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A B S T R A C T

Sunshape and reflector surface slope error distributions are significant elements in modelling the optical be-
haviour of a concentrating solar power system. Different optical modelling tools implement these elements with
various approaches. Discrepancies can easily accumulate in simulations of a large optical system as a result of
incorrect implementations. This study reviews and verifies the implementations of these two factors in six tools
that are widely used for optical modelling in solar energy research: Tonatiuh, SolTrace, Tracer, Solstice,
Heliosim and SolarPILOT. The review incorporates three rounds of tests. Firstly, basic tests examine each factor
carefully in simplified on-axis reflector–target configurations (round ‘A’). Secondly, off-axis effects are in-
troduced (round ‘B’). Thirdly, full heliostat field simulations are verified (round ‘C’). All of the test cases are
simulated with each modelling tool, and results are compared. Discrepancies were observed due to approx-
imations inherent in the cone optics (convolution) methods, incorrect implementation the of pillbox slope errors,
different approaches to setting the circumsolar ratio for the Buie sunshape, and different approaches to the
calculation of blocking and shading losses in some tools. All issues are discussed fully, and solutions to most
issues were implemented within the scope of the present study. Some remaining issues are noted. The study
highlights the importance of careful implementation of these aspects of optical modelling and contributes to an
improvement in the quality of several widely-used tools.

1. Introduction

The reflector/concentrator, together with the receiver, constitute
the optical system at the front end of a concentrating solar power (CSP)
system, which accounts for around 30–50% of the total capital cost
(Buck, 2012). Designing a highly efficient optical system and operating
it in a safe manner are crucial in CSP applications, whether it be in
parabolic dishes, trough systems, or central tower systems. Optical
modelling is commonly used to assist these activities. There are two
categories of optical modelling methods: (1) Monte Carlo ray tracing
(MCRT) (e.g. MIRVAL (Leary and Hankins, 1979), Tonatiuh (Blanco
et al., 2009), SolTrace (Wendelin, 2003), Tracer (Wang et al., 2016),
Solstice (Caliot et al., 2015) and Heliosim (Potter et al., 2017)), and (2)
cone optics convolution-based method, such as UHC/RCELL (Lipps and

Vant-Hull, 1978), DELSOL (Dellin and Fish, 1979), HELIOS (Vittitoe
and Biggs, 1981), HFLCAL (Schwarzbözl et al., 2009) and SolarPILOT
(Wagner and Wendelin, 2018). MCRT modelling tools can be further
categorised into those that irradiate rays from a plane above reflectors
(e.g. Tracer, Tonatiuh and SolTrace), and those that irradiate rays di-
rectly from the reflector surfaces (e.g. Solstice and Heliosim). Several
review papers (Garcia et al., 2008; Ho, 2008; Li et al., 2016; Levêque
et al., 2017) have thoroughly summarised the features of the techni-
ques.

The sun is not a point source but appears as a ‘disk’ when viewed
from the earth. Realistic concentrator surfaces deviate from the design
shape due to material stress, gravity and wind effects, or manufacturing
errors (Rabl, 1985). The impacts of sunshape and surface slope errors
are critical at the design stage as they directly affect the incoming and
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reflected solar radiation and contribute to the image spread on the re-
ceiver.

Various implementation methods for these two factors can be found
in different optical modelling tools. Besides the existing optical mod-
elling tools listed above, some research groups develop their own op-
tical modelling codes so as to have freedom and a controllable platform
for the optical analyses of solar concentrators, receiver designs and for
integration with other system modelling tools. Specific evaluation and
verification of the implementation of the physical relations in simula-
tion codes are not commonly found in the literature. Even though some
validations against experimental data or comparisons against other
optical modelling tools were published (Blanco et al., 2009, 2010,
2011; Yellowhair et al., 2014), the data is not available in a form that
enables the validation of more recent tools or methods comprehen-
sively. Besides, experimental validations are expensive and difficult as
it is very challenging to control, isolate or measure many real-world
factors influencing the results, e.g. canting, tracking, surface slope
error, weather conditions and measurement errors.

In this paper, a thorough comparison of the results obtained from
simulations of heliostat field optics with six well-known optical mod-
elling tools is presented, with the emphasis on checking the im-
plementation and accuracy of sunshape and slope error simulations.
The main features of the tests and the selective results are discussed in
this paper. The detailed parameters and results are available in the
supplementary material for readers interested in further verification.
The data and models can also be accessed via the Github repository1

maintained by the Australian National University (ANU) Solar Thermal
Group (STG). This study has contributed to an improvement in the
quality of these six tools. We hope it would also ensure better agree-
ment and build confidence amongst CSP researchers on accurate
modelling of the optical behaviour of solar concentrators.

2. Tools and method

2.1. Tools

The six optical modelling tools selected for this study, Tonatiuh,
Tracer, Solstice, Heliosim, SolTrace and SolarPILOT, are widely used in
the solar research community. They are briefly reviewed in this section.
These tools use a variety of methods for optical modelling. All of them
except Heliosim are open source codes. For a list of a wider range of
tools, beyond those considered in this study, see Li et al. (2016).

2.1.1. Tonatiuh
Tonatiuh is a C++ multi-threading open source Monte Carlo ray

tracer package for optical modelling of all types of solar concentrators
both reflective and refractive, jointly developed by the National
Renewable Energy Centre of Spain (CENER) and the University of Texas
at Brownsville (UTB) with the support of the National Renewable
Energy Laboratory (NREL) (Blanco et al., 2009). A preliminary com-
parison against SolTrace was conducted in 2009 via three simulation
scenarios (a parabolic dish, a parabolic trough and a solar furnace
system with pillbox sunshape). The maximum difference was under 3%
(Blanco et al., 2009). It was also validated with another two experi-
mental data sets. The first was using the data gathered at CIEMAT’s
Plataforma Solar de Almería (PSA), although it was difficult to draw
definite conclusions about the accuracy of flux estimation due to the
lack of sunshape’s circumsolar ratio and surface reflectivity of the
secondary concentrator (Blanco et al., 2010). The second was validated
at the Mini-Pegase CNRS-PROMES facility, and a high level of similarity
between the measured flux distributions and those calculated by To-
natiuh was observed (Blanco et al., 2011). Having been under devel-
opment since 2004, Tonatiuh has a vast number of features to facilitate

the modelling of any kind of solar concentrators, such as wizards that
make it possible to very easily define solar tower systems with thou-
sands of heliostats. Its plugin-based architecture also makes it easy to
expand the program to incorporate new types of surfaces, materials or
solar radiation models. It also incorporates scripting capabilities that
make it easy to automate the running the program to achieve a large
variety of purposes.

