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ABSTRACT 

Electrochemical batteries, which serve as electric energy storage devices, are becoming 
increasingly popular among residential buildings that incorporate solar photovoltaic (PV) 
systems to help meet their energy needs. Battery economics are affected by performance 
degradation over time, and managing this degradation can help extend the battery's lifespan. The 
tradeoff between operational costs/benefits and managing battery degradation is of significant 
research interest. One of the key factors for assessing battery degradation is the dispatch strategy 
used to control the charging and discharging of the battery. Conventional dispatch strategies 
typically use simple rule-based methods, and these overly aggressive charging/discharging 
cycles can significantly reduce a battery’s life span. Our research seeks to develop optimized 
dispatch strategies for grid-connected PV homes with a goal of extending battery life while 
simultaneously taking into consideration utility costs and occupant comfort. To achieve this goal, 
we adapted lithium-ion battery life- and cyclic-degradation models for use in high-fidelity 
building simulations, so whole-building and grid-interactive controllers can dispatch the batteries 
along with other flexible loads. With the help of a co-simulation platform, we performed a 
simulation study to compute the optimized dispatch strategies for relevant operating conditions 
brought about by changing geographical locations, weather conditions, and utility pricing. 
Comparing the optimized strategies with the conventional strategies resulted in a >50% decrease 
in capacity degradation and >10% average reduction in operational costs during the months of 
January and July in Fort Collins, Colorado; Phoenix, Arizona; and Portland, Oregon.  

Introduction 

Homeowners in the United States are increasingly adopting distributed power generation 
through on-site solar photovoltaic (PV) systems. Over 2 million residential homes in the United 
States had PV systems installed by the end of 2018, constituting 1.7% of households, and the 
total number is expected to exceed 3 million by 2021 (Feldman 2019) The operating hours when 
energy is produced by PV systems, however, do not typically coincide with residential demand 
peaks. Thus, storage devices such as electric batteries can substantially increase the utilization of 
PV systems because they help in balancing energy production with demand (Toledo 2010). 
Batteries can provide other significant benefits to homes, such as increasing reliability and 
sustainability of available power, reducing dependence on the electric grid, and lowering utility 
bills under certain rate structures (Toledo, 2010; Mishra 2020). These potential benefits of 
employing home battery systems coupled with tax incentives, declining costs of batteries, and a 
greater penetration of time-of-use (TOU) utility pricing has led to increasing adoption of behind-
the-meter residential battery energy systems (BES). For example, just by the end of Q3 of 2019, 
the United States witnessed a 40-MWh increase over 2018 in deployment of residential BES 
(Feldman 2019).  
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The cost-effectiveness of a BES is highly dependent on the particular operational savings 
that can be achieved relative to the price of the BES. The price of BES is determined by several 
technical characteristics, such as its total power and energy capacity (U.S. EIA 2018). In 2019, 
the U.S. market prices of battery systems for small residential applications were around $171 per 
kWh and $970 per kW, with the installation adding a fixed cost of around $400 (Comello 2019). 
One study found that, on average, a small residential home with a grid-connected PV system 
requires about a 3-kWh battery to support a critical load, which is generally 15% of its average 
daily energy consumption (Hoff 2004). Thus, a 3-kWh residential BES with 3-kW power 
providing critical load support would cost around $4,000. The cost-effectiveness of residential 
BES is also affected by the degradation in the total charge capacity over time, which can impact 
the operational (utility bill) cost savings and total lifetime of the BES. The degradation of battery 
capacity, also referred to as battery aging, is significantly impacted by the charging and 
discharging strategies used to store and release electric energy, respectively. The charging and 
discharging strategies (dispatch strategies) are governed by a control technology that regulates 
key features of the battery packs such as state of charge (SOC) and depth of discharge (DOD). 
The control technology also provides the opportunity for users to increase the value of residential 
BES by increasing PV self-consumption and providing grid services such as load shifting, 
demand reduction, and frequency regulation (Fitzgerald 2015). Advancements in battery 
manufacturing technology can thus be complemented with improvements in control technology 
to enhance the cost-effectiveness of energy storage. The co-simulation platform proposed in this 
research would serve as a valuable tool in determining and validating the new control 
technologies.  

