native bee preferences

Key Highlight: Solar-Integrated Greenhouses can Improve Yields

Chervil: annual herb related to parsley with a delicate anise-like flavor
Plants that received the altered light spectrum of LUMO in the late afternoon performed significantly better than chervil grown under a greenhouse with clear covering.

Key Highlight: Floating Solar on Agricultural Reservoirs

Siting on reservoirs can reduce evaporation and algae growth Avoid conflicts with land used for agriculture

Recent NREL study identified over 25,000 man-made reservoirs that could supply 10% of U.S. power

Key Highlight: Education through field research

Educational benefits through internships, field trips, work experience, tours
Elementary school through PhD students
State agency, academic, and professional training

Energy and Water

Energy and Water are interconnected

[^0]
Reliance on water can lead to power sector vulnerabilities

Locations of power plants that shut down or curtailed output due to high water temperatures or lack of water

Primary energy embedded in water infrastructure: US national

*Residential, Commercial, Industrial and Power sectors, (~70\% of total US primary energy consumption). Transportation sector not included.

Energy use in the residential, commercial, industrial and power sectors* for direct water and steam services was approximately 13 Exajoules or $\mathbf{1 2 . 6 \%}$ of the 2010 annual primary energy consumption in the US

National Alliance for Water Innovation (NAWI)

- A five-year, \$100-million Energy-Water Desalination Hub from DOE's Advanced Manufacturing Office
- Addresses water security issues and economic competitiveness across all economic sectors in the United States
- Focuses on early-stage R\&D for water treatment technologies and ways to treat non-traditional water sources

To Participate in Water Technology Roadmapping activities in 2020, please reach out to:
Jordan.Macknick@nrel.gov

O\&G Techno-economic and system analyses

- Current/Past projects include:
- Key principles for effective water management throughout life cycle of unconventional O\&G operations
- Characterization of water intensity (water use per energy output) of O\&G operations based on location, geology, water usage, and EUR
- Development of flexible produced water management options cost model and decision tree

Water sourcing variations and challenges

- Key Insights
- Water sourcing decisions are affected by conditions and decisions of other life cycle stages (e.g., transport, on-site fluid management, well design, produced water management)
- Systems approach is necessary to effectively characterize costs and optimize approaches
- Inherent variability in water quality and quantity issues within and across plays

Average Per Well Use of Fresh, Brackish, and Reused Water

Produced water management risks

California's SB 1281 independent review

- Participated as a Steering Committee member for California Council of Science and Technology's (CCST) SB 1281 review [publication forthcoming]
- SB 1281 established new water reporting requirement for CA O\&G operators
- CCST project was an independent review of data collected value and usability, while balancing increased burden on operators
- SB 1281 goals:
- "ensuring appropriate data were available to assess the impact of O\&G production on the water resources of the State;
- assessing reuse potential of produced water on-site and off-site;
- addressing concerns over the risks to human health and the environment posed by surface disposal, reuse for irrigation, or surface water streamflow augmentation"

Thank you

NREL/PR-6A50-76556

www.jisea.org

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the Joint Institute for Strategic Energy Analysis (JISEA). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes

Joint Institute for
Strategic Energy Analysis.
:NREL
0
COLORADOSCHOOLOFMINES

Coborado
 state
 University

STANFORD
UNIVERSITY

University of Coloradc Boulder

[^0]: NATIONAL RENEV Source: The Water-Energy Nexus: Challenges and Opportunities, DOE, July, 2014

