
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-2C00-76098
February 2020

The ESIF-HPC-2 Benchmark Suite
Preprint
Christopher H. Chang1, Ilene L. Carpenter2 and
Wesley B. Jones1
1 National Renewable Energy Laboratory
2 Hewlett Packard Enterprise

Presented at the Principles and Practice of Parallel Programming (PPoPP) 2020
San Diego, California
February 22-26, 2020

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-2C00-76098
February 2020

The ESIF-HPC-2 Benchmark Suite
Preprint
Christopher H. Chang1, Ilene L. Carpenter2 and
Wesley B. Jones1
1 National Renewable Energy Laboratory
2 Hewlett Packard Enterprise

Suggested Citation
Chang, Christopher H., Ilene L. Carpenter, and Wesley B. Jones. 2020. The ESIF-HPC-2
Benchmark Suite: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-
2C00-76098. https://www.nrel.gov/docs/fy20osti/76098.pdf.

https://www.nrel.gov/docs/fy20osti/76098.pdf

NOTICE

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S.
Government.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

1
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

The ESIF-HPC-2 Benchmark Suite
Christopher H. Chang

Computational Science Center
National Renewable Energy Laboratory

Golden, CO USA
ORCID 0000-0003-3800-6021

Ilene L. Carpenter
Hewlett Packard Enterprise

Arvada, CO USA
ilene.carpenter@hpe.com

Wesley B. Jones
Computational Science Center

National Renewable Energy Laboratory
Golden, CO USA

wesley.jones@nrel.gov

Abstract—We describe the development of the ESIF-HPC-2
benchmark suite, a collection of kernel and application
benchmark codes for measuring computational and I/O
performance from single nodes to full HPC systems that was used
for acceptance testing in our recent HPC procurement. The
configurations of the benchmarks used for our system is
presented. We also describe a set of “dimensions” that can be used
to classify benchmarks and assess coverage of a suite
systematically. The collection is offered cost-free as a GitHub
repository for general usage and further development.

Keywords—benchmark, HPC, procurement,

I. INTRODUCTION
Benchmarking as an activity has the fundamental goal of

establishing a performance measurement for the object of the
activity in a standard and reproducible way, often for the purpose
of ranking this object against others of similar kind. The “object”
could be a process, or an artifact that executes a process, within
a context of external factors. So, a business process with the
associated business policies and strategies can be benchmarked,
as in the Six Sigma approach to process optimization [1]. Within
computing, the object is normally a collection of hardware able
to carry out instructions comprising the benchmark.
“Performance” can entail throughput, efficiency, completion
rate, or any metric the optimization of which brings benefit to a
stakeholder. Finally, the measurement of such performance must
be quantitative and must establish a field on which different
objects may be compared evenly, understanding that any such
comparison has constraints (“apples-to-apples”). The benchmark
must encapsulate a precise statement of such constraints to make
comparisons clear and fair.

The rapid progress in processor performance, once delivered
mainly through clock frequency updates, has slowed. The end of
Dennard scaling has led to a diverse set of architectural
improvements and much greater use of concurrency to deliver
performance improvements. This new diversity makes
performance measurement and benchmarking critical to
understand how and whether these new processors will deliver
productivity to users. Within the domain of scientific computing,
the floating-point operation reigns supreme, and the standard by
which large-scale HPC systems have been benchmarked has
been the solution of dense systems of linear equations as
embodied by the high-performance Linpack package [2].
Recently, other performance metrics have been targeted as well,
leading to ranked lists such as the Graph500 for graph-based

1 Usually expressed as “When a measure becomes a metric, it ceases to
be a good measure.” [5]

operations [3] and the Green500 for a combined maximization of
computation and minimization of energy consumption [4].

A. Value of a Standard Site-Tailored Set
However, the value and generalizability of Linpack results

alone has been questioned. Unsurprisingly, once Linpack
became a community standard, it fell victim to Goodhart’s law1,
and the relationship between increases in Linpack performance
and increases in performance of general floating-point
applications began to diverge. Another concern arises from the
complexity of scientific software. Ultimately, the scientist cares
about the application, not its underlying algorithms, and taken at
that relatively high level of abstraction, no single algorithmic
benchmark can reasonably be expected to correlate highly with
every application of interest. In other words, every application
has a unique pattern of performance bottlenecks, such that
creating a useful benchmark depends not on measuring one
aspect of a system, but enough aspects to capture the complexity
of both the system and the set of applications it executes.

Furthermore, the set of applications in which a community
is interested varies by site. At the National Renewable Energy
Laboratory (NREL), our HPC systems host a diverse set of
applications ranging over quantum chemistry and materials
science, molecular dynamics, fluid dynamics, multiphysics, and
complex energy systems optimizations. While diverse, these
applications are still grounded in floating-point computation.
However, they do not primarily solve dense linear systems as a
bottleneck. Thus, there is perceived value in a collection of
benchmark codes and run configurations ranging from kernels
to full applications that reflect the specific needs of the energy
research community at NREL.

