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Cooperative Load Scheduling for Multiple
Aggregators Using Hierarchical ADMM

Xiangyu Zhang, Dave Biagioni, Peter Graf, Jennifer King
National Renewable Energy Laboratory, Golden, Colorado, USA 80401

Abstract—Demand response (DR) serves an important role
in improving the efficiency and stability of power systems.
In recent years, with advances in communication and smart
device technologies, many aggregators have emerged to facilitate
end customer participation in DR programs. These aggregators,
equipped with customized optimal control algorithms, are capable
of providing various grid services. Among them is load scheduling
during DR events, namely following a load signal provided by the
utility company while minimizing overall customer discomfort.
However, as the number of aggregators keeps increasing, it be-
comes challenging for utility companies to conduct load schedul-
ing for multiple aggregators and generate reference signals for
each of them. This paper proposes an optimization framework
using hierarchical alternating direction method of multipliers
(H-ADMM) to optimally generate load following signals for
multiple aggregators. Under this framework, utility and multiple
aggregators work in a cooperative manner, aiming at minimizing
an overall system cost from different levels of the power system
hierarchy, while protecting user privacy. A case study has been
conducted in a system with multiple aggregators, based on control
of HVAC loads. Experimental results validate the effectiveness of
the proposed algorithm.

Keywords—Demand response, aggregator, load scheduling,
ADMM.

I. INTRODUCTION

Demand response (DR) is an effective approach to in-
crease power grid operation efficiency [1], [2]. Examples of
benefits include avoiding the operation of less efficient and
more expensive generation units, and balancing intermittent
renewable generation [3]. Research on implementing demand
response has become popular; in single customer scenarios, for
example, the authors of [4] discussed load scheduling at device
level given day-ahead price and an algorithm for home energy
management system is designed in [5]. On the other hand, to
facilitate residential and commercial customers to participate
in DR programs, a great number of aggregators have emerged
in recent years. Authors of [6] studied a distributed direct load
control for an aggregated residential load. The study in [7]
proposed a coordination of electric vehicles charging among
multiple aggregators. In the present day, aggregators are well
equipped with proprietary optimal control algorithms that can
control the device cluster to follow the load signal provided
by the utility company, with minimized customer discomfort
incurred. With an increasing number of such aggregators
entering the marketplace, there is an emerging opportunity
for utility companies to exploit demand responsiveness to
effect coordinated control in the form of load following.
This important problem has not been well addressed in the
literature.

We propose an optimization framework that allows a utility
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company and multiple aggregators to solve the power alloca-
tion sharing problem in a cooperative effort. Assuming each
aggregator has multiple device clusters, the sharing problem
is solved iteratively using a three-layer tree structure (util-
ity/aggregators/clusters). The proposed algorithm, which we
call hierachical-ADMM (H-ADMM)), is organized according to
this tree structure and, importantly, shares information between
layers so as to protect end user and aggregator privacy. H-
ADMM consists of one upper and multiple lower control
levels and is characterized by a specific combination of block-
separable and shared terms in the global objective that naturally
lead to the hierarchical decomposition. In addition, the primal
and dual updates performed at each level have a simple but
meaningful interpretation in terms of the various agents that
can be easily understood in the context of cooperative control.
For ease of exposition, we focus on finite-horizon control with
perfect forecasting, but note that the formulation is easily
extended to incorporate receding-horizon model predictive
control. Finally, while the proposed control hierarchy consists
of only two control levels, the scheme can be generalized to
arbitrary depth for suitable problems.

II. FORMULATION OF LOAD SCHEDULING

Fig. 1 shows a utility company and N aggregators, each
with multiple device clusters. The aggregators have the auton-
omy to determine how to group the cluster, e.g., by device type
or geographical feeders, and how to implement optimal cluster
control for individual devices within each cluster, e.g., via
greedy control, reinforcement learning or other optimal control
algorithms) To capture the current reality, the detail of cluster
level control is assumed to be proprietary and unknown to the
utility. For a control horizon with 7" discrete steps, we assume
Tij € Rz is the power allocated to Cluster j in Aggregator
i, and x; = Zjvzl 245 is the power consumed by Aggregator
i. Here RI denotes the space of T-dimensional real-valued
vectors with nonnegative components. The nonnegative vector
B € RE represents the amount of power procured from the
day-ahead wholesale market, in order to satisfy aggregator
demand. For the total power to track the load signal (3, costs
are incurred at all three levels and our objective is to minimize
this total cost.

