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and Yannick J. Bomble 4

1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
451355@mail.muni.cz (J.C.); vitezova@sci.muni.cz (M.V.)

2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel
University, 61300 Brno, Czech Republic; tomas.vitez@mendelu.cz

3 Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology,
University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
dani_dordevic@yahoo.com

4 Bioscience Center, National Renewable Energy Laboratory, 16253 Denver West Parkway,
Golden, CO 80401, USA; Yannick.Bomble@nrel.gov

* Correspondence: kushkevych@mail.muni.cz; Tel.: +420-549-495-315

Received: 27 November 2019; Accepted: 30 December 2019; Published: 31 December 2019 ����������
�������

Abstract: Background: In recent years, various substrates have been tested to increase the sustainable
production of biomethane. The effect of these substrates on methanogenesis has been investigated
mainly in small volume fermenters and were, for the most part, focused on studying the diversity of
mesophilic microorganisms. However, studies of thermophilic communities in large scale operating
mesophilic biogas plants do not yet exist. Methods: Microbiological, biochemical, biophysical methods,
and statistical analysis were used to track thermophilic communities in mesophilic anaerobic digesters.
Results: The diversity of the main thermophile genera in eight biogas plants located in the Czech
Republic using different input substrates was investigated. In total, 19 thermophilic genera were
detected after 16S rRNA gene sequencing. The highest percentage (40.8%) of thermophiles was found
in the Modřice biogas plant where the input substrate was primary sludge and biological sludge
(50/50, w/w %). The smallest percentage (1.87%) of thermophiles was found in the Čejč biogas plant
with the input substrate being maize silage and liquid pig manure (80/20, w/w %). Conclusions:
The composition of the anaerobic consortia in anaerobic digesters is an important factor for the
biogas plant operator. The present study can help characterizing the impact of input feeds on the
composition of microbial communities in these plants.

Keywords: renewable energy; biogas; Illumina sequencing; thermophilic microorganisms;
anaerobic digesters

1. Introduction

Anaerobic digestion is one of the technologies that can process and reduce biodegradable waste,
thus limiting its environmental impact. Anaerobic processes are effective tools to reduce pollution
and they fully meet cleaner energy production objectives. It has been used for wastewater treatment
and more recently, for processing biodegradable industrial and agricultural wastes [1–5]. Anaerobic
processes occur naturally in wetlands, swamps, and in the digestive tracts of ruminants [6]. Anaerobic
microorganisms were also discovered in landfills where they degrade biodegradable municipal waste.
The product of anaerobic metabolism is biogas [7,8], which is classified as a source of renewable
energy [9]. During the anaerobic process, biochemical degradation of organic polymers to methane
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(CH4) and carbon dioxide (CO2) occurs [10–13]. The major components of biogas are CH4 (55% vol–
70% vol) and CO2 (30% vol–45% vol) [14–16]. Anaerobic microorganisms are responsible for establishing
a stable environment at different stages of biogas production [7,8,12].

Thermophilic microorganisms live at high temperatures 50–122 ◦C. Most of them belong to the
domain of Archaea [17]. This group of microorganisms can be classified, according to their optimal
growth temperatures, as thermophiles (50–64 ◦C), extremophiles (65–79 ◦C) and hyperthermophiles
(≥80 ◦C) [18]. Thermophilic microorganisms are often isolated from waste water discharge, bio
waste streams, acid mine effluents as well as geothermal and volcanic areas, terrestrial hot springs,
submarine hydrothermal vents, geothermally heated oil reserves and oil wells, sun-heated litter, and
soils/sediments, throughout the world [19].

There are not many information about thermophilic microorganisms included in methane
production and oxidation processes. It was found that mushroom compost piles contain
2 × 108 thermophilic methanogens per gram dry matter. The processes involved in methane oxidation
are important since 90% of methane reaching atmosphere is in oxidized form [4].

