i iNREL

NATIONAL RENEWABLE ENERGY LABORATORY

Starting with WISDEM™
The Short Course

Garrett Barter
5th Wind Energy Systems Engineering Workshop (WESE 2019)
Pamplona, Spain, October 2-4, 2019

NREL has both turbine- and plant/system-focused

research programs

Turbine Focused

™ vereeiarnn

OpenFAST

Computer engineering
tool for simulating the
coupled dynamic
response of wind
turbines

Flagship software
product

System Focused

Farm Focused

WISDEM™

Wind-plant Integrated
System Design and
Engineering Model

FOCUS

il

FLORIS

A controls-oriented
engineering wake model

FAST.Farm
WindSE
NALU
FOCUS

NREL | 2

* (Brief) Introduction to WISDEM and OpenMDAO

« WISDEM installation (essentials only)

* Tutorial 1: Run a simple WISDEM calculation with Jupyter Notebooks

* Some more detail on OpenMDAO

* Tutorial 2: Finding the Betz Limit through OpenMDAO optimization
Tutosial 3: Sall blom £ i ltin] Lol I

* Tutorial 4: Modeling a whole turbine and plant LCOE

NREL | 3

(Brief) Introduction to
WISDEM and OpenMDAO

* WISDEM installation
(essentials only)

. . * Tutorial 1: Run a simple
(BflEf) Introductlon to WISDEM calculation r\,/vith
WISDEM and OpenMDAO Jupyter Notebooks

. Some more detail on
OpenMDAO

Tutorial 2: Finding the Betz
Limit through OpenMDAO
optimization

* Tutorial 4: Modeling a whole
turbine and plant

NREL | 4

WISDEM: Creates a virtual, vertically integrated wind plant from

components to o

nerations

WISDEM: Wind-Plant Integrated System Design & Engineering Model
* Integrated turbine design (e.g. rotor aero-structure, full turbine optimization)

* Integrated plant design and operations (e.g. wind plant controls and layout optimization)

* Integrated turbine and plant optimization (e.g. site-specific turbine design)

Modular design allows
“plug-and-play” with
external (3 party)
component modules

Substructu rel

Floating Turbine Structure

Turbine Design

Turbine Performance

Substructure

Onshore

Rotor

Rotor

- »

Machine Aeroelastic
Properties & Controls

Dynamic Simulation

foundation

Offshore
Jacket

il

@h’[Substructure Aerodynamics
a A
% Drivetrain i<—

A

Generator

Component Mass Properties,
Materials & Geometry / Dimensions

Power, Thrust,
Noise Curves

<

Turbine Loads &
Energy Performance

Turbine
Dynamics
Plant

Dynamics

Specific Flow
Plant Energy

Output

\ 4

Annual Energy

Energy Production

{ Plant Layout and]

\ 4
A\ 4
Turbine Capital Costs Plant (::OSt Offshore Balance || Onshore Balance
Modeling of Station of Station Layout Design| Production
Component Cost <
I Models Offshore Onshore
Operational Operational System Cost

| - Analysis ~ |
Turbine Costs Plant Costs TEnergy Production

Financing

NREL | 5

Software platform is built with Python using the

OpenMDADO library

* Most WISDEM modules are
developed in Python using the
OpenMDAO library
— Underlying analysis may be in C,

C++ or Fortran

OpenMDAO (openmdao.org) Systems Analysis
* Open-source, python-based Concept:al Dedlan

platform for systems analysis and
multidisciplinary optimization

* Provides "glue code” and # of Disciplines |G
“drivers/wrappers” & Gradient free

* Enables
— Model decomposition

— Ease of development and
maintenance

— Tightly coupled solutions and
parallel methods

Computational Cost

NREL | 6

WISDEM installation
(essentials only)

(Brief) Introduction to
WISDEM and OpenMDAO

WISDEM installation
(essentials only)

Tutorial 1: Run a simple
WISDEM calculation with
Jupyter Notebooks

Some more detail on
OpenMDAO

Tutorial 2: Finding the Betz
Limit through OpenMDAO
optimization

Tutorial 4: Modeling a whole

turbine and plant

NREL | 7

WISDEM install (essentials only): For full instructions see

nwtc.nrel.