2.1.2. Tracer
Tracer is an open source package implemented in Python, and uti-

lising efficient numerical routines from SciPy (Jones et al., 2001) and
NumPy (Oliphant, 2006), with 3D rendering provided by Coin3D2 and
Pivy3 in Python as well. Originally created by Yosef Meller at Tel Aviv
University (TAU) in Israel4, Tracer was further developed by the Solar
Thermal Group (STG) at the Australian National University (ANU)5 for
modelling CSP systems. New additions include parallel processing
capability for faster tracing, simulations of slope errors and sunshape
distributions. A TowerScene module has been recently developed,
which includes flexibility for different heliostat tracking mechanisms
(azimuth-elevation or pitch-roll), different aiming strategies (single-
point aiming or multiple fixed points aiming), heliostat slope error
distributions (normal or pillbox) and field layout options etc. Pre-
liminary verification of Tracer was presented by Wang et al. (2016) via
reproducing the same test case published by Yellowhair et al. (2014).
The result from Tracer agreed well with that from DELSOL, HELIOS,
SolTrace and Tonatiuh. It has been used in the receiver design activities
for the Big Dish system in the USASEC project at ANU (Asselineau et al.,
2015). The highly efficient receiver ‘SG4’ at ANU was evaluated using
Tracer and was experimentally confirmed through on-sun tests (Pye
et al., 2017).

2.1.3. Solstice
The SOLSTICE (SOLar Simulation Tool In ConcEntrating optics) is a

free open source software released under the GPLv3 + license and
jointly developed by PROMES-CNRS6 and Méso-Star7. The integral
formulation Monte Carlo (IFMC) algorithm (Delatorre and Baud, 2014)
was implemented to solve the concentrated solar flux on a receiver,
which was experimentally validated by Caliot et al. (2015). The con-
vergence rate is faster than the collision-based algorithm (e.g. as used in
SolTrace and Tonatiuh) as Solstice applies energy partitioning method.
It is also efficient in large field simulations due to its sampling rays of
the first intersection on the primary reflector surface. It uses the Embree
library from Intel® and is fully parallelisable on shared-memory archi-
tecture. The program is intended to be executed as a command-line tool
enabling the user to couple the ray tracing simulation with other pro-
grams such as in optimisation loops and fluid mechanics or thermal
software. Solstice considers input files containing the solar facility de-
scription, the geometry elements, the stereolithography (STL) files and
spectral data (solar radiative intensity, refractive index, extinction
coefficient and reflectivity), to compute the flux maps on receivers
(with the associated statistical standard deviation) that can be visua-
lised with the solar facility geometry using ParaView8. In addition, a
map of local normal deviations could be attached to the reflector geo-
metry to account for measured or simulated waviness of the reflectors
due to the manufacturing process and the installation on the support
structure.

1 Data access: https://github.com/anustg/optics-verification.

2 Coin3D: https://bitbucket.org/Coin3D/coin/wiki/Home.
3 Pivy: https://bitbucker.org/Coin3D/pivy.
4 Tracer (Y. Meller): https://github.com/yosefm/tracer.
5 Tracer (ANU): https://github.com/anustg/Tracer.
6 Solstice PROMES: https://www.labex-solstice.fr/solstice-software/.
7 Solstice meso-star: https://www.meso-star.com/projects/solstice/solstice.

html.
8 Paraview: https://www.paraview.org/.
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2.1.4. Heliosim
Heliosim is an integrated central receiver CSP simulation and op-

timisation software developed by the Commonwealth Scientific and
Industrial Research Organisation (CSIRO), Australia. It is a closed
commercial source package. The motivation for the initial development
of the ray tracing model used by Heliosim in 2007 was for supporting
experiments (e.g. receiver design and providing inputs for CSIRO’s
heliostat control system software) performed using the two central re-
ceiver CSP facilities at the CSIRO Energy Centre in Newcastle, Australia
(e.g. Kim et al., 2013). As part of the Australian Renewable Energy
Agency (ARENA) sponsored ‘Optimisation of central receivers for ad-
vanced power cycles’ project, receiver thermal modelling, pipe stress
modelling, heliostat field optimisation, and a graphical user interface
were added to the Heliosim software (Potter et al., 2017). The core
physical modelling is implemented as a C++ library that is exposed as
a plugin for Workspace (Watkins et al., 2017), a scientific workflow
framework developed by CSIRO. The desired behaviour of the software
is encapsulated as a Workspace workflow, which is compiled into a
standalone application with a graphical user interface created using the
Qt framework.

For simulating heliostat optics, Heliosim currently (version 5.4.0)
implements a MCRT method where rays are cast from the primary re-
flector surfaces (i.e. the heliostat mirror facets). The incident direction,
mirror intercept location and mirror surface normal direction for each
ray are calculated via Monte Carlo sampling of cumulative distribution
functions (CDF) using the function inversion method. As described in
Section 4.6, Heliosim previously (version 4.0.3 and below) im-
plemented a deterministic ray tracing model with an approximate
treatment of off-axis incident rays, however errors identified as a result
in the participation in this validation study motivated the im-
plementation of the current MCRT model. The traversal of rays through
the scene is handled by the GPU-accelerated NVIDIA® OptiX™ Ray
Tracing Engine, where each object in the scene is represented by a
surface mesh comprising of triangular facets, allowing complex receiver
geometries and realistic shading scenes such as buildings and terrain to
be considered. The ray tracing calculation can be run in parallel on
distributed memory computer clusters, allowing in excess of 100 mil-
lion rays to be traced each second. The computational efficiency of this
ray tracing model has been used in objective functions for optimising
heliostat field layout and receiver geometry (e.g. Potter et al., 2015).

2.1.5. SolTrace
SolTrace is generalised Monte Carlo ray tracing open source soft-

ware that can model a wide variety of optical systems, surface geo-
metries, and surface interactions by casting sun rays randomly over a
region of interest, rather than by generating rays which originate from
points on the heliostat surface. As such, it is not designed for efficient
operation with power tower systems, but provides functionality that
SolarPILOT (Wagner and Wendelin, 2018) utilises for that application,
managing automated geometry definition, heliostat tracking, sun po-
sitions, and definition of error and sunshape distributions. The features
are presented in detail by Wendelin and Dobos (2013). It was validated
through comparison with measurements taken at the NREL High Flux
Solar Furnace (Wendelin and Dobos, 2013). SolTrace can be used either
as a module within via SolarPILOT or as stand-alone software that

provides significantly greater flexibility and ray data analysis func-
tionality.

2.1.6. SolarPILOT
SolarPILOT is an open source software that utilises analytical

methods for optical modelling (Wagner and Wendelin, 2018). Instead of
ray tracing, it uses the Hermite polynomial expansion technique to
approximate reflected sun images as Gaussian distributions. It is a si-
milar technique as applied in DELSOL that has been demonstrated by
Walzel et al. (1977), Dellin (1979), and Kistler (1986). SolarPILOT
implemented a number of improvements, including dynamic heliostat
grouping, efficient annual performance prediction, and field layout
generations that were reviewed by Wagner and Wendelin (2018). The
analytical method is significantly more computationally efficient than
ray tracing methods, but has limitations in precise modelling of all
optical conditions, e.g. (1) non-Gaussian distributions, (2) multiple re-
flections in cavity-type receivers. It embeds the core tracing functions of
SolTrace through an application programming interface (API) to assist
these limitations.