The advances of thermophilic conditions in anaerobic digestion are represented by the fact that
gas is formed within shorter amount of time than when anaerobic digestion is done under mesophilic
conditions. Though, higher energy is necessary for the maintenance of thermophilic conditions in
biogas plant reactor. The heating in digesters that are operating at mesophilic and thermophilic levels
results in effective denaturation of weed seeds and also pathogens reduction. The pathogen reduction,
after 20 days, is almost 100%, meaning that thermophilic temperatures are of crucial importance for
pathogens elimination. Other biogas plant digesters, operating at room temperatures, have much
lower elimination level of pathogens [6].

It should be noted that thermophilic microorganisms may be involved in the process of
methanogenesis, but their diversity in mesophilic biogas plants is still not well characterized, especially
with respect to the effect of substrate variation. Additionally, the changes in the distribution of
thermophiles in mesophilic conditions has never been well studied either. On the one hand, it appears
that these microorganisms would not be able to grow under mesophilic conditions (40–50 ◦C) as
their growth would be too slow and unable to compete with mesophiles, but on the other hand,
this hypothesis has never been studied in this context. Indeed, there is a lack of information about
the metabolic activity of these microorganisms under mesophilic conditions and there remains a
possibility that they could be involved in the process of methanogenesis. The prevalence of thermophilic
populations in mesophilic biogas plants and their composition with respect to different substrate ratios
has rarely been studied. This study aims at reducing this knowledge gap.

2. Results

Seven operating biogas plants in the Czech Republic, each using different feeds, were selected as
sources of microbial consortia for further analysis. At the present time, there are working 450 agricultural
biogas plants in the Czech Republic. Most of them operating at mesophilic temperature (in the vicinity
of 42 ◦C) to minimize high heat loss during winter time due to the low ambient temperatures. In this
study, we selected plants using different operating conditions and ratios of input material. The physical
and chemical properties (including: temperature, pH, oxidation-reduction potential (ORP), total
volatile solids, and gasses: CH4, CO2, and H2) of these bioreactors are shown in Figures 1–3. The data
indicate that the highest temperature was measured in the Pánov reactor (49 ◦C), the lowest pH in the
Modřice reactor (pH:7), and lowest ORP in the Bratčice reactor (−75 mV) (Figure 1).
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of methane and CO2 produced ranged from 47% (Modřice) to 52% (Horní Benešov) and 

approximately 47% for all bioreactors. Levels of hydrogen were also detected and were significantly 

lower in the Úvalno and Loděnice bioreactor (0.0035%). The maximum level of hydrogen (0.0060%) 

was measured in the fermenter located in Horní Benešov. The percentage of other gases detected was 

in the range of 1.49% in Bratčice and 4.99% in Modřice. 
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3A). The most widespread genus among all biogas plants was Syntrophaceticus sp. and it was found 

in each fermenter and dominated in five of them. On the other hand, the lowest percentage and 

diversity of thermophilic genera (Thermogymnomonas and Syntrophaceticus) was observed in the Čejč 

fermenter. 

Figure 1. Physical characteristics of anaerobic digesters considered in this study (M ± SE, n = 3):
temperature and pH (A), redox (B).

Total and volatile solids in the different anaerobic digesters are shown in Figure 2A and are, for
the most part, fairly similar with the exception of the Modřice reactor where total and volatile solids
were significantly lower. The composition of the respective biogas in these reactors (for the two most
dominant compounds, methane (CH4) and carbon dioxide (CO2)) is shown in Figure 2B. The levels of
methane and CO2 produced ranged from 47% (Modřice) to 52% (Horní Benešov) and approximately
47% for all bioreactors. Levels of hydrogen were also detected and were significantly lower in the
Úvalno and Loděnice bioreactor (0.0035%). The maximum level of hydrogen (0.0060%) was measured
in the fermenter located in Horní Benešov. The percentage of other gases detected was in the range of
1.49% in Bratčice and 4.99% in Modřice.
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Figure 2. Amount of solids (A) and biogas production (B) (M ± SE, n = 3).