 This paper first presents a high-fidelity simulation platform for studying different control 
technologies, taking into consideration both battery aging and occupant comfort. Using a typical 
large single-family home as a test case, the paper then develops optimized dispatch strategies for 
the grid-connected PV home with a goal of extending battery life while simultaneously reducing 
utility costs and maintaining occupant comfort. We compute optimal dispatch strategies for 
different operating conditions brought about by changing weather conditions, comfort thresholds, 
and utility rate structures.  

Several past research efforts have extensively studied energy management strategies for 
homes and commercial buildings with grid-connected PV and batteries (Gitizadeh 2013; Pascual 
2015; Nottrott 2013; Riffonneau 2011; Li 2014). For example, the authors in (Gitizadeh 2013) 
proposed a sizing and dispatch-scheduling strategy under TOU and demand-charge pricing using 
mixed-integer programming to solve an optimization problem that minimized utility pricing and 
battery degradation. Similarly, the authors in (Nottrott 2013) proposed a method to compute 
optimized dispatch schedules for grid-connected PV-battery systems using a linear programming 
routine. For this study, we performed the optimization every 15 minutes and relied on forecasts 
of PV power and building loads over a forward-looking 24-hour time horizon. These earlier 
studies developed strategies using simple constant-power models and a simplified battery-
degradation model. Furthermore, the studies considered building loads as an uncontrollable input 
and thus did not include building load flexibility in the formulation of their objective function.  
Research efforts to find optimized battery control strategies for commercial buildings using a 
much higher fidelity battery-degradation model were conducted by the authors in (Cai 2019). 
The authors compared the impacts of model predictive control (MPC) strategies and two rule-
based strategies on utility costs and battery degradation under TOU and demand-charge rate 
structures. 
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The work presented in this paper builds on the aforementioned research on optimized 
control methods for grid-connected PV battery systems for residential buildings in the following 
ways:  

 
 Developing a platform that utilizes high-fidelity models of both the building 

thermodynamics and battery degradation 
 Considering the effects of ambient temperature on usable capacity and capacity 

degradation in the computation of the optimized control strategies  
 Summarizing the impacts of the proposed optimized control strategies under different 

operating conditions brought about by changing weather conditions, utility rate 
structures, and comfort constraints for a typical large single-family home.  
 
This work is part of a broader effort to enhance residential building energy modeling 

capabilities to support the analysis of grid-interactive efficient buildings (GEBs). GEBs can 
provide benefits to homeowners and the grid through a combination of efficiency and demand 
flexibility strategies (Neukomm 2019). Having accurate models of behind-the-meter residential 
stationary batteries and their controls is critical to understanding the potential synergies and 
tradeoffs that batteries have with other building demand flexibility strategies and ultimately for 
developing optimized solutions from a whole-home integration perspective. 

Simulation and Control Platform  

A simulation platform is useful to develop and optimize dispatch strategies for homes 
with PV and batteries before they are implemented in the real world. The accuracy of the 
simulation environment has a substantial impact when computing these strategies, such as in 
quantifying the energy and cost savings that varying operating conditions can achieve. One of 
the unique contributions of this research is using the high-fidelity building energy simulation 
engine in EnergyPlusTM (U.S. Department of Energy’s [DOE’s] whole-building energy 
simulation program) and an experimentally validated lifetime charge degradation model 
developed by Smith et al. in (Smith 2017) as a simulation test bed. When combined, these 
simulation models allow us to explore the impacts of different operating conditions and control 
strategies on the battery life span, utility costs, and energy consumption of the home.  

We developed the proposed optimized control strategy using MPC, which minimizes an 
objective function to compute the control actions. Reduced-order models of the simulation 
system are required to make the optimization problem computationally feasible. MPC relies on 
predictions from the reduced-order models to compute the optimal trajectory that minimizes the 
objective function over a prediction horizon. We developed the co-simulation platform is 
developed by leveraging previous work completed by Jin et.al in (Jin 2017), augmented with a 
linear parametric autoregressive with extra input (ARX) model for building thermodynamics, 
battery electric performance, and degradation models (both simulation and reduced-order). The 
reduced-order model of the building thermodynamics and the battery degradation model are 
novel contributions of this research. 

The co-simulation platform thus comprises simulation and reduced-order models of the 
building thermodynamics, water heater, and battery, as shown in Figure 1. The control actions 
computed by the MPC are duty cycles Uhvac, Uwh, and Ubat, which regulate the heating, 
ventilating, and air-conditioning (HVAC) system, water heater, and the charging/discharging of 
the battery, respectively. We included the HVAC system and water-heater models because they 
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constitute a large part of the building energy consumption. The energy consumed by plug loads 
and lighting enter the simulation as uncontrollable disturbances.  