2.1.7. Tools overview
The simulation codes evaluated in this study can be regrouped in

several categories. SolTrace and Tonatiuh both implement a purely
stochastic ray tracing method and use the collision-based algorithm.
Rays are associated with random variates in the range of 0 to 1. If the
random variate is higher than the reflectivity of the intercepted surface,
the ray is fully absorbed; otherwise, the ray is fully reflected. This
method of handling events is also commonly labelled ‘Russian roulette’.

Tracer, Solstice and Heliosim apply the energy partitioning ap-
proach for ray tracing. In this approach, a certain amount of energy is
carried by each ray and is reduced at each intersection point. Compared
to the collision-based method, it requires recording the energy in each
intersection, which implies relatively more computational effort per
ray, but results in much faster convergence, which means significantly
fewer rays for the whole simulation, especially in modelling of multiple
reflection effects.

Rather than casting all sun rays from a plane located above the
entire heliostat field, Solstice and Heliosim cast rays from the primary
reflection surfaces (i.e. heliostat facets). It reduces the large wastage of
rays hitting the ground, between the heliostats for example, and avoids
the computationally expensive calculation of ray intercept locations on
the heliostat mirror facets, but adds the need for a separate shading
calculations.

The detailed information regarding version, link and contact au-
thors of the tools that are verified in this study is listed in Table 1.

2.2. Sunshape and implementations in MCRT

The sun is not a point source but appears as a ‘disk’ when viewed
from the earth. The sunshape describes the distribution of solar radia-
tion in the solar disk, i.e. the normalised radiance profile (L ( )) of the
solar radiation, which is a distribution of the rate of energy per unit
solid angle in a specified direction and per unit of projected surface area
normal to the specified direction (Blanc et al., 2014).

The most realistic model of sunshape includes the limb-darkened

Table 1
Optical modelling tools considered in this study.

Name Version Open Source (URL) Contact Author Host Institution

Tonatiuh 2.2.3 http://iat-cener.github.io/tonatiuh/ Manuel Blanco The Cyprus Institute
Tracer 1.0.0 https://github.com/anustg/Tracer John Pye ANU
Solstice 0.8.1 https://www.meso-star.com/projects/solstice/solstice.html Cyril Caliot PROMES-CNRS
Heliosim 5.4.0 Closed source commercial product (trial version available on request) Daniel Potter CSIRO
SolarPILOT 1.2.1 https://github.com/NREL/solarpilot Michael Wagner NREL
SolTrace 3.0.0 https://github.com/NREL/soltrace Michael Wagner (Tim Wendelin – original) NREL
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solar disk with circumsolar radiation. The Buie sunshape is one such
example, as shown in Eq. (1), where θ is the radial angular displace-
ment, and each of κ and γ is a function of the circumsolar ratio (CSR or
χ) (Buie et al., 2003). In optical simulations, θdisk is usually taken as
4.65 mrad to represent the annual averaged angular width of the solar
disk, and θaureole is 43.6 mrad to represent the angular extent of the
aureole. It should be noted that the unit of θ is presented in milliradians
by Buie et al. (2003). It is converted to radians here in Eq. (1) to comply
with standard units.
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The pillbox (Eq. (2)) and Gaussian (Eq. (3)) distributions are also
widely applied models for simulating sunshapes in CSP due to their
simplicity.
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In optical modelling, generally, a control surface normal to the main
direction of the sun rays is considered to cast rays towards the solar
concentrator. The normalised differential radiant power in a given di-
rection towards the solar concentrator, that specified by (θ, φ), can be
computed by the following expression:

=dq L d d dA( )sin cos . (4)

The term of d dsin represents the solid angle subtended by the
solar concentrator in dθ and dφ. The dAcos is the term that converts
the segment area to the one that is perpendicular to the direction of (θ,
φ), also known as Lambert’s Cosine Law. The total hemispherical ra-
diant power from the infinitesimal area dA is obtained by integrating
the previous expression for all possible values of θ and φ:

=q L d d dA( )sin cos .
2

0

2

0 (5)

The ratio between the two previous expressions (4) and (5) is the
probability of a ray leaving the surface in the direction specified by (θ,
φ):

=P L d d
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.sunshape 2
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The cumulative distribution function (CDF) is:

=F
L t t tdtdu

L d d
( , )

^ ( )sin cos

^ ( )sin cos
.sunshape

0 0
2

0

2

0 (7)

The azimuthal CDF is:

=F ( )
2

.sunshape (8)

The CDF of the radial angular displacement (θ) is:
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0
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In MCRT, ray-sampling expressions are obtained by inversion of the
CDF expressions (Arvo et al., 2003). The azimuthal angle sampling
expression is relatively trivial as the ray directions are assumed

azimuthally symmetric:

= R R2 · , (0, 1), (10)

where Rφ is a set of uniform random variates. The zenithal angle
sampling expression is more complex and depends on the sunshape
expression considered, as presented in the following sections.

2.2.1. Sampling θ for the pillbox sunshape
The angular displacement θ in the pillbox sunshape can be sampled

directly since (9) can be performed analytically:

= R Rsin (sin · ), (0, 1),disk
1 (11)

where Rθ is a set of uniform random variates. This approach is used in
Tonatiuh and Solstice.

It should be noted that θ is typically very small (e.g. θ < 100 mrad),
such that cos 1and sin . It is reasonable to simplify (9) to (12).

=F
L t tdt

L d
( )

( )

( )

0
2

0 (12)

The simplified sampling expression for the angular displacement in
the pillbox distribution is:

= R·disk (13)

This approach is tested in Tracer, and the results are verified against
other methods. Details are shown in the next section.

2.2.2. Sampling θ for the Gaussian sunshape
The angular displacement θ in Gaussian sunshape cannot be ana-

lytically sampled by (9), but is applicable by its simplification (12).
Taking (3) into (12), it is found that

= F e2ln 1 ( ) 1 .
2

8 2

(14)

The term e
2

8 2is less than 10-11 even the standard deviation σ
reaches 50 mrad, which can be approximately treated as 0. Thus the
sampling expression of θ can be simplified as:

= R2 ln( ) . (15)

This is implemented and tested in Tracer, and the results are iden-
tical with other codes.

Alternatively, the projected length of the ray direction vector in the
xz and yz plane (r, s) can be sampled assuming that they both follow
Gaussian distributions with a standard deviation σ. This simplification,
introduced by Biggs and Vittitoe (1979), relies on the small angular
deviation assumption. The directional vectors can be sampled directly
as (εx, εy, 1), where εx and εy are random variates in following a normal
distribution with a standard deviation of σ. This approach is also ver-
ified via Tracer.

2.2.3. Sampling θ for the Buie sunshape
For the Buie sunshape, neither the cumulative distribution function

(9) nor its simplified form (12) can be fully integrated analytically. The
solar disk region of the sunshape requires numerical treatment. Two
main methods are employed for the numerical integration: (1) ap-
proximating the sunshape as a piecewise linear function that can be
integrated (as applied in Tracer and Heliosim) or (2) using a ‘Rejection’
sampling method (Arvo et al., 2003) as implemented in Tonatiuh and
Solstice.