We also studied the diversity of thermophilic microorganisms in these mesophilic biogas plants
and evaluated the proportion of thermophiles in the microbial consortia. In all anaerobic digesters
considered in this study, the proportion of thermophiles ranged from 0.06 to 1% and the composition of
thermophiles was dependent on the composition of the input substrate in each biogas plant (Figure 3A).
The most widespread genus among all biogas plants was Syntrophaceticus sp. and it was found in each
fermenter and dominated in five of them. On the other hand, the lowest percentage and diversity of
thermophilic genera (Thermogymnomonas and Syntrophaceticus) was observed in the Čejč fermenter.
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Figure 3. Percentage of thermophiles in the microbial community for each reactor (A) and percentage
of thermophiles observed in all anaerobic fermenters together (B).

The greatest diversity of thermophilic microorganisms was detected in the fermenter located in
Modřice (Figure 3B), probably because this anaerobic fermenter is operating in a wastewater treatment
plant. The sample from Modřice contained 11 different genera of thermophiles: Thermogymnomonas
(6.5%), Thermoflavimicrobium (31%), Thermovirga (24%), Thermoleophilum (0.24%), Thermanaeromonas (0.24%),
Thermomonas (2%), Syntrophaceticus (0.97%), Fervidobacterium (31%), Kosmotoga (3.6%), Caldimicrobium
(0.24%), and Oceanotoga (0.48%). However, the dominant genera in this reactor were Thermoflavimicrobium
(31.40%) and Fervidobacterium (30.67%). It should be noted that the Thermoflavimicrobium genus was also
observed in the fermenter located in Horní Benešov but in very low abundance (1%). The Fervidobacterium
genus was also detected in Rusín (0.98%) and Bratčice (2%) but in low abundance as well. The following
methanogenic microorganisms were found in the bioreactors (Figure 4): Methanoculleus, Thermogymnomonas,
and Methanobacterium. Bioreactors in Rusín and Bratčice had mostly Methanoculleus genus (30.7% and 29.5%,
respectively), Úvalno Thermogymnomonas genus (41.1%), and Modřice Methanobacterium genus (81.3%).
The following methanogenic genera were also detected: Thermoplasmata, Methanospirillum, Thermoprotei,
Methanobrevibacter, Methanolinea, Methanosaeta, Methanimicrococcus, though not in significant amounts.
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Within all biogas plants, the second highest diversity of thermophiles was found in Bratčice
where there were 10 genera of thermophiles including Syntrophaceticus (38.24%), Gelria (23.53%),
Thermogymnomonas (17.65%), Oceanotoga (10.78%), Petrotoga (4.90%), and 0.98% of other genera
including Desulfovirgula, Fervidobacterium, Moorella, Thermoactinomyces, and Thermosynthropa. The
presence of Desulfovirgula and Thermosynthropa genera were determined only in the fermenter where
maize silage/sugar beet pulp (70/30, w/w%) was used as a substrate. The Bratčice fermenter showed
a different microbial profile with the following genera: Syntrophaceticus (57.63%), Gelria (15.97%),
Oceanotoga (11.11%), Thermogymnomonas (9.72%), Fervidobacterium (2.08%), Thermoactinomyces (1.38%),
and 0.69% of the remaining genera being Thermanaeromonas, Thermovirga, Petrotoga. The composition of
the microbial consortium was fairly similar in the Pánov fermenter, most likely because both fermenters
process poultry litter. However, the microbial diversity was higher in Bratčice which can be the result
of different ratios of input substrates, which are maize silage/whole crop silage/poultry litter (63/31/6,
w/w%) in Bratčice and maize silage and poultry litter (92/8, w/w%) in Pánov.