B. ESIF-HPC-2
The following describes the process undertaken to create an

initial benchmark suite for NREL’s most recent large-scale HPC
procurement, dubbed ESIF-HPC-2. This new system, named
Eagle and released to general production early in 2019, is a
follow-on to the Peregrine system that has served as NREL’s
and DOE/EERE’s primary HPC resource [6]. The system was
specified as predominantly x86_64-based, with node-local
persistent storage, high-reliability shared filesystem storage, and
large shared parallel filesystem storage. Subsets of nodes were
also specified for visualization, data-intensive computing, and
accelerated computing as limited testbeds for emerging
workloads. The set of benchmarks chosen and the rationale for
them is discussed, and a strategy for a public release of the
current snapshot and future plans are considered.

2
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

II. METHODS
A. Purposes

Benchmarking activity can serve a number of purposes
within a production environment, including

1. acting as a quantitative performance discriminator for
choosing an optimal system;

2. enabling responsive vendor system design;
3. validating the delivered system;
4. ensuring burst reliability of system at speed (e.g., stress

testing);
5. continuous verification of the system in production;
6. providing information for detailed understanding of

requirements to achieve performance; and,
7. setting expectations for future runs that cannot be done

on a current system.

For the ESIF-HPC-2 procurement, points 1-3 were of primary
concern. Of course, as the system moves online, points 4 and 5
will become crucial. Points 6 and 7 are indirect but important
outcomes of benchmarking activity. In production, the hardware
and software of an HPC system is generally viewed in an
abstract and coarse-grained manner, in which one may not be
able to exploit the full capability of hardware performance. The
efforts of those who are charged with actively pursuing peak
performance in a competitive environment can demonstrate
what is needed to obtain such performance. Furthermore, any
HPC procurement will involve acquiring a system that reflects
the substantial pace of technological evolution of the
marketplace. Without constant exposure to this evolution, one
can become accustomed to one’s present environment, such that
it can be difficult to design projects and goals appropriate to the
current state of technology. Benchmark results can serve to
update that thinking, oftentimes dramatically given the period of
system refreshes (in our experience, ~3-5 years) and the pace of
hardware and software performance improvement.

B. Dimensions
As a component of initial discussions and in an attempt to

provide some systematic structure for this activity, an initial set
of dimensions was proposed. The idea behind this discussion
was to think of a particular benchmark as residing in a space of
features (Table 1). Thinking in this way would have the primary
goals of preventing duplication and an over-abundance of
benchmark choices in one region of this space, and making

manifest neglected considerations. A more precise formulation
might be in terms of subspaces and dimensions within them,
with some breakdown as correlations exist between subspaces.
For example, “scalable” parallel scope may often go hand-in-
hand “network” as a hardware subsystem and “memory-to-
memory” data transfer (i.e., MPI communication as a key
component of the benchmark), implying some non-
orthogonality among these dimensions. This exercise is similar
in spirit to the analysis expressed as “Ogres” [8] for big data
benchmarking, with “facets” and “views” there replaced by
“dimensions” and “subspaces” here.

It should be recognized that for some dimensions, there is a
degree of judgment involved in assigning values. For example,
“algorithm” in particular can include a well defined and well
recognized computational process (e.g., LU factorization), or a less
defined but well recognized category (e.g., dense linear algebra).
One could conceivably extend this to complex collections that
involves many different actual computational actions, but signify
such a common process that they can be reliably grouped together
as a unit (e.g., computational fluid dynamics in terms of grid
computation and sparse linear algebra, although the distinction
between structured and unstructured grids can make such a
grouping fuzzy if a benchmark uses one or the other, like Nalu).
Primarily, these categories are simply examples of an increasing
degree of abstraction as the benchmark progresses along the
“software scope,” and there is a degree of non-orthogonality to be
expected between these two dimensions. Similarly, one can debate
the degree of task coupling, and precisely what type of data transfer
is being exercised. To a degree, the answers are a matter of intent
and circumstance; nonetheless, we believe there is a value in
having a space in which to place benchmarks, whether as points or
figures of greater extent.

For the specific purposes of the ESIF-HPC-2 procurement,
development focused on sampling along what might be considered
traditional benchmarking dimensions of hardware subsystem,
parallel scope, and data transfer, with some mind paid to software
scope. These dimensions are natural first foci, in that they do not
require detailed knowledge of implemented algorithms, can rely
on a number of standard packages (e.g., STREAM[9], Intel MPI
Benchmarks), and provide a reasonable high-level snapshot of
system performance for decisions on hardware acquisition.
Sampling of other dimensions certainly occurred, but was
incidental. Consideration of the other dimensions will be of interest
in guiding future benchmark development, particularly for the
other purposes to which benchmarking may be put.

TABLE I. A PROVISIONAL SET OF DIMENSIONS OR FEATURES, THAT DEFINE A BENCHMARKING SPACE.