The rejection sampling method is a stochastic trial-and-error
method that works by declaring uniformly random θ angles and as-
sociate them with a uniform random variate weight. This weight is
compared with the probability density function (PDF) of the sunshape.
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Angles are accepted as valid if their weights are lower than the corre-
sponding probability; otherwise they are discarded. It is possible to
introduce sampling regions to improve the performance of this method,
as illustrated in Fig. 1 with two regions.

2.3. Surface slope error and implementations in MCRT

Macroscopic deformations and microscopic roughness alter the op-
tical behaviour of surfaces. Within the geometrical optics limits, these
irregularities cause a local deviation of the surface slope, which in turn
influences the direction of the reflection. The exact geometry of real
surfaces is complex. Modelling these irregularities is done by artificially
changing the local surface normal directions by using statistical dis-
tributions. The degree of the irregularities is often called surface slope
error (or simply slope error) and is quantified by the one-sided devia-
tion from the ideal direction of the normal vector using root-mean-
square (RMS) angular width. In addition to surface slope errors, the
optical error of a concentrator system also includes contributions from
specular errors (e.g. soiling scattering of radiation), tracking errors and
the displacement of positions (Rabl, 1985). Each error type can be
specified by its RMS angular width. Whilst in this paper only slope error
models are verified, the verification also applies to other error me-
chanisms that use similar statistical distributions.

Statistically, the surface slope error distribution P ( ) can be ap-
proximated as a pillbox or Gaussian distribution (Rabl, 1985). This
distribution gives deviation of surface normals in any specified solid
angle increment (Biggs and Vittitoe, 1979). It should be emphasised
that the surface slope error distribution is not describing the displace-
ment of normal vectors in any range but describing the displacement of
normal vectors per solid angle increment. Therefore, the probability of
an actual normal vector at a point on the concentrator surface points to
a given direction that is specified by (θ, φ) is:

=P p d d

p d d
( , ) ( )sin

( )sin
.slope 2

0

2

0 (16)

Similarly to the sunshape, the cumulative distribution function
(CDF) is:

=F
p t tdtdu
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0 0
2

0

2
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The azimuthal CDF is:

=F ( )
2

.slope (18)

The CDF of the angular width (θ) is:

=F
p t tdt

p d
( )

^ ( )sin

^ ( )sin
.slope

0
2

0 (19)

The expressions for slope error modelling are identical to the sun-
shape modelling expressions and the same approximations (small an-
gles and direct planar projection) are also therefore available. In the
pillbox slope error, θ can be sampled as Eq. (13). In the normal slope
error, θ can be sampled as Eq. (14). The alternative method (direct
planar projection) that was introduced in Section 2.2.2 for Gaussian
sunshape is also applicable to the normal slope error. In Tonatiuh,
Gaussian sampling is implemented using the Box-Muller transformation
(Box and Muller, 1958).

2.4. Convolution method in brief

An alternative method to MCRT uses the convolution of analytical
distributions representing the mirror shape, optical errors and sun-
shape, for faster optical modelling. In general, the accuracy of con-
volution methods is lower than MCRT, however the increased compu-
tational performance allows the calculation of annual performance and
optimisation of heliostat field layouts for large-scale central tower
systems to be performed using standard desktop computers. The con-
volution method is also commonly referred to as the ‘cone optics’
method.

In general, three steps are involved in the analytical approach to
determine the flux distribution reflected by each heliostat: (1) obtaining
the principal image of a heliostat (M), (2) convolving the principal
image with the distributions of the sunshape (S) and the optical errors
(G) to obtain the reflected image and (3) mapping the reflected image
onto a receiver (Walzel et al., 1977; Grigoriev and Corsi, 2017). The
principal image of a heliostat is a virtual image formed by projection of
the effective area of the heliostat facet (i.e. after shaded and blocked
regions are removed) onto the image plane. The image plane is located
at the centre of the target and normal to the line between the centre of
the target and the centre of the heliostat. At all locations on the image
plane, the principal image can be ‘blurred’ to account for the sunshape
and optical error distributions, to give the resulting flux distribution on
the image plane F (Lipps, 1976). Mathematically, F is calculated as the
convolution integral combining M, S and G:

=F M S G (20)

Solving the convolution integral can be non-trivial due to arbitrary
distributions of M, S and G. Collado et al. (1986) reviewed the nu-
merical treatments of M, S and G in different codes developed in 1980 s.
One widely used numerical method is expanding the components of F
into sums of orthogonal polynomials. The orthogonal polynomials with
respect to the Gaussian distribution, i.e. the Hermite polynomials, are
generally adopted since they provide good representation of typical flux
patterns using a small number of terms, and provide uniform con-
vergence on the entire image plane (Walzel et al., 1977). The Hermite
polynomial approach was reviewed by Wagner and Wendelin (2018),
and applied in SolarPILOT, the details of which have been introduced in
Section 2.1.6. The performance of SolarPILOT is compared with MCRT
methods in this study and discussed in the following sections. Other
tools implementing the convolution method via Hermite polynomials
include DELSOL (Dellin and Fish, 1979) and UHC/RCELL (Lipps and
Vant-Hull, 1978).

There are further simplified treatments of the convolution integral
in previous work (Garcia et al., 2008; Collado et al., 1986). Three ex-
amples are UNIZAR (Collado et al., 1986; Collado, 2010), HFLCAL

Fig. 1. Illustration of a two-region rejection sampling of the angle θ for the Buie
sunshape. hr1 is the height of the upper boundary of the probability density
function in the solar disk region; hr2 is that in the circumsolar region.
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(Schwarzbözl et al., 2009), and a unified algorithm developed by
Grigoriev and Corsi (2017). Both the UNIZAR model and the HFLCAL
model approximate S and G as a radially symmetric Gaussian. The
principal image M is assumed to be rectangular in the UNIZAR model,
whereas it is assumed to be a point in the HFLCAL model. Off-axis
aberrations (i.e. astigmatism errors) are considered in the HFLCAL
model by enlarging the standard deviation of the optical errors, but are
excluded in the UNIZAR model. Both the UNIZAR and HFLCAL models
showed acceptable accuracy of less than ± 9.3% absolute difference in
intercept fraction for all individual heliostats, when compared to ex-
perimental measurements (Collado, 2010). Meanwhile, the algorithm of
Grigoriev and Corsi (2017) improves the representation of M using a
decomposition of the shape into a set of right triangles, allowing arbi-
trary heliostat geometries to be considered, and is furthermore valid for
any arbitrary sunshape having radial symmetry. The convolution of the
sunshape and optical error distributions are also pre-computed, and
implemented using high-speed graphics processing code. These codes
were excluded from the present study.