Fermenters in Úvalno and Pánov had a similar diversity of thermophiles, even though substrate
heterogeneity was higher in Úvalno where sugar beet pulp, maize silage, cattle manure, whole crop
silage are used compared to maize silage and poultry litter in Pánov. The lower diversity and abundance
of thermophiles were detected in the Čejč fermenter (Figure 5). There were only two dominant genera,
Syntrophaceticus and Thermogymnonas, in ratios of 5.27% and 94.73%, respectively. In this fermenter,
maize silage and liquid pig manure were used. The Loděnice and Rusín fermenters process the same
substrate, sugar beet pulp and maize silage and these plants showed a similar diversity of thermophilic
microorganisms with the exception of the Kosmotoga genus that was only detected in Loděnice.
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Figure 5. Percentage of each thermophilic genus in the overall population of thermophiles in each
anaerobic fermenter.

Overall, Syntrophaceticus and Thermogymnomonas were the most abundant genera and were found
in all anaerobic fermenters. The Gelria and Oceanotoga genera were also detected in high abundance in all
fermenters with the exception of Čejč and Modřice. To clarify the genetic diversity of the thermophilic
microorganisms in all these fermenters, a comparison of our 16S rRNA data was performed with
GenBank and the genetic relationships are shown in phylogenetic trees (Figure 6).
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3. Discussion

Biogas is the product of anaerobic fermentation and methane in biogas produced by methanogenic
Archaea in the following pathways: reduction of carbon dioxide, dismutation of methanol or
methylamines and fermentation of acetate [20]. Communities, which produce methane, are very
resilient and stable, though they create largely undefined consortia. The aforementioned pathways
can be realized by syntrophic acetate-oxidizing bacteria that convert acetate to hydrogen and carbon
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dioxide and simultaneously reduce carbon dioxide to methane by hydrogen-utilizing methanogens [20].
This process was described in thermophilic fermenters [21], mesophilic fermenters, [22] and natural
environments [23,24].

Our research demonstrates that syntrophic acetate-oxidizing bacterium Syntrophaceticus sp. were
the most widespread thermophilic microorganisms in all fermenters. This is probably caused by
high ammonia levels leading to syntrophic acetate oxidation, a process that takes place in mesophilic
fermenters [22]. The novel species Syntrophaceticus schinkii was discovered and isolated from sludge
and from a mesophilic methanogenic fermenter operating at high ammonium concentrations [25,26].
Syntrophaceticus schinkii is a strictly anaerobic, mesophilic, syntrophic acetate oxidizing, spore-forming
and gram-variable, bacterium with a growth temperature ranging from 25 to 40 ◦C. Syntrophaceticus
schinkii is able to oxidize acetate and produce methane during cultivation with hydrogenotrophic
methanogens [25]. Another dominant genus detected in each fermenter was Thermogymnomonas. Itoh
et al. (2007) isolated Thermogymnomonas acidicola and this strain was described as a thermoacidophilic,
cell wall-less archaeon with variable cell size and a growth temperature range of 38–68 ◦C (optimum
60 ◦C) and at pH value range 1.8–4.0 (optimum pH 3.0) [26]. This microorganism is in contrast with
others we identified as it is an obligatory aerobic archeon. This genus is very often described in
association with anaerobic fermentation especially when hydrolysis of cellulose occurs [27].

The other microorganisms that were also highly abundant in fermenters were from genera Gelria
and Oceanotoga. One of these microorganisms Gelria glutamica was for the first time isolated and
characterized from a propionate-oxidizing methanogenic enrichment culture (note that its habitat
could be methanogenic granular sludge). Gelria glutamica is a strict anaerobic, moderately thermophilic,
spore-forming, obligately syntrophic, glutamate-degrading, bacterium that can grow between 37 ◦C
and 60 ◦C with an optimum range from 50 ◦C to 55 ◦C and an optimum pH of 7. It can growth in
cultures containing glutamate, proline, and casamino acids with the hydrogenotrophic methanogen
Methanobacterium thermautotrophicum. Glutamate is transformed to H2, CO2, propionate and traces
of succinate but sulphate, sulphite, thiosulphate, nitrate, or fumarate cannot be utilized as electron
acceptors [28]. The Oceanotoga genus was found in offshore oil-production well head at Bombay High
(Western India). For example, the novel Oceanotoga teriensis is a thermophilic, chemo-organotrophic
bacterium which growths at a range between 25 and 70 ◦C, with temperature optima ranging from 55 to
58 ◦C. One of the Bacteria in this genus, Oceanotoga teriensis, utilizes various carbohydrates or complex
proteinaceous substances and converts them to H2, CO2 and reduces thiosulfate and elemental sulfur
to hydrogen sulfide [29].