This section provides a brief description of the simulation and reduced-order models used 
in the co-simulation, in addition to the objective function used by MPC to compute the optimal 
control inputs. 

 
 

Figure 1. A flow diagram depicting the various components of the co-simulation environment. 

 Simulation Models 

The co-simulation includes a building-envelope and heat-balance model in EnergyPlus, a 
two-node water-heater model, and a battery performance and degradation model. The 
components of the simulation engine serve as a substitute for the real building system. A 
description of the models is provided in the following sections.  

EnergyPlus building model. The building-envelope model in EnergyPlus is of a large single-
family home located in Fort Collins, Colorado. The home has a living space floor area of 166 m2, 
an unfinished basement with floor area of 83 m2, and a garage with a floor area of 44 m2. The 
home is equipped with a single-speed air-source heat pump with a rated cooling capacity of 6.95 
kW and a rated coefficient of performance (COP) of 5.4. During simulation, the heat pump is 
controlled with the help of a duty-cycle control input represented by 𝑈௛௩௔௖ with a minimum on-
time of 3 minutes. The simulation results are performed for the case where the battery is installed 
on an exterior wall. We assume the battery temperature to be equal to that of the outdoor ambient 
air. Although in actual practice the battery temperature would be different than that of the 
ambient air, this approximation provides a reasonable estimate of the impact of temperature on 
battery capacity 

 
Water-heater model. We adopted a two-node water-heater model in this research from (Jin 
2014). The model treats the water in the tank as consisting of two distinct layers with different 
temperatures, represented by 𝑇ଵ and 𝑇ଶ for the lower and upper levels, respectively. The two tank 
temperatures are modeled as a function of the water draw, 𝑉ௗ, supply water temperature, 𝑇௦, 
ambient temperature, 𝑇௜௡, and the energy consumed by the heating element, 𝐸௪௛. The water-
heater dynamics are represented using a discrete-time state-space matrix Equation (1) 
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𝑥(𝑘 + 1) = 𝐴ௗ𝑥(𝑘) + 𝐵ௗ𝑢(𝑘) 
 𝑦(𝑘) = 𝐶ௗ𝑥(𝑘)  (1) 

where 𝐴ௗ, 𝐵ௗ, and 𝐶ௗ are the state-space matrices; 𝑘 is the current timestep; 𝑢 = [𝐸௪௛, 𝑇௜௡, 𝑇௦] is 
the input vector; and 𝑥 is the state vector representing the temperatures of the two water layers. 
The state space matrices, 𝐴ௗ and 𝐵ௗ, are time-varying functions of the water draw and are 
therefore computed at every simulation timestep. The water heater is controlled using a duty-
cycle input represented by 𝑈௪௛, and the heating energy provided by the element is shown in 
Equation (2).  

 𝐸௪௛ = 𝑈௪௛ ⋅ 𝑃௪௛,௥௔௧௘ௗ ⋅ 𝑡௦ (2) 

where 𝑃௪௛,௥௔௧௘ௗ is the rater power of the heating element and 𝑡௦is the duration of the simulation 
timestep.  

Battery electric performance and degradation model. The battery-performance model is used 
to describe the battery’s aggregate properties, which include terminal voltage, state of charge, 
and temperature at every timestep of the simulation (1 minute). The literature on battery 
modeling consists of several different approaches of varying complexity ranging from high-
fidelity models incorporating molecular-level physics to simple empirical-based models. The 
simulation system in this paper incorporates a model of a lithium-ion (Li-ion) battery with NMC 
chemistry (lithium nickel manganese cobalt oxide) developed in the System Advisor Model 
(SAM) (DiOrio 2015). The performance model in SAM is based on the work of Shepard 
(Shephard 1965) and Tremblay (Tremblay 2007) and intended to achieve a good balance 
between model complexity and computational feasibility. A brief description of the performance 
model is provided as follows. 

The performance model simulates the battery terminal voltage to compute the battery 
charging or discharging power at each timestep. The terminal voltage, 𝑉௧௘௥௠, is expressed in 
Equation 3. A description of the variables in Equation 3 and the values of constants 
corresponding to a Li-ion cell in are shown in Tables 1 and 2, respectively. The values of the 
parameters are obtained from the model developed by Tremblay, (2007). 