3. Models and results

The verification is done thoroughly by three rounds of tests, with
gradually increasing complexity, from single heliostat to full field si-
mulations. Descriptions of each case and selective results are presented
and discussed in the following sections. Details are available in the
supplementary material for readers who are interested in using these
tests to verify their code. Data files can be accessed via the ANU STG
Github repository1, include case descriptions, parameter list of each
case, the heliostat field coordinates, result data files, and Python scripts
of applying Tracer for running each of the test and data post processing.

3.1. Round A

3.1.1. Model
A solar source, one paraboloid mirror and a flat target in an axially

aligned configuration (as shown in Fig. 2) are used for the first-round
test in order to individually allow sunshape and slope error to play
leading roles in the results. Collimated rays are simulated in the cases
where surface slope errors are examined; while zero slope error is ap-
plied when sunshape is being checked. The ray source is arranged under
the target to avoid shading effects. Under such arrangements, a theo-
retical flux distribution on the receiver target for each case is readily
obtained correspondingly (see Section 3.1.2).

Preliminary results of this test round were presented at the
SolarPACES conference in 2017 (Wang et al., 2017). The sizes of the
mirror and the target from that study have been enlarged in the present
work to be matched to the case of a large scale heliostat field. In ad-
dition, two combination cases of sunshape and slope error are simu-
lated. Those are pillbox sunshape with normal slope error (A3.1) and

Buie sunshape with normal slope error (A3.2). A summary of the test
cases is listed in Table 2.

A rectangular 100 × 100 mesh is overlaid on the target for binning
of the output flux map for each case. Each term of energy is analysed
according to the balance:

= + +Q Q Q Qirr abs refl spil (21)

where Qirr is the total energy reflected by the mirror, Qabs is the energy
absorbed at the target, Qrefl is the energy reflected by the target, and
Qspil is the energy spillage from the target. This energy balance is also
valid for Round B.

3.1.2. Theoretical radiance distribution on the target
The axially aligned arrangement makes it possible to calculate the

theoretical radiance distributions on the target for cases A1 and A2, in
which sunshape and slope error are examined separately. As the dis-
tance between the mirror and the target is far (50 times the side-length
of the mirror), the radiance distribution will be very close to the cor-
responding statistical distribution of the slope error or the sunshape, as
explained below.

The absorbed flux at each mesh element on the target (qi,j) is ob-
tained in each simulation. The radiance Li,j can be calculated by (22),
where Ω is the solid angle that subtended by the area of the element (i,j)
at point 0, as shown in Fig. 3.

=L
q

i j
i j

,
,

(22)

By separating the angular displacement θ into small segments in a
radial direction and binning the radiance Li,j, the function L(θ) can be
established.

In order to compare the results with theoretical statistical dis-
tributions, the radiance distribution needs to be normalised:
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(23)

where L ( )s is the normalised radiance from simulations, and D ( ) is
the statistical distribution of L ( ) or P ( ) presented in Section 2. It
should be noted that for slope errors, the deviation of the statistical
distribution (e.g. the sigma in a normal distribution) should be doubled
due to Snell’s law of reflection.

3.1.3. Selected results and discussion
3.1.3.1. Slope error. For pillbox distributions, the results from all tools
except SolarPILOT and Tonatiuh agree well (see Figs. 4 and 5 (a)).
SolarPILOT has no option of pillbox slope error for surface optics and
could not be included in this test. A discrepancy from Tonatiuh can be
seen clearly in Fig. 4.

The sampling of the angular displacement θ is uniformly distributed
in 0 and θs in the 2.2.3 version of Tonatiuh that participated in this
study, rather than the one that described in Section 2.3. This im-
plementation can be checked in the Tonatiuh package: “Material-
StandardSpecular” class, “OutputRay” method. This error equates to
ignoring the non-linear increase of the solid angle as the θ increases.
This oversight is not found in the pillbox sunshape which was im-
plemented properly. It is expected that this error will be corrected in a
future release.

It should be noted that the pillbox distribution of slope error is only
interesting from a validation point of view. In applications, normal
distributions are more common in modelling optical errors for a large
array of collectors. Besides, based on the central limit theorem of sta-
tistics, when many statistically independent distributions are integrated
(e.g. from multiple heliostats/facets), the result soon approaches a
Gaussian distribution.

For the results of normal distribution slope errors (case A1.2),Fig. 2. Test model of Round A.
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previously SolTrace and SolarPILOT showed discrepancies relative to
other results. The reasons were found along with the progress of this
study and are described in more detail in Sections 4.2 and 4.3. The
discrepancies were allowed to be amended. Good agreement is now
shown among all the six examined tools, as can be seen in Figs. 6 and 7.

3.1.3.2. Sunshape. Good agreements are observed in the modelling of
the pillbox and Gaussian sunshape distributions among tools except
with SolarPILOT in the pillbox case.

SolarPILOT performs well in the Gaussian distribution cases, but is
limited in representations of other distributions, e.g. Buie sunshape or
pillbox distributions. SolarPILOT approximates the statistical distribu-
tions as polynomials by Hermite series expansion, and convolves them
together for predicting the reflected image. As a simplification, the first
seven terms in the polynomial expansion were applied to perform the
convolution. This works well in predicting absorbed energy and local
flux density distributions on the target in most realistic situations where
error sources are compounded on each other and inclining to a
Gaussian distribution, but in the specific case in this test round where a
non-Gaussian sunshape distribution coupled with an optically perfect
reflector, the polynomial expansion does not represent the specified sun
shape. SolarPILOT is powerful in quickly estimating the optical per-
formance for a large heliostat field. It just takes seconds or fractions of a
second for designing a commercial scale heliostat field layout or sug-
gesting aiming strategies, but has limitations in accuracy in certain
circumstances.

Apart from SolarPILOT, some small differences among other tools
appear in the simulations of Buie sunshape, as shown in Fig. 8. These
discrepancies are caused by an issue in Buie’s original correlation (Buie
et al., 2003) that was identified independently by the researchers
working on the development of Tonatiuh and Tracer. The parameter χ
is the circumsolar ratio (CSR) that defines the Buie sunshape profile.
The issue is that the circumsolar ratio that is then calculated from the
defined Buie profile is not equal to the assigned χ value. To address this
issue, polynomial calibration correlations are applied in both codes
respectively to make CSR = χ. The source code can be referred to as the
demonstration in the Tracer repository9. The polynomial calibration
equation from Tonatiuh was implemented in Solstice, and recently

added in SolTrace and SolarPILOT, and that from Tracer has since been
implemented in Heliosim. The slight differences shown in the energy
bar chart (Fig. 8(a)) are caused by this issue. The developers are col-
laborating and preparing another thorough study to reveal this issue.

3.1.3.3. Combination of sunshape and slope error. When the sunshape
distribution is simulated together with a slope error, the individual
impact of each distribution becomes less significant and is inclined to a
Gaussian distribution. Fig. 9 shows the flux map of Buie sunshape (CSR
0.02) with normal slope error from Tonatiuh, and the differences
compared to other optical modelling tools. Even though the flux
distribution varies significantly when modelling a Buie sunshape with
zero slope error in SolarPILOT, it is not significant when combined with
a physically realistic slope error. However, further investigations on the
energy balance of SolarPILOT are still required, as discrepancies can be
observed in case A 3.2 in Fig. 10.

