
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-5D00-76264
July 2020

Open-Source Framework for Data Storage
and Visualization of Real-Time Experiments
Preprint
Kumaraguru Prabakar, Nick Wunder, Nicholas Brunhart-
Lupo, Courtney Pailing, Kristi Potter, Matthew Eash, and
Kristin Munch

National Renewable Energy Laboratory

Presented at the 2020 IEEE Kansas Power and Energy Conference
(KPEC 2020)
July 13–14, 2020

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-5D00-76264
July 2020

Open-Source Framework for Data Storage
and Visualization of Real-Time Experiments
Preprint
Kumaraguru Prabakar, Nick Wunder, Nicholas Brunhart-
Lupo, Courtney Pailing, Kristi Potter, Matthew Eash, and
Kristin Munch

National Renewable Energy Laboratory

Suggested Citation
Prabakar, Kumaraguru, Nick Wunder, Nicholas Brunhart-Lupo, Courtney Pailing, Kristi
Potter, Matthew Eash, and Kristin Munch. 2020. Open-Source Framework for Data
Storage and Visualization of Real-Time Experiments: Preprint. Golden, CO: National
Renewable Energy Laboratory. NREL/CP-5D00-76264.
https://www.nrel.gov/docs/fy20osti/76264.pdf.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://www.nrel.gov/docs/fy20osti/76264.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by U.S. Department of Energy Office of Electricity Advanced Grid Research and Development program,
as part of the Grid Modernization Laboratory Consortium. The views expressed herein do not necessarily
represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Open-source framework for data storage and
visualization of real-time experiments

Kumaraguru Prabakar, Nick Wunder, Nicholas Brunhart-Lupo, Courtney Pailing,
Kristi Potter, Matthew Eash, Kristin Munch

National Renewable Energy Laboratory
Golden, Colorado

Email: kumaraguru.prabakar@nrel.gov, nick.wunder@nrel.gov, nicholas.brunhart-lupo@nrel.gov, Courtney.Pailing@nrel.gov
kristi.potter@nrel.gov, matthew.eash@nrel.gov, kristin.munch@nrel.gov

Abstract—Digital real time simulators (DRTS) are increasingly
being used for the evaluation of power hardware and controller
hardware in the laboratory prior to field deployment. Although
DRTS are capable of simulating large models in real-time, it
is challenging to visualize the results of large models without
overdrawing or confounding the viewer. This paper provides an
open-source framework for users to visualize their DRTS-based
hardware-in-the-loop (HIL) experimental results in real-time.
This proposed framework can be used by experimental test beds
that can push data through an internet protocol based network.
The proposed framework includes three main components. First,
it includes the DRTS that generates and pushes the data to a
relay. Second, it includes an application that serves multiple
purposes, from data storage, testing, and translation of the data to
a publisher/subscriber protocol. Finally, it includes libraries and
applications that can be used to visualize the data by subscribing
to the relay. This framework is available in open source, and it
is tested using the HIL platform developed for testing advanced
distribution management systems.

Keywords—Advanced distribution management systems,
controller-hardware-in-the-loop, digital real-time simulation,
open-source framework, power-hardware-in-the-loop, real-time
simulation, visualization, volt-VAR optimization.

I. INTRODUCTION

Distribution systems are going through major technological
advancements as a result of high penetrations of inverter-based
assets, deployments of advanced metering infrastructure, and
the integration of other smart grid technologies. The installation
of these technologies in the distribution system without proper
evaluation poses major risks for utilities. Vendors, utilities,
and other research organizations are constantly creating new
methods to evaluate these technologies safely, succinctly, and
swiftly. These evaluation approaches help derisk the technology
integration and help increase the technology-readiness level [1],
[2].

In the literature [3], the evaluation methods (specifically
for power applications) are typically classified into three major
types: software-only modeling of the system and device under
evaluation, hardware-only modeling of the system and device
under evaluation, and evaluations based on hardware-in-the-
loop (HIL). HIL can be further classified into two categories
based on the device under evaluation: controller-hardware-in-
the-loop (CHIL) and power-hardware-in-the-loop (PHIL). The
research work presented here focuses on the HIL approaches,
and the following information applies primarily to the HIL-
based evaluation methods and might not necessarily apply to
other evaluation methods.