 𝑉௧௘௥௠ = 𝑉௢ − 𝐼𝑅௜௡௧ − 𝐾 ቀ
ொ೘ೌೣ

ொ೘ೌೣି∫ ூௗ௧
ቁ + 𝑎𝑒ି஻∫ ூௗ௧  (3) 

We then compute the battery charging or discharging power in kilowatts, 𝑃௕௔௧, in terms of the 
terminal voltage and battery current using the following equation:  

 𝑃௕௔௧ =
ଵ

ଵ଴଴଴
⋅ 𝜂௕௔௧𝑉௧௘௥௠𝐼௕௔௧  (4) 

where 𝜂௕௔௧ is the charging or discharging efficiency and 𝐼௕௔௧ is the battery current used to charge 
or discharge the battery. At each timestep, 𝑘, the performance model also computes the SOC of 
the battery, 𝑄௕௔௧, as shown in Equation (5)  

𝑄௕௔௧(𝑘) = 𝑄௕௔௧(𝑘 − 1) + ቀ
ଵ

ொ೘ೌೣ(௞ିଵ)
ቁ ⋅ 𝑃௕௔௧(𝑘 − 1)                               

 (5) 

where  𝑄௠௔௫ is the maximum capacity of the battery in 𝑘𝑊ℎ.  
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Table 1. Description of the variables in Equation (3). 

Parameter (unit) Description 

𝑉௧௘௥௠(V) Terminal voltage 

𝑄௠௔௫(Ah) Battery capacity 

𝐼௕௔௧(A) Battery current 

𝑑𝑡(hr) Time-step 

 

Table 2. Parameters of the terminal voltage equation.  

Parameter  Description  Value 

𝑉௢ Open Circuit Voltage 3.7348 

𝑅(𝜔) Internal Resistance 0.09 

𝐾(𝑉) Polarization voltage 0.00876 

𝑎(𝑉) Exponential zone amplitude 0.468 

𝐵(𝐴ℎ)ିଵ Exponential zone time constant 3.5294 

 
The total charge capacity of a battery degrades over time due to calendar aging and this 

degradation is accelerated by the charge and discharge cycles during operation. The lifetime 
model is used to predict this degradation under different operating conditions. This paper adopts 
the degradation model developed by (Smith 2017). The authors developed the model by 
measuring the degradation of Li-ion batteries under different operating conditions in a laboratory 
setting. One of the main advantages of incorporating this model is that it considers the effects of 
battery temperature. Adopting the model that incorporates temperature effects from Smith et al. 
(Smith 2017) is a key component of this research, as it enables development of optimal control 
strategies under different weather conditions and climatic locations. 

We model the charge capacity degradation by taking into consideration two mechanisms: 
(1) the loss of cyclable lithium caused by formation of solid electrolyte interface (SEI), 
represented by 𝑄௠௔௫

௟௜ , and (2) the mechanical damage of the negative electrode resulting from the 
charge/discharge cycles, 𝑄௠௔௫

௡௘௚ . The battery-capacity degradation due to each of the mechanisms 
is briefly described in the next section. The maximum available capacity in kilowatt-hours, 
represented by 𝑄௠௔௫

௟௜  or 𝑄௠௔௫
௡௘௚ , factors in the instantaneous change in capacity due to ambient 

weather and the degradation over time. 
The primary factor driving the formation of SEI is the calendar time, 𝑡, but formation is 

accelerated by factors such as state of charge at which the battery is stored, the depth of 
discharge during cycling, and the number of charge and discharge cycles. The battery charge 
capacity degradation due to the formation of SEI is shown in the Equation (6): 
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 𝑄௠௔௫
௟௜ = 𝑑௢[𝑏଴ − 𝑏ଵ𝑡

భ

మ − 𝑏ଶ𝑁 − 𝑏ଷ ൬1 − exp ൬−
௧

ఛ್య

൰൰]  (6) 

where 𝑡 is the calendar time in days, 𝑁 is the total number of charge/discharge cycles over the 
battery’s lifetime, and 𝜏௕య

 is an experimentally determined constant. Battery temperature affects 
the available maximum capacity at the current time instant as well as the rate of charge 
degradation. 