Subspace Type Dimensions
Hardware subsystem Categorical processor, memory, storage, network
Parallel scope Ordinal serial, MT/MP1 single node, multi-node, many-node/scalable
Software scope Ordinal kernel, mini-application, full application, workflow
Degree of task coupling Ordinal loose, medium, tight
Data transfer Categorical Cache-core, memory-core, LFS-memory, NFS-memory, PFS-memory, external-memory, memory-

memory2
Performance type Categorical Maximum application, sustained
Algorithms Categorical See [7], [8]
Interactive productivity Categorical Job scheduler delay, GUI latency, framework support
1 Abbrevations: MT/MP, multi-threaded or multi-process; LFS, local filesystem; NFS, networked serial filesystem; PFS, parallel filesystem; GUI, graphical user
interface
2 Here LFS, NFS, PFS, and external refer to filesystem types and localities to, e.g., DRAM. Memory-memory refers to transfer between separate address spaces
through, e.g., MPI.

3
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

C. Identification
With a set of purposes in mind and an understanding that

benchmarks should primarily focus on serial and parallel
performance of key hardware, a set of benchmarks was
identified. These mainly fell into two categories: community-
standard kernel benchmarks, and application benchmarks [10]
reflecting the bulk of our current system’s node-hour usage. The
former included STREAM, high-performance Linpack, Intel
MPI Benchmarks, IOR, mdtest, and Bonnie++. For
consideration of graphical processing unit (GPU) performance,
we also included the SHOC benchmark [11]. The latter category
of benchmarks reflected our internal workload analysis, which
shows that most of NREL’s computing has, and is projected to
continue to, focused on (a) materials and chemical electronic
structure, (b) large-scale computational fluid dynamics and
fluid-structure interaction, and (c) classical atomistic molecular
dynamics. The set of benchmarks included as part of the ESIF-
HPC-2 suite is listed in Table 2.

Bonnie++: Although the question was raised in external
review what Bonnie++ could add to results from properly
configured IOR, we elected to include this I/O kernel in the suite
for two reasons. First, it has in the past been a standard test that
can easily test local filesystems on nodes and produce results
directly comparable with past results. Second, we have observed
in the past that Bonnie++ runs in an overall way that reflects
realistic I/O workflows of computational scientists who are less
HPC-aware, and exercises resources in a corresponding way that
other benchmarks like IOR may not. For example, testing of
network-attached filesystems will probably reflect CPU and
network rather than disk limits per se [12], and user-level calls
may well engage interactions with default buffer sizes [13];
nevertheless, this will reflect what our average user will see. By
default, Bonnie++ will detect DRAM size of the machine on
which it runs, and should use a dataset large enough to prevent
client-side caching. Runs were single-node, and were requested
to use a single core, half the available cores on the node, and all
cores on the node with synchronization in the case of multiple
threads (-y), and to skip per-character tests (-f).

IOR: This benchmark (currently along with mdtest hosted at
https://github.com/hpc/ior) was included as our primary parallel

filesystem test. The I/O parameters in which we were most
interested were read vs. write; sequential vs. random access,
which was controlled through transfer size settings of 4 MB and
4 kB, respectively, as well as explicitly requesting random
offsets for the latter (-z); and, performance range over a single
process, half the available cores, and all available cores on the
test system. Tests were configured only for the POSIX API, file-
per-process access, a single segment, and a block size equal to
the total file size, which was mandated simply to be a multiple
of available DRAM to prevent caching [14]. This configuration
leaves out certain differentiated cases (e.g., MPI-IO on a shared
file with certain access patterns), but given that a well
established parallel filesystem technology was anticipated and
that POSIX has shown similar performance to MPI-IO in certain
circumstances [15], it was felt simplicity outweighed the
additional overhead of completeness for our purposes. The
chosen configuration was also not chosen to mirror a particular
application I/O pattern, as the target system must serve a diverse
set of current and future applications with indeterminate I/O
patterns. Overall, our IOR benchmark was designed for easy
interpretation and to stress the filesystem in ways compatible
with our observed workload (which is predominantly high-
throughput, small node-count jobs).

mdtest: To test metadata performance of the high-
performance parallel filesystem, creating, statting, and removing
files in three basic run configurations were requested.

1. 220 (1,048,576) files in a single directory;
2. 220 files in 220 directories, with each directory held by

only one MPI rank; and,
3. A single file split among N ranks
Four run configurations were requested for each test,
1. a single rank,
2. m1 ranks on a single node yielding optimal

performance,
3. mn ranks over n nodes yielding optimal global

performance for the system; and,
4. N×C ranks over all N nodes of a given type, with C

hardware cores/node (i.e., a fully packed system).

TABLE II. BENCHMARKS IN THE ESIF-HPC-2 SUITE AND PARAMETERS EXPLORED.