In HIL-based evaluation, there are three main elements:
the digital real-time simulator (DRTS), digital-to-analog
conversion/analog-to-digital conversion, and the hardware (con-
troller and power hardware) under evaluation. In the early
years of research focused on enabling HIL, attention was given
primarily to improvements in the time step capability and the
number of nodes that can be simulated in a DRTS—and both
have improved. At the time of writing this paper, commercially
available DRTS using real-time phasor domain simulations can
simulate systems with up to 30,000 single-phase nodes.

With these advancements in DRTS, users can now run
system models with an exponentially increased number of nodes.
Using DRTS creates the potential to simulate larger system
models with reasonable time steps for longer periods without
overruns. These improvements in DRTS-based simulations,
however, create challenges in other aspects of CHIL- and
PHIL-based experiments, such as in improving the accuracy
[4] of HIL experiments, improving the stability [5] of HIL
experiments, and creating function blocks [6] for the safe
operation of experiments using high-power equipment (∼1
MW).

These advancements also created other challenges: how to
properly store these large amounts of data, visualize them, and
provide detailed insights into the evaluation of the device under
test and its impacts on the system under study. Visulaziation
tools have been proposed in the [7], [8], but they were not
built for experimental test beds and may not be able to handle
large data sets that can be generated in an experimental test
bed. The work presented here aims to solve these challenges by
developing solutions using a proper software approach. Using
the proposed approach, data from experiments can be stored

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
1

Fig. 1. Controller HIL and PHIL test bed setup used to evaluate the developed data storage and visualization tool

appropriately and visualized properly, and insights into models
are made possible that were once reserved for non-real-time
software simulation. The work presented here addresses these
challenges associated with data storage and visualization using
the recent development in open source publisher-subscriber
model.

The solution provided here is agnostic to the DRTS used,
controller under evaluation, or power hardware under evaluation.
The solution was built using open-source tools, and it is
made available in open source for researchers to use in
their evaluation setup. The developed solution uses publisher-
subscriber protocol to relay the data to multiple subscribers.
This can be replaced with more secure protocols depending
on the end-user requirements. This paper includes three major
contributions: (1) the development of an open-source application
to push data from raw data packets to a data relay (namely,
the ØMQ [9] message bus); (2) the standardization of the
data packets generated that need to be stored agnostic to the
DRTS experiment platform; and (3) the development of an
open-source application to visualize the data.

II. EXPERIMENTAL SETUP

HIL experiments are becoming critical in evaluating the
performance of a control hardware, such as a microgrid con-
troller [3], advanced distribution management system (ADMS)
[10], or power device controller such as an inverter controller
[11] or motor drives [12]. PHIL experiments are run to test
the performance of power hardware during power system
dynamic events [13] or power system transient events [14].
Good real-time visualization of the experiments are crucial
for proper debugging of the experiments and is becoming a

crucial component in HIL evaluation. The following subsections
explain the setup used for the HIL experiments and the
data storage and visualization challenges faced during the
experiments.

A. Hardware-in-the-Loop Setup

The experimental setup shown in Fig. 1 is a vendor-neutral
evaluation platform. The goal of this test bed is to evaluate
ADMS applications using the CHIL and PHIL setup. More
information on the ADMS test bed setup is presented in [15].
Following are important components of the HIL setup that
generate data that need to be stored and visualized.

1) Real-Time Simulation of the Distribution System Under
Study: The first component in the HIL setup is the DRTS that
simulates the power system under study. The setup here for
the DRTS uses a hybrid cosimulation approach comprising an
off-the-shelf dynamic simulator ePHASORSIM and the quasi-
static time-series simulator OpenDSS. The multi-thousand-node
distribution feeder model is split into two sections: the first
section is simulated in OpenDSS, and the second section
is simulated in ePHSORSIM. The two simulators exchange
voltage and current information to run a hybrid cosimulation.
More information on this cosimulation is available in [16],
[17].

The crucial takeaway is the amount of data generated
in real-time in both digital simulation tools. Both tools are
superior in modeling a distribution system feeder, but they
lack advanced real-time data storage and data visualization
capabilities. In addition, the data need to be stored in real-time,
which introduces additional complexity.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
2

Fig. 2. Block diagram of the data path and the applications accessing the
published data

2) Hardware Under Test: The setup used in this paper
includes both controller hardware and power hardware under
test. Three controllers are used in the CHIL setup: an off-
the-shelf load tap changer (LTC) controller, an off-the-shelf
capacitor bank controller, and the ADMS under study. The
details of the ADMS are explained in the next subsection.
For both controllers (the LTC controller and capacitor bank
controller), the voltage at the bus was sent to the controller
devices through analog channels. The LTC controller and the
capacitor bank controller make set point decisions based on the
terminal voltage. For example, the capacitor bank controller
decides whether the capacitor banks should be turned on or off
based on the terminal voltage. Similarly, the LTC adjusts the
transformer position based on the terminal voltage it observes.
One 12-kVA, three-phase photovoltaic (PV) inverter was used
in the PHIL setup. This PV inverter is indicative of the inverters
installed in the field.