3.2. Round B

A PS10-like (Osuna et al., 2006) radially-staggered heliostat field
(Fig. 11) was generated by SolarPILOT to verify the optical modelling in
a more realistic scenario for the Round B and Round C tests. The total
designed power is 30 MWth and located in Barstow, California. The
simulated heliostat field is constituted by 522 heliostats, each of them a
10 m by 10 m single-facet mirror, ideally focused without canting. The
tower height is 62 m. The receiver is a 6 m height (in the vertical di-
rection) and 8 m width billboard, with the centre located at (0, 0,
62 m). The coordinate system follows the right-hand rule and the po-
sitive y points to the North direction. The coordinates of the heliostat
field can be found in the website repository1.

Four representative positions are selected for individual tests in
Round B and the full field simulations are performed in Round C.
Sunshape and slope errors effects are now considered simultaneously.
Different sun positions (morning and noon) are simulated. The tracking
mechanism is azimuth-elevation with pivoting axes centred at the
middle of each heliostat. Whilst shading and blocking are considered
for the full field simulations in Round C, they are not considered in
Round B (i.e. the individual heliostats are considered in isolation from
the effects of other neighbouring heliostats).

3.2.1. Model
The four representative heliostats in Round B tests are shown in

Fig. 11.
Two sun positions on the summer solstice (20th June) at Barstow,

California US (N34o53′, W116o56′) are simulated: (1) solar noon: azi-
muth 180° and zenith 12°; (2) morning (two hours after sunrise): azi-
muth 76° and zenith 68°. The azimuth is the angle from North in-
creasing towards to East (E of N) and zenith is the angle between the
solar vector and the vertical axis.

Two combinations of sunshape and slope error are simulated: case
B1 is the pillbox sunshape (4.65 mrad) with normal slope error (2

Table 2
Test cases of Round A.

Slope error distributions of the mirror surface

No error Pillbox Normal

Sunshape distributions Collimated rays – (A 1.1) slope = 1, 2, 3 mrad (A 1.2) slope = 1, 2, 3 mrad
Pillbox (A 2.1) sun = 4 mrad – (A 3.1) sun = 4.65 mrad, slope=2 mrad
Gaussian (A 2.2) sun = 4 mrad – –
Buie (A 2.3) CSR = 0.01, 0.02, 0.03 – (A 3.2) CSR = 0.02, slope=2 mrad

Fig. 3. The angular displacement θ and the solid angle Ω that subtended by the
area of the mesh element i, j at point 0.

9 Calibration of CSR in Buie sunshape (source code): https://github.com/
anustg/Tracer/blob/master/tracer/sources.py
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mrad); case B2 is the Buie sunshape (CSR 0.02) with normal slope error
(2 mrad).

3.2.2. Selected results and discussion
Discrepancies were identified through the exercises and were re-

vised to improve the quality of the tools. The improvements are sum-
marised in Section 4. In most of the cases, now very small deviations
can be observed among Tonatiuh, SolTrace, Tracer, Solstice and He-
liosim, and larger deviations are seen in most cases for SolarPILOT.
Fig. 12 shows an example of the results. The maximum local flux dif-
ferences are within 2.4% from SolTrace, Tracer, Solstice and Heliosim
compared to Tonatiuh. The reason for discrepancies for SolarPILOT
were explained in Section 3.1.3.2.

3.3. Round C

3.3.1. Model
The full field, presented in Fig. 11, is simulated in this test round.

Fig. 5. The normalised radiance distributions from each simulation compare to the theoretical statistical distributions for (a) the pillbox slope error test case and (b)
the normal slope error test case.

Fig. 6. Energy bar chart of the normal slope error case (Case A 1.2).

Fig. 7. Flux map of the 1 mrad normal slope error (Case A 1.2.1) from Tonatiuh and the differences of flux map from other tools compared to that from Tonatiuh. The
difference in percentage is defined as the difference of flux value over the maximum flux value of the reference case. Flux map axis labels are in metres.

Fig. 4. Flux map of the 2 mrad pillbox slope error (Case A 1.1.2), the discrepancy of Tonatiuh shows the improper implementation of pillbox slope error. Flux map
axis labels are in metres.
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Fig. 8. Results of Buie sunshape test with (a) the total absorbed energy, (b) the normalised radiance distribution on the target and (c) the flux maps for a CSR of 0.02.
Flux map axis labels are in metres.

Fig. 9. Flux map of case A 3.2 Buie sunshape (CSR 0.02) with 2 mrad normal slope error from Tonatiuh, and the differences of flux map from other tools compared to
that from Tonatiuh. The difference in percentage is defined as the difference of flux value over the maximum flux value of the reference case. Flux map axis labels are
in metres.

Fig. 10. Energy bar chart of Case A 3. Fig. 11. A PS10-like radially-staggered heliostat field used in round B and C, as
created by SolarPILOT. The layout indicates 522 heliostats, a 10 × 10 m single
facet mirror, ideally focused with no canting, 62 m tower height, 30 MWth with
6 m height and 8 m width billboard receiver. The site location is Barstow,
California USA. Heliostats labelled P1 to P4 are the four points that selected for
tests in Round B. The coordinates can be found in the website repository1.
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The results are compared for two sun positions, and two types of
combination of sunshape and slope error, which are the same as in
Round B. Fig. 13 shows an example of the 3D visualisation of the
morning case (from Tracer).

In addition, the reflectivity of heliostats 0.95 and absorptivity of the
receiver 0.9 are used in this test round, whereas they were set to unity
in the previous rounds. The atmospheric attenuation is not considered
in this study.

The breakdown of energy is recorded for each simulation, namely:

• Qall, the rate of the maximum radiative energy on the heliostats from
the sun, which is equal to the total aperture area of heliostats
multiplied by the direct normal irradiation (DNI);

=Q A ·DNIall heliostats (24)

• Qcos, the rate of energy losses due to the cosine effect;
• Qshad, the rate of energy losses due to shading;
• Qhstat,abs, the rate of energy losses due to heliostat absorption;
• Qblock, the rate of energy losses due to blocking;
• Qspil, the rate of energy reflected from the heliostats but misses the

target, i.e. spilled;
• Qrefl, the rate of energy reflected by the target;
• Qabs, the rate of energy absorbed by the target.

The energy balance is:

= + + + + + +Q Q Q Q Q Q Q Qall cos shad hstat,abs block spil refl abs (25)

3.3.2. Selected results and discussion
Fig. 14 shows the results of (a) the breakdown of energy distribution

of the full field case obtained by each optical modelling tool and (b) the
difference in each energy term compared to that of Tonatiuh. The dif-
ference in percentage is defined as the difference value over the cor-
responding energy term of Tonatiuh. In general, the solar noon cases
show less difference than the morning cases.