Diversity of methanogenic microorganisms and their biogas production depends on the presence
of other bacteria in bioreactors, including sulfate-reducing bacterial populations [11,12,30,31]. These
bacteria also use organic compounds and consequently produce toxic hydrogen sulfide [32–37].
This competition and production of hydrogen sulfide in high concentration can inhibit methanogenic
Archaea and acetogenic microorganisms. One of the solutions to limit this inhibition could be the
use of different compounds that can impede the growth of this bacterial group and their sulfate
reduction [38–42].

The microorganisms identified in the anaerobic digesters were compared with sequences from
GenBank and the resulting phylogenetic trees are shown in Figure 6. The abundance and diversity of
thermophilic microorganisms depend on the composition of the substrate in each fermenter. The highest
microbial variation in the distribution (11 genera) and number (40.8%) was found in the fermenter at a
wastewater treatment plant. Their presence in the mesophilic anaerobic fermenters may come from
the silage, where those conditions could be more than 50 ◦C. In this study, we identified thermophilic
microorganisms in mesophilic anaerobic fermenters but it still remains unknown how physiologically
or metabolically active these microorganisms were. This is a prospect for further research as here we
focused on the fundamental foundations for other hypotheses and research.
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4. Materials and Methods

4.1. Diversity of Biogas Plants

The biogas fermenters were located in Úvalno, Horní Benešov, Čejč, Pánov, Modřice, Rusín,
Loděnice, and Bratčice in the Czech Republic. The types of substrates are presented as the ratio of
fresh input substrate (w/w%). The compositions were as follows: Úvalno: maize silage, sugar beet
pulp, whole crop silage, cattle manure (44/44/6/6); Horní Benešov: maize silage, sugar beet pulp, whole
crop silage, cattle manure, grass silage (29/39/12/15/5); Čejč: maize silage and liquid pig manure (80/20),
Pánov: maize silage, poultry litter (92/8); Modřice: primary sludge, biological sludge (50/50), Rusín:
maize silage, sugar beet pulp (70/30); Loděnice: maize silage, sugar beet pulp (75/25); Bratčice: maize
silage, whole crop silage, poultry litter (63/31/6). The investigated scale anaerobic digesters is presented
in Table 1.

Table 1. The investigated scale anaerobic digesters.

Fermenter
Installed

Power
(kWel)

Fermenter
Volume

(m3)

Process
Tempe-rature

(◦C)

Hydraulic
Retention

time

Daily Biogas
production Rate
(Lbiogas·Lferm.vol.

−1)

CH4 Content
in Biogas
(%vol) *

pH in
Fermenter

(−) *

Solids
Content in
Fermenter

(%) *

Volatile Solids
Content in
Fermenter

(%) *

Modřice 1000 6 × 3000 34 22 0.64 47 7.02 5.09 59.13

Bratčice 750 2 × 1040
1 × 1040 40 86 2.77 51.5 8.3 10.16 75.23

Pánov 500 2 × 1320
1 × 1630 41 85 1.76 48 8.03 10.33 79.46

Úvalno 750 2 × 1040
1 × 1040 40 78 2.77 49 7.69 8.84 78.85

Horní
Benešov 750 2 × 1040

1 × 1040 41 85 2.77 52 7.85 7.87 77.52

Rusín 750 2 × 1970
1 × 1630 41 85 1.56 48 7.63 8.52 79.15

Loděnice 840 3 × 1970 41 90 1.64 50.5 7.65 7.9 78.51

Čejč 750 2 × 3500
1 × 3800 40 65 0.81 50.3 7.54 4.3 78.98

* Long term average.