3) Advanced Distribution Management System Under Test:
In this test bed, a vendor-provided commercial ADMS was
under test. Using this test bed to evaluate the performance of
the ADMS enables derisking the field installation of the ADMS.
As a first use case, the volt/volt ampere reactive optimization
application of the ADMS was under evaluation[15]. The ADMS
acts as the Distributed Network Protocol 3 (DNP3) client and
connects to the DNP3 server devices modeled in the DRTS
and the devices in HIL. This enables the ADMS to monitor
the state of the distribution feeder and control the devices.

B. Challenges in Data Storage and Visualization

HIL experiments may need to be run for multiple hours and
this results in the generation of a large data set, storing this
data and visualizing this large data set pose a challenge. Most
DRTS have internal data storage capabilities that are limited to
a certain data size and are limited when the size of the model
running in real-time is larger than a certain limit. Thus, the ideal
data storage solution should have two important characteristics:
(1) the data storage application should be stand-alone and
separate from the real-time computation, and (2) visualization
tool should be independent of the data storage application and
should not interfere with the data storage process. The approach
should be computationally simple. The approach presented here
targets these necessary characteristics. The next section presents
details on the approaches used to develop such an application.

III. DATA STREAMING PIPELINE

DRTS are designed to perform computations in real-time,
but they are not necessarily the best tools for data storage or
real-time visualization of running experiments. For this reason,
researchers spend countless hours waiting for an experiment
to complete, then look at their data only to discover that
there was an issue in the first second of the simulation. The
researcher makes a minor change, starts the simulation again,
waits for the simulation to complete, and discovers another error.
Researchers are limited in both the volume of data and in the
variety of visualizations available in existing DRTS software to
debug experiments in real-time. This debugging cycle could be
dramatically reduced if a tool existed to visualize experiments
in real-time regardless of the time step of the simulation and
the amount of data generated by the experiments.

To facilitate real-time visualization and analysis of these
simulation data, a data-streaming pipeline was developed (Fig.
2). The DRTS supports the use of Ethernet cards to produce
User Datagram Protocol (UDP) packets of simulation data.
DRTS in general are capable of supporting multiple Ethernet
cards pushing a variety of simulation data at variable frequen-
cies. Each Ethernet card can be configured by researchers to
push a specific set of simulation data at a fixed frequency for
the duration of the simulation.

Once the UDP packets are sent by the real-time simulator,
additional software is required to store and visualize these data.
Data from the DRTS simulations flow through three main stages.
First, data originate from a running DRTS simulation. These
data are then picked up by the second stage in the pipeline: a
desktop data-streaming application that relays DRTS data to
any number of downstream applications. The third and final
pipeline stage includes these downstream applications, which
might include real-time visualization applications, real-time
analysis applications, or data storage tools.

An open-source tool—designed to run on a Windows
hosts and listen to data sent over DRTS Ethernet cards—was
developed to facilitate capturing, processing, and streaming
these simulation data in real-time. The Real-Time Streaming
(RTS) data application is the second stage in the overall data
pipeline described in this paper. The core functionality is to
stream data as they are generated by the DRTS software to a
message broker for other downstream applications, such as data-
archiving tools or real-time visualizations. The RTS Data tool is
configured to accept UDP data from the DRTS and relay these
data, using Transmission Control Protocol, to a server hosting
a message broker. Configuration is defined by DRTS Internet
Protocol (IP) address, port, message broker IP address and port,
frequency of UDP packets, as well as the size of and endianness
of each datum. One instance of the application is designed to
relay data from one DRTS Ethernet card to the message broker.
Multiple instances of the application are required to run if the
DRTS makes use of more than one Ethernet card; a single
application instance will be considered in future work. Fig. 3
shows the block diagram of the completed setup and provides
more details on the data flow from the experimental setup of
the visualization application.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
3

Fig. 3. Block diagram of the completed setup

A. Real-Time Streaming Data Software

RTS Data is a desktop application enabling researchers to
collect, stream, and store data produced by DRTS. The RTS
Data tool is developed using modern Web technologies designed
to look and feel like a modern single-page Web application.