The total cost minimization is formulated as:
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Here f; : RI — 'R represents the costs from Aggregator
1 and its constituent clusters and the second term represents
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Fig. 1: Overview of load scheduling problem.

the utility-level penalty for deviation from the aggregate load
signal with per-unit penalty e. We assume that aggregators have
two (possibly conflicting) objectives: to minimize the penalty
for drawing power beyond a predefined limit, and to minimize
customer discomfort. Specifically,

N; N;
= fij(@i;) +n>_mij — )"
=1 =1

where f;;(x;;) represents overall customer discomfort within
a cluster, 7; is the upper limit of power consumption agreed
upon between Aggregator ¢ and the utility, and 7 is the
associated per-unit cost of exceeding this limit. The function
(-)T represents element-wise projection onto the nonnegative
real line, i.e., (y)* = max {0, y}. In practice, when the optimal
x;; is obtained, it is sent as a load following signal to the
corresponding cluster and the existing proprietary controller at

cluster level will use x;; for device level control.
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In this section we describe H-ADMM and highlight both
the hierarchical, decentralized nature of the algorithm as well
as its ability to protect private state information via limited
information passing between the layers.

HIERARCHICAL ADMM

We first review ADMM in the context of “sharing” prob-
lems. ADMM is a convex optimization algorithm that has
recently gained popularity in problems where the structure
of the objective function (and constraints encoded therein)
admits a decomposition into subproblems that can be itera-
tively solved to arrive at a global solution via a convergent
sequence of primal-dual updates. One such class of problems
have objectives of the form S0 fi(x:) + g(3~ , ), and
these problems are often referred to as ‘“‘sharing” problems
since they combine separable terms, f;(x;), with a joint term,
g(Z?Ll x;), that depends on the cumulative (shared) value
of the individual decisions. We refer the reader to [8] for
details about this decomposition and the associated primal-
dual algorithm.

In order to derive the hierarchical scheme, we first note that
the upper level optimization problem (1) is, in fact, a sharing
problem: each aggregator has its own local objective encoded
via f; in addition to a cooperative objective to follow the net
load signal. Ignoring for the moment that each aggregator
decision is a sum over its clusters’ decisions, the ADMM

2

algorithm for this problem is expressed via the following
primal-dual (scaled) updates,

, 2
2P = argmin(f;(x;) + 5 Pu |zi — af + 2t -2+ uk||2)
T, €EX; 2
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Here the superscrlpt k denotes the ADMM iteration number,

Z z;, and p,, > 0. Note that z is an intermediate
optlmlzatlon variable; the overbar here reflects the fact that
Z is an estimator of Z.

The key observation of this paper is that, considering x; =
Z;V 1 x;; and definition (2), the aggregator update rules :ka+1
in (3) themselves have the structure of a sharing problem: the
quadratic penalty term is a function of z; = ), ; Tij while all

other quantities z¥, %, 2% u* are simply iteration parameters.
For this reason, we consider solving the x;-update in the upper
level via another level of ADMM,

phl k . 2
- Ty + Ty — W +y¢||2)

. Pl
wiy | = argmin(fiy(zi;) + 5 ||z -
Ti;E€Xi;
(6)
N
Wit = argmin(h(N w;) pl || w; — it =y H N
il = gk xk+1 @kt (8)

where p; > 0. In (7), the function h encodes the shared terms
that include both aggregator power limit penalty as well as the
quadratic penalty from the upper level iteration,

h(v)

:n(v—nﬁ—k%Hv—mf—i—jk—ik—&-uknz. )

Taken together, the single set of upper level updates (3)-
(5) and ), N; lower level updates (6)-(8) comprise a bilevel
hierarchical control scheme. We note that while aggregator
decisions z; in the top level updates (3) are ultimately passed
down to the individual devices in the lower level, the control
scheme is indeed hierarchical. In particular, one can interpret
the upper level z- and w-updates as the action of the utility
to reconcile the joint objectives of the aggregators with the
system-wide objective of following the load signal. It does so
by adjusting both the target net power consumption (4) as well
as the cost of deviating from the target (5). The lower level
operates analogously, with each aggregator now attempting to
reconcile the cluster objectives with its own load following
objective. In practice, (4) and (5) are completed at the utility
level; (7) and (8) are completed at the aggregator level and (6)
is completed at the cluster level, only limited and non-private
data are shared between levels. Fig. 2 shows the computational
flow chart.

IV. CASE STUDY

In this section, the efficacy of the proposed H-ADMM
algorithm 1is first verified using a simplified cluster model and
compared against two baseline control algorithms. Numerical
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Fig. 2: Distributed Architecture for the Hierarchical ADMM.
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results shown in this section are based on Python implemen-
tation of the proposed algorithm using open source libraries
‘ipopt/Pyomo’ and ‘pyswarms’.