Benchmark Parameter Summary
STREAM Triad Threads = 1, numcores, maximum performance; Default memory and 60% of total on-node
HPL 2N node runs up to ½ and all nodes; all runtime parameters tunable
SHOC Triad 1 or 2 GPUs; BusSpeed and Triad tests
Bonnie++ 1, ½, all cores on node; 2×DRAM; local and NFS
IOR 1, maximum, all nodes; 1.5×DRAM; NFS; POSIX + MPI-IO; 1 file, 1 file/process
mdtest 1, all, and maximum performing # nodes; 1 or 220 files, 1 file/directory or 1 directory; create/stat/remove
Intel MPI Benchmarks 2{1,6–10} nodes; 0, 64k, 512k, 4M messages; PingPong, SendRecv, Exchange, 0B Barrier, Uniband, Biband, Allreduce, Allgather,

Alltoall
HPGMG-FV 2{6-10}, N/4, N/2, N ranks; 27-unit box, 8 boxes/rank
Nalu 2{1,7-10} and N nodes; 256 mesh
VASP 2{4-8}, 320 ranks; GW small unit-cell band structure, and Γ-only catalysis
LAMMPS 2{0,2,4,6,7} nodes, 35% salt solution, 7e5 – 5e7 atoms
Gaussian 1 & 2 nodes; Mn-aquo DFT single point, 175 e-/520 BF
HiBench 5 nodes; Hadoop & Spark, Wordcount, Sort, Bayes, K-means, DFS I/O Enhanced; “Gigantic” problem size

https://github.com/hpc/ior

4
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

HPL and HPGMG-FV: Two additional benchmarks listed in
Table 2 deserve further comment. It has been documented
thoroughly that HPL, the primary determinant of Top 500
rankings, has become increasingly disconnected from the
practical performance achieved on production workloads in HPC
[16], [17]. HPL has been engineered to highlight the raw floating-
point performance of highly parallel systems, but the kernel’s
computational intensity (Flop/byte) is high enough [16] that it
fails to exercise other hardware subsystems that can bottleneck
parallel codes on application problems, e.g., memory and
interconnect latency and bandwidth. For that reason, even though
HPL was included to provide a “standard candle,” we included
the finite-volume formulation of High Performance Geometric
Multigrid [17]. This benchmark provides a cleanly packaged
body of code that exercises the hardware subsystems in a more
balanced way [18], and directly reflective of computational
patterns found in modern large-scale parallel algorithms. The
finite volume implementation exercises the memory subsystem’s
bandwidth more so than the CPU floating-point units or caches.

Application Benchmarks: Gaussian, VASP, LAMMPS, and
Nalu: At the time of the ESIF-HPC-2 procurement, the bulk of
the application load on our first cluster, Peregrine [6], comprised
physics codes including molecular and materials electronic
structure, classical molecular dynamics, and computational fluid
dynamics. The choices of Gaussian[19] and VASP[20]–[23]
were based primarily on existing workflows on Peregrine.
LAMMPS[24] had the benefits of a GPLv2 license, and a focus
on performance at scale. Nalu is a CFD code likewise targeting
massively parallel systems, and is representative of applications
supporting important engineering work at NREL. The differing
formulations of these benchmarks reflected some finer points of
our intent. For Gaussian, the intent was to ensure that the
program’s shared and distributed memory runtime models were
simply supported, and to assess performance relationships. For
VASP on the other hand, the intent was to optimize performance
by highlighting system design points against a critical workflow,
and to assess problem-specific performance scaling against
Peregrine. LAMMPS and Nalu had similar aims, but a focus on
nodes rather than ranks forced a minimum degree of internode
communication, and so highlighted interconnect performance as
opposed to memory capacity (which the memory-constrained
problem in bench1 of the VASP benchmark could emphasize).

HiBench: The ESIF-HPC-2 procurement activity recognized
that the world, and the scientific and engineering activity within
it, is becoming more data-intensive. In recognition, a part of the
requested resources included nodes that could be deployed for
“big data” types of work. To this end, the open-source HiBench
[25] was included to ascertain the differential value of new
hardware against our current environment. We were specifically
interested in Hadoop and Spark performance on some basic
patterns over large data sets, e.g., binning (in HiBench:
Wordcount), sorting (Sort), clustering (K-Means), and
classification (Bayes), as well as a basic measurement of
Hadoop I/O (enhanced DFSIO). Given the current and foreseen
near-future workloads at NREL, we requested performance runs
on a cluster of 5 data nodes and 1 name node, using HiBench’s
pre-defined “gigantic” set of data.

D. Development workflow
The Git revision control system was employed to enable

simple content development and issue tracking. Content was
based in an institutional GitHub, permitting private development
and simple management of ancillary concerns such as access
control. A Git Organization was created as a containing entity for
the benchmarks, each of which was assigned its own repository.
Each repository was made write-accessible to the Organization
Owner roles, as well as the assigned developer. Development
decisions were left largely to the developers themselves, beyond
an understanding that the default markdown README.md file
(present by default in every Git repo) would serve as the primary
vehicle for instructions specific to each benchmark. Questions
and issues were tracked through the standard GitHub mechanism,
enabling provenance, locality (i.e., a single place to find items),
and persistence for future reference. Development via Git also
permits facile ongoing development and public release.