RTS Data includes three main components: collect (Tar-
get/RTS), stream (Relay), and store (Archive). Each component
is designed to be configurable as well as to run in test mode
without the need to establish a connection to a running real-
time-streaming simulation. These components and the setup
are shown in Fig. 3. The code for the RTS Data is open source
and is available for download at [18].

The initial component collects data from a configured
running DRTS simulation, or target. The target is configured
to send UDP packets with raw bytes over its network interface.
This byte stream is either big endian or little endian encoded
floating point numbers DRTS simulation data in 4 byte, or 32
bit chunks. RTS Data reads this raw byte stream, splits the
stream into 4 byte chunks, converts each chunk to a floating
point number, then pushes the converted floating point number
to an array. After the raw byte stream is converted, the array
of floating point numbers is published to an internal message
broker for other modules of RTS Data to subscribe.

In order to provide downstream application with DRTS
simulation data, the RTS Data application is configured to
stream all converted data to a centralized message broker
service. In this workflow, ZeroMQ [9] was adopted since it
is able to provide the throughput required for streaming high
frequency DRTS simulation data, as well as cross platform
and multi language support. This streaming module listens
for messages published by the first module, and publishes
them to the shared ZeroMQ message broker. The message
payload on ZeroMQ topics is the decoded array of floating
point values. There exists one ZeroMQ topic for each of the RTS
network interfaces. Each topic publishes a homogeneous set of
values and a fixed frequency. Metadata for topic messages are
maintained in csv files which describe the message index and
variable name for that value. To test, the RTS Data application
implements a simple ZeroMQ subscriber that may be enabled
to ensure data is available on the topic.

The final module features saving these ZeroMQ message to
disk. Each message–an array of floating point values–is saved
as a row in a CSV file. Once the location on disk and file
name are defined, and the streaming modules are publishing
messages, the archive module will subscribe and start writing
to disk. Since the archive module listens to the shared message
broker, and not the internal message broker, the archive module
may run on any machine able to connect to the shared ZeroMQ
service. In this respect, the storage module is one example of
a downstream application.

IV. VISUALIZATION AND ANALYSIS

The data generated by the framework present a number of
challenges in terms of visualization and analysis. In this section,
we discuss the relevant issues to visualization, solutions, and
possible implementations.

A. Framework Output

The chief challenge presented to visualizing these data is
the high rates served by the system. State vectors from the
relay can be updated as quickly as 5 kHz. Keeping in mind
that most display devices are limited to refresh rates of 60 Hz,
attempting to update a displayed value at the same rate the
data is arriving is wasteful because the viewer will never see
98% of the values. Similarly, attempting to buffer and display
a time series of all the data is not sufficient. Displaying a series
with a window of 15 minutes (which is a common ADMS use
case) would require storing and plotting 4.5 million points for
a single variable.

Another issue comes from the use of multiple topics coming
from the ZeroMQ server. Even if the data coming from two
topics are being sampled at the same sample rate, different
publishers will emit data at slightly different times. Network
issues, such as packet processing latency, resend, etc, can further
distort arrival times. If plotting a small number of variables, this
should not pose a large issue, however, as users may wish to
visualize several hundred variables, a different approach must
be taken. Sporadic and sparse update patterns are not amenable
most plotting libraries (which tend to require a reprocessing of
all visible data if there is any change) or to graphics cards in
general, which prefer batch memory updates.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
4

Fig. 4. Structure of the conditioner. Note that this can be used as a standalone
server, or as a library for inclusion into a larger project.

To meet this challenge, a filtering step can be applied to the
data and interposed between the data relay and the visualization
(or analysis) tool. This tool will resample the data to a lower
rate to ease the burden on visualization tooling, as well as re-
framing the data to remove the issue of differing arrival times.
Note that this resampling should not compromise the analysis,
as the logging component of the real-time system is still active
and preserves the full fidelity of the data for post-experiment
analysis.

B. Conditioner

The objective of this tool is to resample the input data
into a form that is simpler for the visualization tools to
consume. In this function, it acts as a bridge between the
ZeroMQ relay and the visualization elements by subscribing
to the ZeroMQ topics, filtering/resampling, then publishing
the processed data on a Websocket [19]. Websockets are a
common communications protocol supported by most software
platforms; ZeroMQ, though excelling as a message bus, is not
as universal and requires other libraries for use, which adds
a burden to analysis and visualization software development.
Thus, this bridge can condition the data for easy plotting, and
it can provide the data in a simple form for any number of
downstream tools to use.