Battery temperature affects the available maximum capacity at the current time instant as 
well as the rate of charge degradation. The parameter 𝑑௢ captures the effect of the former, as 
shown in Equation (7).  The variable 𝑇௕௔௧ represents the battery temperature, and 
𝑑0௥௘௙ , 𝐸௔,ௗ଴,ଵ, 𝑅௨௚, 𝑇௥௘௙, and 𝐸௔,ௗ௢,ଶ were experimentally determined constants for a lithium-ion 
cell by Smith et al. (Smith 2017).  

 𝑑଴ = 𝑑௢,௥௘௙ ⋅ exp ቈ−
ாೌ,೏೚,భ

ோೠ೒
൬

ଵ

்್ೌ೟
−

ଵ

்ೝ೐೑
൰ − ൬

ாೌ,೏೚,మ

ோೠ೒
൰

ଶ

൬
ଵ

்್ೌ೟
−

ଵ

்ೝ೐೑
൰

ଶ

቉ (7) 

The other parameters 𝑏ଵ, 𝑏ଶ, and 𝑏ଷ model the capacity degradation and are functions of 
battery temperature, state of charge, open-circuit voltage, negative-electrode voltage, and 
maximum depth of discharge. The equation used to compute the parameter 𝑏ଵ is shown as an 
example in Equation (8). 

 𝑏ଵ = 𝑏ଵ,௥௘௙ ⋅ exp ቆ−
ாೌ,್భ

ோೠ೒
൬

ଵ

்್ೌ೟
−

ଵ

்ೝ೐೑
൰ቇ ⋅ exp ቆ−

ఈೌ,್భி

ோೠ೒
൬

௎೙೐೒

்್ೌ೟
−

௎ೝ೐೑

்ೝ೐೑
൰ቇ ⋅ exp൫𝛾 ⋅ (𝐷𝑂𝐷௠௔௫)ఉ್భ൯                            

 (8) 

A detailed description of the other parameters and constants can be found in (Smith 2017). 
Figure 2 shows simulations of capacity degradation under different ambient conditions, at a 
battery charge/discharge cycle rate of 6 per day (Smith 2017). 

 
Figure 2. Capacity degradation under different operating conditions at a charge/discharge cycle rate of 6 per day. 

Reduced-Order Models for MPC 

 The previous section provided a description of the models used to run the simulations. These 
models describe the dynamics of the each of the components (building thermodynamics, HVAC 
system, water-heater model, and battery) with a high degree of accuracy and serve as a substitute 
for the real-world system and a platform on which different control strategies can be tested. The 
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models, however, are highly nonlinear and nonconvex. In order to compute the optimal dispatch 
strategies in real time, we developed reduced-order models of the previously described 
components. The reduced-order models make the MPC objective function convex described 
ahead, and thus the problem of determining optimal dispatch strategies, more computationally 
feasible. 

Room temperature model. The ARX model structure has been selected for the linear parametric 
approach to describe building thermodynamics as shown in Equation 10

𝑦(𝑘) = 𝑎ଵ𝑦(𝑘 − 1) + 𝑎ଶ𝑦(𝑘 − 2) + ⋯ + 𝑏ଵ𝑢(𝑘 − 1) + ⋯ + 𝑏௡௕𝑢(𝑘 − 𝑛௕) + 𝑒(𝑘)  (9) 

where 𝑦(𝑘) is the output at timestep, 𝑘, 𝑢 is the input, and 𝑒 is random Gaussian noise used to 
capture the stochastic component of the model. The inputs and outputs of the ARX model 
described previously are shown in Equation 10 

𝑦 = 𝑇௜௡; 𝑢 = [𝑇௢௔ − 𝑇௜௡, 𝑄௛௩௔௖ , 𝑄௜௡௧௘௥௡௔௟ , 𝑄௦௢௟௔௥]      (10) 

where 𝑇௜௡ is the indoor air room temperature, 𝑇௢௔  is the outside air temperature, and 𝑄௛௩௔௖ , 
𝑄௜௡௧௘௥௡௔௟ , 𝑄௦௢௟௔௥  are the energy delivered by the HVAC system, internal heat loads, and window 
solar heat gain, respectively. 

The parameters of the ARX model are obtained by training the model on historical simulation 
data spanning one month of the inputs and outputs of the building under consideration and 
performing regression analysis. The objective function used to perform regression analysis is 
defined as the sum of squares of the error between “measured” (in this case EnergyPlus-
simulated) and predicted outputs, 𝑇௜௡(𝑘), as shown in Equation (11).  