E. Testing
The Git system provides a convenient means to establish

parallel co-existing repository versions through its branching
mechanism. By branching each repo to a “3PT” version for
third-party testing, instructions could be customized for this
purpose and preserving the same mechanism that final
benchmark users would employ (i.e., start at README.md)
without requiring error-prone change and reversion.

Third-party testing was intended to ensure that a user
reasonably familiar with and skilled in the use of the computing
environment could (a) acquire the benchmark materials, (b)
build the required binary components by following the
instructions in README.md, (c) run the benchmark according
to the instructions provided, and (d) interpret reporting
instructions adequately to complete a subset of desired reporting
requirements for each benchmark. To these ends, a set of testers
mostly disjoint with the development team was chosen. In some
cases, the test team was simply a permutation of the
development team, but in any case such that no person who
developed a benchmark was involved in testing. Issues were
reported through the Git tracking system, and results were then
checked into the 3PT repo branch by the third-party testers.

Additional input was provided by an external review panel
comprised of established experts in leadership-class high-
performance computing. This valuable process allows for
integration of leading expertise in the field, a diversity of
experience with procurement in multiple institutional settings,
and up-to-the-minute knowledge of technology trends and status.
In this particular scenario, external review served as both a sanity
check and a credibility multiplier, adding to our confidence in the
scope and coverage of the benchmarking process.

III. RESULTS

A. Benchmark Collection
Categories. In terms of the dimensions outlined in Table 1

above and the assignments in Table 3, the initially released
benchmark suite described here occupies a limited subspace of
hardware subsystem, parallel scope, and software scope. This
might be considered a fairly traditional choice for purposes of

5
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

(a) system procurement (b) for general-purpose HPC (c) within
a limited technological scope (e.g., where the available high-
speed networking protocols have similar latency and bandwidth
figures). Other dimensions, like task coupling or data transfer,
might have greater predictive value for systems with more
focused application domains or a broader palette of technology
choices, or for other purposes like stress testing.

B. Definitions of Dimensions
Hardware subsystem. Each subsystem (processor, memory,

storage, and network) contributes to a benchmark if it is at least
likely to contribute substantively to the overall rate limitation.
So, even though STREAM Triad involves floating-point
operations, it is limited primarily by memory bandwidth.
Although HPL is at least partially limited by interconnect [26],
it predominantly reflects processing power (vide supra).
“Memory” limitation can also include data movement between
memory pools on a single server, e.g., from host to accelerator.
Application benchmarks are not so clearly limited by a single
hardware factor, and the particular formulation of these
benchmarks determines which factors were included. So,
whereas the VASP tests as formulated exercise all the
subsystems besides storage, Gaussian is only formulated to
validate functionality of single- and multi-node capabilities, and
Nalu runs were constructed to exercise all four subsystems.

Parallel scope. This category reflects the main focus of each
benchmark as we have constructed it, not all of its capabilities.
For example, HPL can of course be run at smaller scales, but we
(and arguably, the HPC community as a whole) primarily use it
to test computation at scale. Similarly, IOR and mdtest may
inform single-node performance, but our concern was more
focused on I/O performance as jobs scale up. Our four categories
were defined as

a. Serial: no explicit shared memory or distributed memory
parallelism. Any computational parallelism (e.g.,
pipelining, SIMD) would be discovered and implemented
by the compiler.

b. Multi-threaded or multi-process parallelism on a single
node. We have defined a “node” as a single hardware
entity not requiring communication through an external
switch (e.g., Infiniband) to enable inter-process
communication. This class reflects much of the observed
demand at NREL, nicely balancing parallel acceleration
through a limited scaling regime and overall throughput
of completely independent jobs for, e.g., high-throughput
parameter exploration.

c. Multi-node parallelism. A second class of demand we
have observed involves codes and problems which do not
scale especially well, but for which there is enough
acceleration over < 10 nodes to, e.g., fit a job inside a
walltime limit, or to acquire intermediate results which
will guide further exploration.

d. Scalable. This is the traditional HPC category of work,
involving carefully parallelized code and a single
substantial computation with memory or time demands
prohibiting solution on smaller numbers of nodes. At
NREL, these have typically involved classical molecular
dynamics or fluid dynamics-heavy multiphysics runs.