4.2. Sampling and Analytical Methods

Three samples were collected from each biogas plant reactor with volumes ranging from 2500 to
3500 m3 and operated at 40 ± 4 ◦C. Organic load rate was 3.5–5.5 kg org. mass/m3 per fermenter and
feed intervals were 80–100 kg/kWhel. The samples were collected directly from the fermenter into
sterile vessels. After collection, they were stored in thermocontainer and immediately transported to
the laboratory for further analysis.

The temperature, volatile solids content, total solids (TS) content, pH, redox potential, and biogas
composition in each anaerobic digester of biogas plant was determined. TS was determined as an
amount of material remaining after the water in the sample has been evaporated at 105 ◦C ± 5 ◦C in a
drying oven EcoCELL 111 (BMT Medical Technology Ltd., Brno, the Czech Republic), according to
Czech Standard Method (CSN EN 14346 2007) [43]. Volatile solids content (VS) was determined as an
amount of material remaining after the combustion of the samples at 550 ◦C ± 5 ◦C according to Czech
Standard Method (CSN EN 15169, 2007) [44]. Muffle furnace LMH 11/12 (LAC, Ltd., Rajhrad, The
Czech Republic) was used. For pH and redox potential measurement pH/Cond meter 3320 (WTW
GmbH, Dinslaken, Germany) was used, in accordance with standard (CSN EN 12176, 1999) [45]. Biogas
composition was estimated by the gas analyzer Dräger X-am 7000 (Dräger Safety AG&Co. KGaA,
Lübeck, Germany).

The results were analyzed and plots were built using software package Origin7.0 (www.origin-
lab.com). Using the experimental data, the basic statistical parameters (M–mean, SE–standard error,
M ± SE) have been calculated. The accurate approximation was when p ≤ 0.05 [46].

www.origin-lab.com
www.origin-lab.com
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4.3. DNA Isolation, Amplification, and Sequencing

The isolation of DNA was done by the QIAamp Fast DNA Stool Mini Kit (QIAGEN GmbH,
Hilden, Germany). The sample (100 mg) was washed with 1.4 mL of ASL buffer (QIAGEN GmbH,
Hilden, Germany) and it was heated at 95 ◦C for 10 min. For amplification of the V3 and V4
variable regions of the 16S rRNA gene fragments universal primers were used [47]. The primers
were marked by molecular barcodes for sample identification. Maxima™ Probe qPCR Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA), was used for PCR reaction. All manipulations of
amplification and sequencing were carried out as described in previous paper [12,48]. Based on
the microorganisms’ presence, the calculation of relative abundance of the taxonomic groups was
done. Sequences analysis was done by NCBI and by BLAST [49]. The genomic sequences are
available in GenBank, access No.: MG916813.1, MG847139.1, MG906816.1, MG907296.1, MG920534.1,
MG897820.1, MG920523.1, MG920523.1, MG907286.1, MG920533.1, MG907285.1, MG920531.1,
MG916837.1, MG907284.1, MG907294.1, MG881696.1, MG818985.1, MG907292.1, MG916825.1,
MG906818.1, KY123356.1, MG897821.1, MG907304. The sequences were processed by Geneious
7.1.9 and genomic analysis was performed [50]. Alignments of sequences were done by MEGA7
using Clustal W with the BLOSUM cost matrix, and clustered by the neighbor-joining method [51].
The results were processed and analyzed using Origin 7.0 (www.origin-lab.com).

5. Conclusions

Thermophilic microorganisms were characterized from various biogas plant fermenters and
their diversity and abundance were determined under the effect of various input substrates and
operating conditions. The presence of the different thermophiles is connected to the substrate profiles
of the biogas plants investigated which may be due to an extended range of temperature response
for these thermophiles. The study is providing important information considering thermophiles and
methanogens that can help to better optimize biogas production. In addition, we highlight the impact
of different input substrates and their influence on the diversity and the abundance of microorganisms
present. Taken as a whole, this study gives a broader and clearer picture of the processes occurring in
mesophilic biogas reactors in the presence of thermophiles.
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