Tracer presents good agreements with Tonatiuh in each energy term
in all the cases. The difference in the spillage shown in Fig. 14(b), case
C2.1 is due to different CSR calibrations as discussed in Section 3.1.3.2.

SolTrace initially underestimated the spillage by 3–4% and the
blockage by 6–9% in all the cases, but after implementing the correc-
tions described in Section 4.2, the results agree.

Solstice shows 13% less blockage than Tonatiuh for morning cases
(C1.2 and C2.2) whereas no significant discrepancy was found for noon
cases. Blocking losses only account for ~1% of the total energy in all
the cases though, so this discrepancy is relatively minor. Heliosim
performs well in the noon cases as all the differences are less than 2%,
but it does not perform well on blockage in the morning cases as the
differences reach ~10%. In these two tools that both have a dis-
crepancy in the calculation of blockage, rays are sampled directly from
the primary reflector surface, instead of that from a sky that covers the
whole field. As reviewed in Section 2.1.7, this method reduces the large
wastage of rays hitting the ground, but requires a separates shading
calculations. In the test results, the quantities of the shading losses from
these two tools agreed well with the results from the others. The lo-
cations and directions of the sampled rays in cases that shading effects
are involved require further investigation.

The blockage in the morning case from SolarPILOT is over twice
that of Tonatiuh. The discrepancy is likely due to the geometric cal-
culations used in SolarPILOT that are designed to be conservative in
estimating the losses.

Fig. 12. P1 position results using the Buie Sunshape and Gaussian slope error at (a) Solar Noon and (b) morning sun postions. Flux map axis labels are in metres.

Fig. 13. Sun position in the morning (2 h after sunrise) (from Tracer).
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Fig. 15 shows the flux distributions from each tool compared to
Tonatiuh in the cases of the pillbox sunshape at both the solar noon and
morning sun positions10. The flux distributions from SolTrace, Tracer
and Solstice agree well with Tonatiuh. Heliosim performs well in the
solar noon position with the maximum local flux difference just 1.8%,

but higher differences (5.9%) in the morning case. However, in the
individual heliostat tests in Round B, the pattern of flux distribution
from Heliosim is matching well with Tonatiuh. It is suspected that the
issue is coming from shading or blockage which were not present in
Round B. The flux distribution from SolarPILOT shows the most sig-
nificant differences. The maximum local flux difference is around 9.3%
in the noon case, and around 15.1% in the morning case. Such differ-
ences can be acceptable in some situations considering the fast com-
putational speed that it provides. Further research is required to reveal

Fig. 14. Results of Round C: (a) Energy bar chart and (b) relative difference compared to Tonatiuh. C1.1: solar noon, pillbox sunshape; C2.1 Solar noon, Buie
sunshape; C1.2: morning, pillbox sunshape; C2.2: morning, Buie sunshape.

Fig. 15. Pillbox sunshape in Round C at (a) solar noon and (b) morning sun positions. Flux map axis labels are in metres.

10 The original flux maps and results obtained by all the tools are available in
the supplementary material.
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the reason for these differences. Tracking, which is also an important
factor that influences the optical simulation results, has not been
compared in this study. Verifications on optical modelling of tracking
mechanisms and tracking errors will be studied in future work.

In terms of the overall efficiency, defined as Qabs over Qall , the
maximum difference compared to Tonatiuh is 0.47%, which comes
from SolarPILOT in case C2.1. The differences from the rest of the tools
are all within 0.2%.

4. Summary: value of this study to the six tools evaluated

In the three rounds of tests, six optical modelling tools are reviewed.
Through these exercises, discrepancies were identified and allowed to
be revised to improve the quality of the tools.

4.1. Tonatiuh

In Tonatiuh (version 2.2.3), the incorrect implementation of pillbox
slope error was identified and discussed in Section 1.3.3.1. This issue
will be corrected in the next released version. Tonatiuh is a widely used
optical modelling tool for CSP that has been validated through ex-
perimental tests, and it was used as the benchmark in this study to
compare the other tools. Even though discrepancies were observed, the
results of Tonatiuh agreed well with the majority of the tools in each
case, indicating its quality of optical modelling.

4.2. SolTrace

SolTrace predates Tonatiuh and is widely used for CSP simulations
by researchers. Several changes and bug fixes were identified and im-
plemented as a result of this study. Firstly, it was determined that the
Buie sunshape equation was not accurately predicting power in the
circumsolar region in most cases. The Buie sunshape correction equa-
tion that is used in Tonatiuh was adopted in generating the results for
this paper. Secondly, it was observed that SolTrace consistently slightly
underestimated the variance in normal distribution population samples.
In effect, this led to increased peak flux density near the centre of the
image and decreased predicted spillage losses near the periphery of the
image on the order of 1–2%. The cause of this error was found to be an
approximation in the original Gaussian distribution model, which is
shown in the pseudocode in Fig. 16, where ‘sigma’ is the standard de-
viation of the normal distribution, ‘random()’ is a function used to
generate a uniform random number between zero and one (inclusive),
and the angle of displacement from the mean of the distribution is
calculated as ‘theta’.

Ultimately, the distribution was replaced with the built-in normal
distribution generator in the C++ standard library, and this resolved
the discrepancies with other models. While a specific problem with this
algorithm was not resolved, it was observed that the scaling of sigma
with respect to delta affected the distribution in much the same way as

using the built-in generator.

4.3. SolarPILOT

The performance predictions using SolarPILOT’s analytical model
were largely consistent with the ray tracing results, although some
differences were observed. The exercises showed that it represents flux
distributions well for most realistic scenarios where error sources are
compounded on each other, but has limitations in the Hermite poly-
nomial approach for accurate representations of certain non-Gaussian
distributions under highly controlled circumstances. This was discussed
in Section 3.1.3.2.

As a result of this exercise, several issues were identified and cor-
rected. Firstly, a field-wide efficiency calculation issue was identified
and corrected. Previously, SolarPILOT reported the total cosine,
shading, blocking, etc., losses as the mean loss across all heliostats for
each specific loss mechanism. In fact, this approach ignores the rela-
tively different energy impact of each loss mechanism depending on
what has happened ‘upstream’. If there is a large amount of shading
loss, for example, then the subsequent losses have a less impact on lost
power. The reported field-wide efficiency values are now weighted
based on their energy contribution, and the product of all field-wide
losses now equals the reported total efficiency. Additional details can be
seen in the documentation of the problem on the SolarPILOT GitHub
page11. Secondly, as with the SolTrace model for Buie sunshape, So-
larPILOT’s model was updated to include the correction calculation that
ensures that the energy in the circumsolar region equals the specified
fraction. Furthermore, the analysis showed that the Buie sunshape
could be better represented in SolarPILOT with a truncation of the in-
tensity function at an angle of 20 mrad from the centre of the sun.
Including small values of non-zero intensity above this angle resulted in
the excessive weighting of the circumsolar region by the Hermite
polynomial fitting algorithm, so this empirical conclusion has improved
the ability of SolarPILOT to model Buie sunshapes in most real-world
cases, though the issues with zero-error heliostats remain. Thirdly,
several improvements were made to the SolarPILOT interface, to the
scripting language, and to the parametric simulation capabilities as a
result of bugs and lacking features were noted during the exercise.