The conditioner is formed into several components (Fig.
4). The buffering portion subscribes to the ZeroMQ relay;
each topic this is published to by the framework is monitored
by a separate worker thread. In this way, we can maximize
throughput, such that once off the network, no message from
the relay is waiting on another. Each of these workers maintains
a buffer of the last value seen for each variable that the topic
publishes. Upon receipt of a message, the worker will decode
the string, form the array of floating point values, reformat
signal variables (that is, if a floating point variable is used to
represent a boolean, the value is clamped to 0 or 1), and copy
the values to the buffer.

The second portion is the collection phase, which operates
by a timer, using a user-selected interval. When the timer is
triggered, the collector will ask each worker for their current
buffer of values. These replies are all assembled into a single
large state vector. Once assembled, this vector is then packed
and sent to the Websocket portion.

The Websocket side consists of a server that handles client
bookkeeping and data distribution. When a new vector is ready,

sending is handled asynchronously, with each client handled
independently. The data is sent as a packed binary array of
floating point values, eliminating the need for string decoding.
The Websocket also provides a metadata mechanism to help
clients decode the large binary state vector. The conditioner is
written in C++ using the Qt framework [20]. While deployable
as a standalone tool, the conditioner can also be quickly adapted
as a library for inclusion directly into a visualization application.

C. Visualization

To provide a high-performance visualization platform, a
custom 2-D plotting application was developed in C++, Qt, and
OpenGL. Many plotting libraries are intended to operate on
static or rarely changing data. When used out of this comfort
zone with higher rate data and many plots, this is problematic.

For this application, plotting is considered to be of two
types: real-time (for line plots) and staged (for waveforms).
The former plot type uses the conditioner as a library for data,
and the second directly reads from the ZeroMQ relay. The
latter mode enables researchers to visualize the full rate of data,
much like an oscilloscope, where screen updates are done at a
fixed refresh, but the full number of samples can be displayed
(for example, for a 1-kHz sample rate, we would display 1,000
samples updated every second).

Normal plotting can take advantage of the packed con-
ditioner output. In this application, vertex buffers and index
buffers are arranged in a circular buffer. On an update, data
from the conditioner are copied to a per-chart central processing
unit- (CPU-) side buffer, which can be uploaded directly into
the vertex buffer with a single call, reducing CPU-to-graphics
processing unit (GPU) communications overheads. Because
we are merely uploading new values, the size of the upload
is related to the number of lines the user wishes to plot on a
single chart, not the whole sampled range over all the lines.
The use of a circular buffer means that at most two draw calls
to the GPU will be issued per plot.

For oscilloscope plots, a delay buffer is used, where data
are accumulated for a duration of time (typically 1 second),
and when the buffer is full, the data will be displayed to the
user. While slowly updating, it can provide the researcher a
view into the subsecond waveforms of a dynamic variable. A
link to the application can be found in [21].

V. RESULTS

Fig. 5 shows the developed application at the laboratory
space dedicated for the ADMS evaluation. Two types of
visualization applications were developed and tested using the
framework developed in this work. Because this application
was developed for control from a central location, a black
background was used in the visualization tools. Fig. 5 shows
the ADMS under evaluation, the DRTS used to simulate the
power system, controller hardware used in the setup and
the visualization tool that was developed using the proposed
approach. The data generated by the DRTS was relayed and
stored using the proposed application. The visualization shown
in Fig. 5 is used to show the critical points of the experiments,
voltage at the feeder model, and the voltage at the capacitor
banks 1 and 2 controlled by the ADMS.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
5

Fig. 5. Use of developed architecture and framework for visualization in control center setup

VI. FUTURE WORK

In this research work, the preliminary results from open
source framework was presented. In the future work, the results
will be compared with existing approaches using analytical
metrics. In this paper, line plots were generated to visualize the
key parameters in the modeled system, this will be replaced
with a heat map of the distributed system.

VII. CONCLUSION

Data storage and real-time visualization of CHIL/PHIL
experiments can be of great value. The data storage capa-
bility provided through the application developed here will
enable better insight into the models being simulated and the
experiments being performed in real-time. The visualization
tool developed in this research work is intended for use in
a laboratory control room setup. The real-time visualization
application developed is crucial for running PHIL experiments
because identifying an issue in the simulation as soon as
possible will save significant time and effort. The flowchart for
data relay and the visualization application were presented. The
two applications developed in this work have been successfully
used in multiple projects. This open-source tool could be used
by other researchers to replicate this approach in other possible
languages.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments and recommendations. The authors gratefully ac-
knowledge the contributions of Soumya Tiwari, and Ismael
Mendoza to the test bed design, implementation, and running
multiple experiments.