Software scope. Community benchmarks have historically
focused on either single hardware subsystems (processing,
memory, I/O), or single algorithms (matrix multiplication, FFT,
etc.). We labeled this benchmark type a “kernel.” Some more
recent collections, e.g., Mantevo [27], have expanded into
collections of kernels with common co-occurrence, which we
have labeled “mini-applications.” Although these two categories
can capture most of the information needed for a performance
specialist to draw conclusions regarding hardware and toolset
suitability, they still represent an indirect measure of
performance versus representative problems that are commonly
seen in a particular facility. Thus, we have extended our
collection to include “full applications.” Obviously, these cannot
capture everything that a particular application could do, nor
would comparisons arising from such a comprehensive analysis
provide much direct value (i.e., small vs. big data). However, as
formulated they represent common job types important to
NREL’s research community. For example, the VASP
benchmark includes two job types: a small unit-cell, high-
accuracy many-body calculation reflecting work on
semiconductor band structure, and a large unit-cell, DFT GGA
slab calculation more common for catalysis studies. Finally, a
straightforward extension toward evolving demands couples
many applications together, where bottlenecks may involve file-
based communication, software stack complexity, or simply
usability. This “workflow” category is less a hardware
benchmark, and more focused on the ability of an HPC
ecosystem to scale up to heterogeneous computing models.

Task coupling. HPC traditionally focuses on what we
consider here as “tight” task coupling, with a large message rate
(hence latency-sensitive) and often a large message volume as
well (hence bandwidth-sensitive). NREL’s workload is
composed of a mixture of workflows, many of which fall outside
of this paradigm. We also considered this dimension as
primarily concerned with tasks as analogous to MPI ranks or
processes (e.g., with a separate address space, unique process
and thread group ID) as opposed to threads (i.e., sharing an
address space, sharing process and/or thread group IDs). So
from this viewpoint, STREAM has a single task; HPL is
primarily bound by FPU and cache performance and thus might
represent medium coupling; and, IMB, HPGMG, Nalu, VASP,
and LAMMPS would be considered tightly coupled. This
measure was not defined to be particularly quantitative, but
rather to understand how a benchmark collection might be
biased toward one or the other end of coupling strength.

Data transfer. Except for programs that would reside
entirely in registers, benchmarks will involve some degree of
data transfer that is characteristic and may be rate-limiting. HPL
runs of substantial size may be configured to hold all data in
cache, and so we would characterize the data transfer character
of this benchmark as cache-core (although some data obviously
must be exchanged between nodes). I/O benchmarks are
primarily concerned with storage, and so would be most
characterized as involving local (LFS), network-attached
Ethernet (NFS), or parallel high-performance (PFS)-memory
transfer. This dimension is intended to indicate where one
expects the primary bottleneck to reside.

Performance type. Maximum application performance in the
context of a benchmark reflects an absolute ceiling that software

6
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

or algorithms of that type should be able to achieve on the
system with the, e.g., compiler flags used. This is distinct from
theoretical peak performance, i.e., assuming that computational
units are the sole rate-limiting step and are saturated with work,
as well as sustained performance for a loaded system. The last
(which we denote simply as “sustained” for brevity) is intended
to take into account the effects of multiple loads accessing
shared resources in an average case scenario—neither the ideal
case of a maximum application performance benchmark, nor
pathological cases like every running job requiring the resource
concurrently. A sustained performance benchmark can be useful
in setting expectations of a system in production.

Algorithms. These reflect typical atomic computational tasks
within an application run—neither synthetic microkernels nor
full applications. They “constitute classes where membership in
a class is defined by similarity in computation and data
movement.” [7] So, not so much “LU decomposition” across
any matrix type, but dense vs. sparse matrix operations. In our
case, the HPL and HPGMG benchmarks might be considered
examples of dense linear algebra and unstructured grid (given
cycles through multiple layers of regular grids, one might
anticipate a degree of irregular data access somewhere between
structured and unstructured grids overall), respectively.

This classification is not universally assignable to
benchmarks—microkernel and application benchmarks would
fall outside of it. Thinking of it as a dimension, then, for
classification purposes those benchmarks would have a null
projection onto it (i.e., reside in a subspace orthogonal to
algorithmic classification).

Interactive productivity. The ESIF-HPC computing facility
supports a variety of work styles beyond bulk batch computing.
One critical need that it serves is creation and modification of
meshes, which is often most easily done interactively through a
GUI. More generally, intermediate visualization (as opposed to
final generation of publication-quality graphics) can dramatically
accelerate discovery by tapping into the highly evolved human
visual system’s abilities. Our strategy has been to provide heavily
provisioned nodes with hardware rendering capability, which has
served our user community well. However, it would be beneficial
to quantify this type of workload. While we define the dimension
here, the benchmark suite does not currently contain such a
component. We do anticipate creating one involving remote
access large-mesh creation and refinement workflows. Such a
test would exercise not only the central compute capabilities, but
also graphics rendering and the peripheral networking
connecting a data center with the outside world. Indeed, having a
formalized benchmark like this would have caught an issue with
graphics hardware branding that was only discovered after the
Eagle system went into production.