A. Simulation Setup

1) Simplified cluster discomfort model: For simplicity, we
first assume for any step in control horizon, the discomfort can
be computed using (10), where a;; is discomfort threshold.

ﬁ L (0 <y
0 (

— aij

fige(wit]) = (10)
The rationale behind this assumption is that typically the
discomfort of cluster decreases with the increase of x;; and
increase drastically when z;; is insufficient. Figure 3 is an
example of such discomfort function for a cluster, where
a;; = 2.5. Based on this assumption, the discomfort for the
whole control horizon can be expressed via the convex function

L
fig@ig) = 2y fije(@izlt]).

2) Scenario setup: We consider optimizing in 15-minute
intervals over a two hour horizon (T 8) and that the

utility-level load signal to be followed is given by: 8 =
[28.,16.,20.,22.,18.,24.,15.,18.] in units of MW. In this

3

problem, the system consists of three aggregators and each of
them has two clusters. The power limit at aggregator level is
7 =9.0,8.0,11.0] and the discomfort threshold for each clus-
ter in all three aggregators are [[2.0,5.0],[3.0,2.0], [3.0, 5.0]].
Unit penalty for exceeding aggregator-level power limit is
n = 5.0 and the overall load deviation cost is € 1.0.
Maximum iteration number of upper and lower problems are
100 and 200 respectively, but iteration stops early when update
is less than Se-3. Parameters p, and p; are chosen to be 1.0
and 0.5 respectively.

B. Baseline algorithms

1) Baseline 1: Proportional power allocation: In contrast
to the proposed framework, Baseline 1 does not allow coop-
eration and sharing among all aggregators/clusters. Instead,
the utility company allocates power to each aggregator and
cluster in an arbitrary but reasonable way: by dividing the
power proportionally as

Ti
.
dic1 Ti

zilt] = wilt] - =2

N;
2 =1

Qi

11

12)

By comparing H-ADMM with Baseline 1, it can be seen
whether introducing the flexibility of allowing cooperation
among aggregators/clusters provides any advantage.

2) Baseline 2: Centralized optimization: By plugging (10)
into (1) and (2), a centralized version of the proposed optimiza-
tion problem is formulated as (13). Comparison of H-ADMM
with Baseline 2 provides a measure of accuracy since Baseline
2 is mathematically equivalent and can be readily solved to
global optimality due to the convexity of global problem. We
note that Baseline 2, however, assumes complete knowledge
of all state and decision variables and thus does not support
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privacy protection or distributed solution.

N [N T T
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T omy o ay
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C. Simulation Results

Table I shows the comparison between H-ADMM and
two baseline approaches. First, the comparison between pro-
portional power allocation and H-ADMM shows that the
introduction of cooperation among aggregators/clusters in our
proposed framework can reduce the total cost. Cost reduction is
attributed to the decrease of discomfort cost. Table II shows the
change of cluster power consumption over the control horizon.
The fluctuation of cluster’s power reflects the cooperation and
resource sharing among aggregators. Mathematically speaking,
the power is directed to clusters with the highest marginal
discomfort. Second, the comparison between the centralized
optimization with H-ADMM shows the total cost (Ciotar)
obtained by both algorithms are very close with the difference
attributable to the early stopping criteria of H-ADMM. Fig.
4 compares the power allocated to each aggregator by H-
ADMM and its centralized version, it demonstrates the results
from H-ADMM closely agrees with those from the centralized
optimization. Fig. 5 shows that H-ADMM can coordinate these
six clusters and three aggregators to closely follow the utility-
level load.

TABLE I: PERFORMANCE COMPARISON

Algorithm Cliotal Cais sz Cagg
Proportional Allocation 1.6280 1.6280 | 0.0000 | 0.0000
Centralized Optimization 0.8453 0.8361 0.0092 | 0.0000
H-ADMM 0.8557 0.8422 | 0.0098 | 0.0036

TABLE II: LOAD PERCENTAGE FOR SIX CLUSTERS

Cluster Bf'ise]ine 1 ] H-ADMM ]
Fixed (%) Max (%) Min (%) Mean (%) (Max-Min)/Mean (%)
1 9.18 14.12 9.51 12.11 38.14
2 22.96 23.33 18.11 20.27 25.75
3 17.14 20.00 14.91 16.88 30.14
4 11.43 15.07 10.00 12.72 39.85
5 14.73 18.71 12.88 16.41 35.54
6 24.55 25.43 17.90 21.76 34.63

It is worth noting that the centralized optimization problem
above is only used to verify the optimality of H-ADMM solu-
tion; in a real life application, the centralized problem usually
cannot be formulated and solved because 1) aggregators are
not willing to expose their system discomfort models which
may be both proprietary and contain sensitive data and 2) the
cluster discomfort models might not be convex or, worse, even
have an explicit form.
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D. Preliminary Results on Detailed Cluster Discomfort Model

As previously mentioned, in real applications f;;(x;;) can
be expected to be more complicated than (10), and might
not even have an explicit form. In this section, preliminary
results are presented for exactly such a system; we refer to the
corresponding model as the detailed cluster model.