REFERENCES

[1] J. C. Mankins, “Technology readiness levels,” A White Paper, NASA,
Washington, DC, 1995.

[2] ——, “Technology readiness assessments: A retrospective,” Acta
Astronautica, vol. 65, no. 9, pp. 1216–1223, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094576509002008

[3] A. Maitra, A. Pratt, T. Hubert, D. Wang, K. Prabakar, R. Handa,
M. Baggu, and M. McGranaghan, “Microgrid controllers: expanding
their role and evaluating their performance,” IEEE Power and Energy
Magazine, vol. 15, no. 4, pp. 41–49, 2017.

[4] N. Ainsworth, A. Hariri, K. Prabakar, A. Pratt, and M. Baggu, “Modeling
and compensation design for a power hardware-in-the-loop simulation of
an AC distribution system,” in 2016 North American Power Symposium
(NAPS), 2016, pp. 1–6.

[5] W. Ren, M. Steurer, and T. L. Baldwin, “Improve the stability and the
accuracy of power hardware-in-the-loop simulation by selecting appro-
priate interface algorithms,” IEEE Transactions on Industry Applications,
vol. 44, no. 4, pp. 1286–1294, 2008.

[6] J. Wang, J. Fossum, K. Prabakar, A. Pratt, and M. Baggu, “Development
of application function blocks for power-hardware-in-the-loop testing of
grid-connected inverters,” in 2018 9th IEEE International Symposium
on Power Electronics for Distributed Generation Systems (PEDG), June
2018, pp. 1–8.

[7] T. J. Overbye and J. D. Weber, “Visualization of power system data,”
in Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, Jan 2000, pp. 7 pp.–.

[8] C. Mikkelsen, J. Johansson, and M. Cooper, “Visualization of power
system data on situation overview displays,” in 2012 16th International
Conference on Information Visualisation, July 2012, pp. 188–197.

[9] “Distributed messaging,” http://zeromq.org/, 2018.
[10] A. Pratt, M. M. Baggu, F. Ding, S. Veda, I. Mendoza, and E. Lightner,

“A test bed to evaluate advanced distribution management systems for
modern power systems,” in 2019 IEEE EUROCON. IEEE, 2019, pp.
1–6.

[11] A. Singh and K. Prabakar, “Controller-hardware-in-the-loop testbed for
fast-switching sic-based 50-kw pv inverter,” in IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, Oct 2018,
pp. 1109–1115.

[12] M. Steurer, C. S. Edrington, M. Sloderbeck, W. Ren, and J. Langston, “A
megawatt-scale power hardware-in-the-loop simulation setup for motor
drives,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp.
1254–1260, 2010.

[13] P. Koralewicz, V. Gevorgian, R. Wallen, W. van der Merwe, and P. Jörg,
“Advanced grid simulator for multi-megawatt power converter testing and
certification,” in 2016 IEEE Energy Conversion Congress and Exposition
(ECCE). IEEE, 2016, pp. 1–8.

[14] V. Gevorgian, P. Koralewicz, R. Wallen, and E. Muljadi, “Controllable
grid interface for testing ancillary service controls and fault performance
of utility-scale wind power generation,” National Renewable Energy
Lab.(NREL), Golden, CO (United States), Tech. Rep., 2017.

[15] S. Veda, M. Baggu, and A. Pratt, “Defining a use case for adms testbed:
Data quality requirements for adms deployment,” in 2019 IEEE Power
Energy Society Innovative Smart Grid Technologies Conference (ISGT),
Feb 2019, pp. 1–5.

[16] M. M. Baggu and A. Pratt, “NREL’s advanced distribution management
system (ADMS) test bed.”

[17] A. Pratt, M. Baggu, F. Ding, S. Veda, I. Mendoza, and E. Lightner,
“A test bed to evaluate advanced distribution management systems for
modern power systems,” in IEEE EUROCON 2019 -18th International
Conference on Smart Technologies, pp. 1–6, ISSN: null.

[18] “Open source data handler,” https://github.com/NREL/rts-data, 2018.
[19] “The websocket protocol,” https://tools.ietf.org/html/rfc6455, 2018.
[20] “Qt,” https://www.qt.io, 2018.
[21] “Data visualization,” https://github.com/NREL/rts-vis-app, 2018.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
6