C. Private vs. public release
 In the course of developing the benchmark suite, we kept

repository access relatively restricted to a group of developers
with mutual trust. Our concerns were to make contributors
comfortable enough to take more initiative than they might
otherwise in front of a public audience. Nevertheless, the
potential impact of this work is severely limited without a public
release, and in the worst case will lead to duplication of effort
should someone that would have used the repository is forced to

redevelop the same capability. We have thus released the suite
at https://github.com/NREL/ESIFHPC2. Licensing information
is included in each benchmark’s top-level README.md file.
We hope that the materials will serve as a convenient starting
point for those tasked with similar evaluations, the source for
subsequent improvements, a base for improvements submitted
through pull requests, and our own primary store of knowledge
for future benchmarking efforts.

IV. DISCUSSION

A. Value of a formalized process
Benchmarking is of growing importance as hardware and

software grow in complexity and diversity. While there are
already industry standard collections (e.g., SPEC), we sought to
create a cost-free collection that can be easily obtained, adapted,
and built to benchmark multiple elements of an HPC computer
system (hardware compute performance, memory and network
latency/bandwidth, I/O subsystems, and key application
performance). In terms of the ESIF-HPC-2 benchmarking
activity, the creation and execution of a formal benchmarking
effort certainly served to increase our own knowledge and
competence in assessing an HPC system, as well as to socialize
the importance of performance measurement beyond the core
group of contributors. Because these benchmarks were
ultimately used by vendors without easy access to the
contributors, internal third-party assessment was crucial in
filling in instructional holes created by contributors’ familiarity
with the benchmark. Finally, assessment by external HPC
experts was invaluable in improving the benchmarks and filling
in knowledge gaps. In the end, we were able to quantify the
performance of Eagle precisely in terms of individual
subsystems, at scale, across multiple important application
categories, under sustained load, and for emergent workloads.

B. Future targets
 Computing systems are undergoing rapid evolution as the

traditional increase in transistor counts is less able to translate
directly into compute performance, and as new paradigms like
machine learning begin to take mindshare from model-based
technical computing. The reliance on accelerators for leading-
edge performance going forward and the rise of data science are
undoubtedly harbingers for many technical advances in the near
future, and our benchmark suite will need to adapt to these
accordingly to stay relevant. By formulating and thinking along
“dimensions”, we are able to identify gaps systematically and
grow the suite to ensure balance and add new information.

ACKNOWLEDGMENT
We thank the following people for development and testing:

Shreyas Ananthan, Matt Bidwell, Marc Henry de Frahan, Ray
Grout, Ross Larsen, Hai Long, Monte Lunacek, Caleb Phillips,
Avi Purkayastha, Matthew Reynolds, Jon Rood, Jeff Simpson,
Harry Sorensen, Stephen Thomas, and Deepthi Vaidhynathan This
work was authored by the National Renewable Energy Laboratory,
operated by Alliance for Sustainable Energy, LLC, for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-
08GO28308. Funding was provided by the U.S. Department of
Energy’s Office of Energy Efficiency and Renewable Energy. The
views expressed in the article do not necessarily represent the
views of the DOE or the U.S. Government.

https://github.com/NREL/ESIFHPC2

7
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

TABLE III. ESIF-HPC-2 BENCHMARK FEATURES. EACH COLUMN IS A FEATURE, AND EACH ROW CAN BE VIEWED AS A VECTOR IN ONE-HOT ENCODING, WITH BLACK DENOTING THAT THE FEATURE IS
PRESENT OR RELEVANT TO THAT BENCHMARK (A VALUE OF 1) AND WHITE THAT IT IS NOT (A VALUE OF 0). THE SUMS ALONG THE BOTTOM REFLECT HOW MUCH THAT FEATURE IS REPRESENTED IN THE
SUITE, COLOR-CODED FROM BLUE (HIGHLY REPRESENTED) TO RED (NOT REPRESENTED).

8
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

REFERENCES
[1] T. Pyzdek, “Benchmarking,” in The Six Sigma Handbook: A Complete

Guide for Green Belts, Black Belts, and Managers at All Levels,
Revised and Expanded., New York: McGraw-Hill, 2003, pp. 91–96.

[2] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
Benchmark: Past, Present, and Future,” University of Tennessee,
Knoxville, TN, Dec. 2001.

[3] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the Graph 500,” presented at the Cray Users Group,
Edinburgh, 2010, p. 5.

[4] W. Feng and K. W. Cameron, “The Green500 List: Encouraging
Sustainable Supercomputing,” Computer, vol. 40, no. 12, pp. 50–55,
Dec. 2007, doi: 10.1109/MC.2007.445.

[5] D. Manheim and S. Garrabrant, “Categorizing Variants of Goodhart’s
Law,” arXiv.org, p. 1803.04585v3, Apr. 2018, doi:
https://arxiv.org/pdf/1803.04585.pdf.

[6] K. Regimbal, I. Carpenter, C. Chang, and S. Hammond, “Peregrine at
the National Renewable Energy Laboratory,” in Contemporary High
Performance Computing: From Petascale to Exascale, vol. 2, J. S.
Vetter, Ed. Taylor & Francis, 2015, pp. 163–184.

[7] K. Asanović et al., “The Landscape of Parallel Computing Research:
A View from Berkeley.” EECS, University of California at Berkeley,
18-Dec-2006.