𝐽௔௥௫ = ቀ
ଵ

ே
ቁ ∑ ቀ𝑇௜௡(𝑖) − 𝑇෠௜௡(𝑖)ቁ

ଶ
ே
௜ୀଵ (11) 

where 𝑡 is the current simulation timestep and 𝑛௣ is the look-ahead horizon. 

Linearized battery-degradation model. We used a Taylor series expansion to linearize the 
degradation of the battery as a function of the charging and discharging power of the battery. 

Battery Control Algorithms 

This section provides a description of the proposed MPC strategy together with a rule-
based controller. We ran simulations using the rule-based controller as a baseline to quantify the 
improvement in terms of cost reduction and battery-life extension that can be achieved using the 
proposed MPC method. 

Model Predictive Control. The first step in designing the MPC controller is to develop an 
objective function that outputs a single value that serves as a measure of the performance of the 
control system over a look-ahead horizon, referred to as a “control horizon.” The performance 
variables considered in this research are the utility costs, occupant comfort, and battery 
degradation. The objective function is expressed as shown in Equation (12) 

𝐽௠௣௖ = ∑ 𝑟௖௢௦௧ ⋅ ൫𝑓௨௧௜௟(𝑖) + 𝑓௕௔௧(𝑖)൯ + 𝑟௖௢௠௙ ⋅ 𝑓௖௢௠௙(𝑖)ே
௜ୀ௞ାଵ  (12) 

where 𝑘 is the current simulation timestep; 𝑁 is the number of timesteps in the control horizon; 
and 𝑓௨௧௜௟,  𝑓௕௔௧, and 𝑓௖௢௠௙ are functions that measure utility cost, battery degradation cost, and 
occupancy discomfort, respectively. The utility cost function is simply the cost of the grid 
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electricity. The utility rate structure described in Table 4 is used to find the utility rate at the 
current timestep, 𝑟௨௧௜௟(𝑘), and is multiplied by the grid power, 𝑃௚௥௜ௗ(𝑘), to obtain the utility cost 
as shown in Equation (13).  

 𝑓௨௧௜௟(𝑘) = 𝑟௨௧௜௟(𝑘) ⋅ 𝑃௚௥௜ௗ(𝑘) (13) 

The battery life span is assumed to be the time it takes for the capacity to degrade by 
30%. The degradation cost of the battery from timestep $i$ to $i+1$ is computed by multiplying 
the fraction of the usable capacity degraded in that period by the total cost of the battery: as 
shown in Equation (14). 

 𝑓௕௔௧(𝑖) =
ଵ

଴.ଷ
⋅ 𝑟௕௔௧Δ𝑄ௗ௘௚(𝑖 + 1|𝑖) (14) 

The parameter 𝑟௖௢௦௧ of the MPC objective function in Equation 12 is assigned the value 
0.18; the parameter 𝑟௖௢௠௙ is assigned a value 0.58 if the room temperature is too hot and 0.32 if 
too cold. The values of the parameters ensure that there are only a few instances where the room 
temperature lies outside the comfort band between 23.2°C (~74°F) and 25.6°C (~78°F). The 
parameters are subjective and can be tuned based on individual preferences. Lowering the value 
of 𝑟௖௢௠௙ results in greater instances of the room temperature being outside the comfort 
constraints but would also lower utility costs. We obtained these values based off the work done 
by Jin et al. (Jin 2017).  
 
Rule-Based Control. A controller developed using a rule-based strategy serves as a baseline to 
compare the performance of the proposed MPC approach. A deadband control logic is used to 
operate the HVAC system. During cooling, the HVAC system is turned on whenever the room 
temperature, 𝑇௜௡, meets or exceeds the higher-threshold temperature, 𝑇௦௘௧ି௛௜௚௛, and turned off 
when the temperature reaches the lower threshold, 𝑇௦௘௧ି௟ . The rules governing the rule-based 
controller for charging and discharging the battery are as follows: 
 

 The charging and discharging power is never done simultaneously 
 The battery is charged only from PV and never from the grid  
 PV power is used to charge the battery only when this power is greater than the building 

load 
 Grid power is used to furnish the additional power requirement when PV power is less 

than the building load 
 The battery is discharged only during peak utility rate hours 
 The battery discharge power is such that the usable charge is completely utilized during 

the peak hours.  
 