1) Detailed Cluster Discomfort Model: In this section, we
assume all clusters consist of only HVAC devices and they
are controlled via a greedy control algorithm, as shown in
Algorithm 1. For simplicity, all AC units are assumed to have
the same power consumption of P,.. Z represents the set of
all AC units in the cluster and F. is the thermal dynamic
model for AC unit ¢ (V( € Z), which is known to the cluster.
Evidently, f;;(z;;) in this case does not have an explicit form
and we investigate a gradient-free method to optimize (6).

Algorithm 1 f;;(x;;) Evaluation using Cluster Greedy Control

Input: z;;
1 fij(@ij) =0
2: fort=1to 7 do
3:  Determine number of AC units to be turned ON:
) = int(wi;[t]/ Pac)
4:  Evaluate thermal comfort margin for all AC units:
mz = Lset,¢ + A:rtolerance - Tct
5:  Sort AC units by m¢ (from least margin to max margin)
and select Top 1 AC units in the priority queue to cool
(st = 1), otherwise (st = 0).
for ( =1to |Z] do
Update indoor temperature: TZH = Fe(T¢, s¢)
fij(@ij) = fij(2i;) + maz(0, *)\mzﬂ)
9:  end for
10: end for
11: return fij (.Z‘ij)

e 2
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2) Scenario setup and results: Similar to earlier simulation,
we assume there are three aggregators and each one has two
clusters. The numbers of AC units in all clusters are shown in
[[300, 500], [400, 500], [500, 500]]. Each unit has 8kW power
consumption when cooling. The utility-level load signal to be
followed is : § = [18.,16.,10.,12.,18.,14.,15.,10.] in units
of MW. The power limits at the aggregator level are 7
[6.0,6.5,7.0]. The initial indoor temperatures of all houses are
sampled from a Gaussian distribution (TCO ~ N(72.0,1.0),
in °F"). In this study, particle swarm optimization is used to
solve (6) and the number of upper iteration is limited to 10.
Fig. 6 shows the optimized load following results at the utility
level. Due to the stochastic feature of heuristic optimization,
10 trials are conducted. Fig. 6 shows in all 10 trials the utility
level loads are closely following the signal given. Two reasons
for the small amount of deviation: first, at some times load
following is sacrificed in exchange for cluster comfort, in order
to minimize the overall objective of (1); second, due to the
early stopping of iterations, the final solution, though close to
the optimal solution, is sub-optimal.

E. Algorithm Convergence

Previous studies have proven the convergence of ADMM
under convexity assumptions on the objective function and its
domain. When using the simplified discomfort model, (10) is
convex which guarantees the convergence of H-ADMM when
solving the problem. Fig. 7 (a) shows the convergence of total
cost (1) in loglO for the case with simplified cluster model
(a). In (a), the black dashed line is the optimal objective value
from the centralized solver, to which the H-ADMM solution
is shown to converge. Fig. 7 (b) shows the convergence of
gradient-free optimization using the detailed cluster model.
Given the discrete nature of the detailed objective, the problem
is not convex and thus not guaranteed to converge. However,
empirical evidence suggests the algorithm may provide a
reasonable heuristic solution; further investigation of these
issues will be provided in a future work.

V. DISCUSSION AND FUTURE WORK

In this study, we proposed a load scheduling framework
that has the following merits: 1) the problem formulation
allows cooperation and negotiation among aggregators/clusters
to collectively and optimally determine the power allocation;
2) the framework is built on existing hierarchical aggregator
infrastructure in which clusters are delegates to reflect lower
level demand in the form of discomfort and to implement
optimal control at device level; 3) similar to real life scenarios,
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autonomy is provided to aggregators on how to implement
cluster control. Furthermore, H-ADMM does not require ag-
gregators to share control and model details to a centralized
solver and thus guarantees user privacy. In addition, when
fij(xs5) is not differentiable, distributed H-ADMM might be
more computationally tractable than a centralized approach.
Future works will 1) investigate the empirical and theoretical
convergence of the proposed algorithm when using detailed
models of f;;(x;;); 2) properly design prices and incentives so
that multiple aggregators are willing to cooperate as described
by this framework; 3) investigate techniques to increase the
overall computational efficiency of H-ADMM.
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