4.4. Tracer

Tracer, as an open source optical modelling tool in CSP, also
benefited from this study. Tracer implementations of slope errors and
sunshapes were validated by comparison with the state-of-art research
tools. The highly readable Python language of Tracer provides a man-
ageable platform for implementations of new algorithms for testing.
While Tracer is accurate, its longer computational times and limitations
in dealing with large heliostat fields were also noted. Efforts are being
made to improve this ability.

4.5. Solstice

The present study provided a valuable comparison of different
methods and software from which Solstice benefited through the nu-
merical validation. Especially, this study leads to improvements in the
post processing programs to better compute the breakdown of optical
losses.

4.6. Heliosim

Heliosim initially had significant discrepancies with the reference
solutions from Tonatiuh, especially for the off-axis test cases (rounds B

Fig. 16. The original implementation of Gaussian distribution in SolTrace that
underestimated the variance.

11 Documentation of issues on SolarPILOT Github: https://github.com/NREL/
SolarPILOT/issues/22.
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and C). The deterministic heliostat ray casting model originally im-
plemented in Heliosim (v4.0.3 and below) was identified as a source of
error, and was replaced with a Monte Carlo model (v5.4.0). The ori-
ginal deterministic model cast a precalculated bundle of rays from a
regular grid of points on the heliostat mirror surface. The ray bundle
was calculated by the numerical convolution of the sunshape and slope
error distributions for the on-axis reflection case, discretising the re-
sultant intensity distribution with a regular grid of points in the azi-
muthal and zenith axes, and applying rotational transforms to account
for off-axis effects. This approach was found to be both mathematically
incorrect and computationally inefficient. The mathematical inaccuracy
stemmed from the assumption that the intensity distribution for an off-
axis reflected beam can be calculated by applying rotational transforms
to the on-axis distribution, which is not possible for non-zero slope
error. The computational inefficiency was due to the use of a de-
terministic model with regular discretisations of space and direction,
which required large numbers of rays to provide a converged solution.
Both of these problems were overcome with the implementation of a
Monte Carlo model, where the incident direction, reflection point and
surface normal for each ray cast from heliostat mirror surfaces is de-
termined by sampling from the appropriate CDF. The Monte Carlo ap-
proach was found to require fewer rays to reach a converged solution,
as the statistical sampling implicitly ensures more rays are cast in di-
rections with higher energy density, whereas the deterministic ap-
proach casts an equal number of rays (but with different energies) in all
directions.

Following the implementation of the Monte Carlo ray casting model,
slight discrepancies remained for the round B cases. This was found to
be due to Heliosim automatically applying physically realistic geo-
metric offsets between the heliostat actuation axes and the mirror
surface, whereas the test case assumed that the origin points of the
actuation axes and mirror surface coincide. An option was therefore
added to the Heliosim software that allowed the offset distances to be
specified by the user as some fraction of the heliostat characteristic
length (i.e. mirror surface diagonal).

Despite good agreement then being found between Heliosim and
Tonatiuh for rounds A and B, slight disagreement remained for round C.
A critical difference between round B and C is the inclusion of shading
and blocking effects, and therefore the possibility of error due to the
treatment of shading and blocking in Heliosim was investigated.
Previously Heliosim implemented approximations when simulating
shading and blocking, where ideal sunshape (i.e. collimated) and per-
fect mirror (i.e. no slope error) models were assumed and the energy of
each reflected ray was reduced by a heliostat-averaged shading and
blocking factor. To check if these approximations were the source of
error for round C, an option was added to the software to allow shading
and blocking to be simulated without these approximations (i.e. sun-
shape and slope error models are considered, and each reflected ray has
its own binary shading and blocking factors). The maximum error in
overall efficiency due to the shading and blocking approximations was
found to be less than 0.2% for round C, and the flux map discrepancies
with Tonatiuh were not resolved. This discrepancy is to be investigated
as future work by the Heliosim developers.

5. Conclusions

The sunshape and surface slope error models in six optical simula-
tion tools are reviewed in three rounds of test cases. In the first test
round, on-axis reflector–target configurations are applied and the sun-
shape and slope error are examined separately so that the radiance
distribution can be obtained theoretically. Most of the tools showed
good agreement with each other, except that (1) Tonatiuh incorrectly
implemented the pillbox slope error distribution, which is anticipated
to be amended quickly in a later release; (2) SolarPILOT has limitations
in simulations of a solo non-Gaussian distribution accurately (e.g.
pillbox or Buie sunshape) due to simplification made in the Hermite

polynomial expansion method, although these sunshape models can be
used accurately for most real-world conditions where errors are com-
pounded that lead to a Gaussian distribution; (3) In addition to the issue
with SolarPILOT, slight differences are observed in the Buie sunshape
results in the rest of the tools. It is caused by an issue of Buie’s corre-
lation (Buie et al., 2003) that was identified by different groups of re-
searchers and solved independently. More thorough verification on this
issue has been being performed and will be presented in future work.

The combinations of surface slope error and sunshape distributions
for both individual heliostat and full field simulations are also com-
pared under two sun positions (morning and solar noon). Good agree-
ment was observed between Tonatiuh and Tracer. Instead of sampling
sun rays from a sky that covers the whole heliostat field (e.g. in
Tonatiuh, SolTrace and Tracer), Heliosim and Solstice both sample rays
of the first intersection on the primary reflector surface, in such a way
that accelerates the speed of simulation by avoiding generating wasted
rays that hit the ground and avoiding the calculation of ray intercept
locations on the heliostat mirror facets. They perform well for solar
noon sun positions, however, discrepancies can be observed in pre-
dicting blockage and shading in morning sun positions. The cone optics
method (SolarPILOT) had the lowest accuracy due to its theoretical
simplicity but has the merits of fast simulations (in seconds or fractions
of a second). In the full field simulations, the flux distributions of the
noon and morning cases obtained by SolarPILOT can differ by up to 9%
and 15% respectively compared to those obtained by Tonatiuh.

The exercises of the three rounds of tests brought benefits to all the
six optical modelling tools that were reviewed in this study. Through
this exercise, discrepancies were identified and allowed to be revised to
improve the quality of the tools. These improvements and some re-
maining issues were summarised in Section 4. It is our hope that this
study will ensure better agreement and build confidence amongst CSP
research on accurate modelling of the optical behaviour of solar con-
centrators. The details of each test case, parameter details and results
data files are available online1 for readers who are interested in re-
peating or extending these tests or applying them to other tools.

The aspects that are interesting but not covered in this study are
listed below for further investigations: (1) verification on tracking
mechanisms and tracking errors; (2) simulation in secondary con-
centrators (e.g. CPC); (3) accurate and faster blockage and shading si-
mulation method; (4) CSR calibration in the Buie sunshape model.
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