In addition to these rules, certain additional constraints are imposed while charging and 
discharging the battery to ensure that the SOC is never outside the allowable minimum and 
maximum and the battery charging and discharging power are always less than the rated values. 

Simulation Results and Discussion  

The co-simulation platform was used to run several different test cases for the large 
single-family home, described earlier, with a grid-connected 4-kW PV system and a 3-kWh 
capacity/3-kW power battery storage system. The test cases are used to study the impact of 
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weather conditions, geographic location, and utility rate structure on battery degradation and 
utility costs. The building described earlier was used for running simulations corresponding to 
Fort Collins, Colorado. For other geographical locations, the layout of the building was kept 
constant, but certain efficiency measures such as wall insulation and heating and cooling 
efficiency were changed based on the DOE Zero Energy Ready Homes specifications, whose 
values were obtained from Jin  (Jin 2020). Table 3 shows descriptions of some of the efficiency 
characteristics. Table 4 summarizes the climate zones of the locations studied and the TOU rate 
structures adopted in simulations corresponding to these locations. Detailed results of the first 
test case (i.e., summer weather conditions) with a TOU utility-rate structure are provided, 
followed by a summary of all the other simulation studies. 

 

Table 3. Efficiency measures of the EnergyPlus models corresponding to the different 
geographic locations 

Location Fort Collins Phoenix Portland 

Wall insulation R-23 R-13 R-20 

Unfinished attic R-49 R-38 R-49 

Windows 
U = 0.3 

SHGC = 0.3 

U = 0.4 

SHGC = 0.25 

U = 0.3 

SHGC = 0.46 

Air leakage 3 ACH50 3 ACH50 2.5 ACH50 
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Table 4. Summary of climate zones and TOU rate structures for the three geographical locations 
investigated in this paper 

Climate zone Location Summer rate structure Winter rate structure 

Cold Fort Collins, CO 

On peak: 2 p.m. to 7 p.m. 

Rate: $0.26/kWh 

Off peak: 7 p.m. to 2 p.m. 

Rate: $0.07/kWh 

On peak: 5 p.m. to 9 p.m. 

Rate: $0.22/kWh 

Off peak: 9 p.m. to 5 p.m. 

Rate: $0.07/kWh 

Hot-dry Phoenix, AZ 

On peak: 3 p.m. to 8 p.m. 

Rate: $0.243/kWh 

Rate: $0.109/kWh 

On peak: 3 p.m. to 8 p.m. 

Rate: $0.231/kWh 

Off peak: 8 p.m. to 3 p.m. 

Rate: $0.109/kWh 

Marine Portland, OR 

On peak: 3 p.m. to 8 p.m. 

Rate: $0.124/kWh 

Off peak: 8 p.m. to 3 p.m. 

Rate: $0.0413/kWh 

On peak: 6 a.m. to 10 a.m. 

5 p.m. to 8 p.m. 

Rate: $0.26/kWh 

Off peak: 10 p.m. to 6 a.m. 

10 a.m. to 5 p.m. 

Rate: $0.07/kWh 

 

Comparison of control strategies during summer in Fort Collins 

The MPC objective function described earlier ensures that there are only a few occasions 
where the comfort constraints are violated (i.e., the room air temperature is above or below the 
desired set points). For example, Figure 3 shows the indoor air room temperature on a particular 
day in July in Fort Collins, when the maximum outside air temperature was 34°C (93.2°F), under 
the two MPC control strategies and the rule-based strategy. The MPC controller maintains the 
room temperature close to the upper temperature bound to minimize HVAC energy 
consumption. Modeling error and the difference in the simulation (1 minute) and control 
timesteps (15 minutes) cause the temperature to oscillate about this upper bound. In addition to 
maintaining the room temperature close to the upper bound, MPC minimizes utility costs by 
adopting precooling strategies. For example, Figure 3 also shows that the MPC controller starts 
cooling the room at around 1:30 p.m. to a temperature below the lower bound in order to reduce 
energy consumption and thereby the on-peak electricity prices, which start at 2 p.m. 
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Figure 3. Comparison of room temperatures on July 5 using the three different controllers.  