[8] G. Fox, S. Jha, J. Qiu, S. Ekanayake, and A. Luckow, “Towards a
Comprehensive Set of Big Data Benchmarks,” in Big Data and High
Performance Computing, vol. 26, 2015, pp. 47–66.

[9] J. D. McCalpin, “Memory Bandwidth and Machine Balance in
Current High Performance Computers,” IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newsletter,
pp. 19–25, 1995.

[10] B. Armstrong, H. Bae, R. Eigenmann, F. Saied, M. Sayeed, and Y.
Zheng, “HPC Benchmarking and Performance Evaluation with
Realistic Applications,” presented at the SPEC Benchmark Workshop,
University of Texas, Austin, TX, 2006, pp. 1–11.

[11] A. Danalis et al., “The Scalable Heterogeneous Computing (SHOC)
Benchmark Suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, Pittsburgh, PA,
2010, pp. 63–74, doi: https://doi.org/10.1145/1735688.1735702.

[12] R. Bourbonnais, “Decoding Bonnie++,” 15-Dec-2008. [Online].
Available: https://blogs.oracle.com/roch/decoding-bonnie. [Accessed:
27-Apr-2018].

[13] B. Gregg, “Active Benchmarking: Bonnie++,” Brendan Gregg’s Blog,
08-Feb-2014. [Online]. Available:
http://www.brendangregg.com/ActiveBenchmarking/bonnie++.html.
[Accessed: 12-Sep-2018].

[14] H. Shan, K. Antypas, and J. Shalf, “Characterizing and Predicting the
I/O Performance of HPC Applications using a Parameterized
Synthetic Benchmark,” 2008, pp. 1–12, doi:
10.1109/SC.2008.5222721.

[15] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of Leading
HPC I/O Performance using a Scientific-Application Derived
Benchmark,” in High Performance Computing, Networking, and
Storage Conference, 2007, doi: 10.1145/1362622.1362636.

[16] J. Kwack and G. H. Bauer, “HPCG and HPGMG Benchmark Tests on
Multiple Program, Multiple Data (MPMD) Mode on Blue Waters-A
Cray XE6/XK7 Hybrid System,” Concurr. Comput. Pract. Exp., vol.
30, no. 1, p. e4298, Jan. 2018, doi: 10.1002/cpe.4298.

[17] M. F. Adams, J. Brown, J. Shalf, B. Van Straalen, E. Strohmaier, and
S. Williams, “HPGMG 1.0: A Benchmark for Ranking High
Performance Computing Systems,” Lawrence Berkeley National Lab,
LBNL-6630E, 1131029, May 2014.

[18] V. Marjanović, J. Gracia, and C. W. Glass, “HPC Benchmarking:
Problem Size Matters,” presented at the 7th International Workshop
on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems, Salt Lake City, 2016, pp. 1–10, doi:
10.1109/PMBS.2016.006.

[19] M. J. Frisch et al., Gaussian 16, Rev. B.01. Wallingford, CT:
Gaussian, Inc., 2016.

[20] G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for ab
Initio Total-Energy Calculations Using a Plane-Wave Basis Set,”
Phys. Rev. B, vol. 54, no. 16, pp. 11169–86, 1996.

[21] G. Kresse and J. Furthmüller, “Efficiency of ab-Initio Total Energy
Calculations for Metals and Semiconductors using a Plane-Wave
Basis Set,” Comput. Mater. Sci., vol. 6, pp. 15–50, 1996.

[22] G. Kresse and J. Hafner, “Ab initio Molecular Dynamics for Liquid
Metals,” Phys. Rev. B, vol. 47, no. 1, pp. 558–561, 1993, doi:
10.1103/PhysRevB.47.558.

[23] G. Kresse and J. Hafner, “Ab initio Molecular-Dynamics Simulation
of the Liquid-metal-Amorphous-semiconductor Transition in
Germanium,” Phys. Rev. B, vol. 49, no. 20, pp. 14251–14271, Mar.
1994, doi: 10.1103/PhysRevB.49.14251.

[24] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, Mar. 1995,
doi: 10.1006/jcph.1995.1039.

[25] Rui Han, Lizy Kurian John, and Jianfeng Zhan, “Benchmarking Big
Data Systems: A Review,” IEEE Trans. Serv. Comput., vol. PP, no.
99, pp. 1–18, 2017, doi: 10.1109/TSC.2017.2730882.

[26] Y. Deng, P. Zhang, C. Marques, R. Powell, and L. Zhang, “Analysis
of Linpack and Power Efficiencies of the World’s TOP500
Supercomputers,” Parallel Comput., vol. 39, no. 6–7, pp. 271–279,
2013, doi: 10.1016/j.parco.2013.04.007.

[27] M. A. Heroux et al., “Improving Performance via Mini-Applications,”
Sandia National Laboratories, Albuquerque, NM, SAND2009-5574,
2009.