 

 
Figure 4. Battery state of charge and capacity degradation comparison from July 1–14 using the baseline controller 
and the two MPC controllers  
 

Figure 4 shows the charging and discharging strategy adopted by the two MPC 
controllers and the baseline controller. The rate of battery degradation is significantly impacted 
by the DOD of each cycle. The number of cycles in both the baseline control strategy and the 
MPC strategies are equal, but due to much higher DOD, the rate of capacity degradation is 
approximately three times greater for the former. We also see that there is not much difference in 
the dispatch strategies of the two MPC controllers. MPC-I (objective function with degradation 
cost) would tend to lower the DOD for each battery charge and discharge cycle as compared to 
MPC-II (objective function with no degradation cost). However, the reduction in this particular 
case is imperceptible, as the benefits accrued by utilizing the stored battery energy during the 
peak hours outweigh the battery degradation costs.  
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Comparison of control strategies during winter in Fort Collins 

 
Figure 5. Battery state of charge and capacity degradation comparison from January1–14 using the baseline 
controller and the two MPC controllers  

 
Referring back to Figure 2, we see that exposing the battery to cold temperatures (<0°C) 

not only reduces the available maximum capacity but also accelerates the rate of capacity 
degradation. The previous section showed that during the summer months, MPC-I and MPC-II 
compute similar dispatch strategies for the battery. During the winter months in Fort Collins, 
however, there is a significant difference in the dispatch strategies adopted by the two MPC 
controllers. Figure 5 shows a comparison on the battery state of charge and capacity degradation 
from January 1–14 using the three different control strategies. Due to the increased cost 
associated with capacity degradation in winter in Fort Collins, MPC-I utilizes the battery far less 
compared to MPC-II.  
 

Comparison of control strategies at different geographical locations and weather conditions 

We also ran simulations for Phoenix and Portland spanning 15 days during the months of 
January and July to compare the control strategies during winter and summer, respectively. 
Figure 6 shows the average capacity degradation per day, corresponding to the TOU rate 
structure described in Table 4 for summer and winter for the three locations studied. Owing to 
the greater rate of capacity degradation in cold-weather conditions, the battery usage with MPC-I 
is significantly lower during the winter months in Fort Collins and Portland. For Phoenix, which 
is in a hot-dry climate zone, the difference between the dispatch strategies of MPC-I and MPC-II 
vary imperceptibly, even during the winter months. A summary of the battery degradation costs 
per day is shown in Table 5 and a graphical representation of the combined average cost of 
battery degradation and utility prices per day is shown in Figure 7. 
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Table 5. Summary of battery degradation and utility costs 

Location Weather 

Average battery degradation cost ($/day) 

Baseline MPC-I MPC-II 

Fort Collins 
Summer 

Winter 

2.78 

1.67 

1.10 

0.40 

1.10 

1.41 

Phoenix 
Summer 

Winter 

3.58 

1.41 

2.09 

0.79 

2.09 

0.79 

Portland 
Summer 

Winter 

1.50 

2.01 

0.86 

0.28 

0.86 

0.93 

 
 

 
Figure 6. Comparison of the average battery capacity degradation per day at different geographical locations under 
different weather conditions 

 
 

 
Figure 7. Comparison of the average battery capacity degradation per day at different geographical locations under 
different weather conditions 
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Conclusions 

We developed a co-simulation platform by leveraging prior work done by Jin et al.  (Jin 
2017) and adding electric-performance and lifetime-degradation models of a lithium-ion battery 
with NMC chemistry. The battery models account for the effect of ambient temperature on 
capacity degradation, thereby enabling a study of dispatch strategies for building flexible loads 
and batteries under different weather and climatic conditions. We also added a linearized 
capacity degradation model using a Taylor series expansion to the co-simulation platform to 
enable MPC to compute optimal dispatch strategies over a look-ahead horizon using convex 
optimization.  

We developed optimized dispatch strategies for a grid-connected PV home with a goal of 
extending battery life while simultaneously taking into consideration utility costs and occupancy 
comfort. We computed the optimized dispatch strategies for different operating conditions 
brought about by changing weather conditions, geographical locations, and utility pricing. We 
also used the co-simulation platform to compare the optimized strategies with the conventional 
strategies in terms of their impact on the utility costs and battery life span. The simulation results 
for this study show that the ambient conditions to which the battery is exposed has a significant 
impact on the capacity degradation. For the particular building under consideration, and the 
utility rate structure adopted in the simulations, simulation results suggest that battery dispatch 
strategies should take into consideration the capacity degradation, especially during cold-weather 
conditions.  
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