* Key steps
1. Download and install Anaconda3 64-bit from https://www.anaconda.com/distribution

2. Setup new “conda environment” (provides digital sandbox to explore WISDEM without impacting any
other part of your system)

3. Install WISDEM and its dependencies
4. Download WISDEM source code from GitHub

* We want to install the code like a simple user but take a peek at the files like a developer
* Open the Anaconda Power Shell (Windows) or Terminal App (Mac) and do:

conda config --add channels conda-forge

conda create -y --name wisdem-env python=3.7
conda activate wisdem-env

conda install -y wisdem git jupyter

git clone https://github.com/WISDEM/WISDEM.git

NREL | 8

https://www.anaconda.com/distribution/#download-section
http://nwtc.nrel.gov/wisdem

 (Brief) Introduction to
WISDEM and OpenMDAO

* WISDEM installation
(essentials only)

Tutorial 1: Run a simple
WISDEM calculation with * Jutorial 1: Run asimple
Jupyter Notebooks Jupyter Notebooks

. Some more detail on
OpenMDAO

* Tutorial 2: Deriving the Betz
Limit through OpenMDAO
optimization

* Tutorial 4: Modeling a whole
turbine and plant

NREL | 9

Use WISDEM as a calculator to estimate component

masses and costs from simple scaling relationships

 WISDEM has multiple levels of fidelity, we will operate at the simplest level:
“spreadsheet”-type calculation of component masses and cost

* We will: Populate inputs, execute model, list all the model inputs and outputs
— Will reveal some of the backend layers of OpenMDAO building blocks
— Will ignore OpenMDAO syntax for now

Turbine class
Machine rating e N\
Rotor diameter WISDEM Cost and Component masses
Hub height . . Component costs
Number of blades - Scalmg Model Sum:1ary masses
Max tip speed (regression based) Summary costs
Drivetrain efficiency U W,
Number of main bearings I

User overrides of scaling coefficients
NREL | 10

There are many ways to run WISDEM (and python)

beyond Jupyter Notebooks

Spyder for a Matlab-style Desktop PyCharm or other IDE

[Spyder (Python 3.4) e &

File Edit Search Source Run Debug Consoles Jools View Help
Ly b P Abils 38 EBOE A e s B+

.
Editor - tmpiinterpolation py © % Object inspector

=, | [A interpolationpy) Source |Console v | Obiect | numpy mean v Bl =L

g e [_

]
4 7 from numpy impert arange, cos, linspace, pi, sin, random
& from scipy. interpolate import splprep, splev
s

Definition : nean(a, axis=None, dtype=None, out=None,
5 keepdins=False)
4 Type : Function of numpy.core fromnumeric module
11 t=linspace(@,1. 75*2*pi,100)
12

Compute the arithmetic mean along the specified axis

13% = sin(k)
14 cos(t
M <€ Returns the average of the array elements. The average Is

| Object inspector || Variable explorer | File explorer | Static code analysis |

= random. normal(scale=6.1, size=x.shape) IPython consale o x
random. normal(scale=0.1, size=y.shape)
randon. normal(scale=o.1, size=z.shape) Ll | Bl console ua @) =
python 3.4.0 on linux -- IPython 4.0.0
]
In [1]: runfile('/tmp/interpolation.py’', wdir="/tmp')
=1
12
57 10 o= data
28 tekp,u = splprep([x,y,z],s=s,k=k, nest=-1)] — fit
3% 6
30 4
31 xnew, ynew, znew = splev(linspace(0,1,400),tckp) s
32

33 import pylab L -
70 Internal console | Console | History log | IPython console

Line:18 Column:43 Memary: 86 %

[

Permissions: RH End-of-ines: LE Encoding: UTF-8

Command line from Anaconda Prompt or Terminal App

NREL

11

Jupyter Notebook: Interacting with the Python “shell”

through a browser in a live code “diary”

e Jupyter Notebook is a web application that connects with
your local python shell

* Allows for creating and sharing documents with
— Live code
— Equations
— Visualizations
— Narrative text

* To get started with the WISDEM Jupyter Notebook tutorials
we have to navigate to the right directory and start Jupyter

e Open the Anaconda Prompt (Windows) or Terminal App
(Mac) and do:

cd WISDEM/tutorial-notebooks
jupyter notebook

NREL | 12

gbarter@GBARTER-30696S: ~/mdaoDevel/WISDEM/tutorial-notebooks — jupyter-notebook — 105x27

(wisdem-env) 518 22:23 GBARTER-30696S5:~/mdaoDevel $cd WISDEM/tutorial-notebooks/
(wisdem-env) 519 22:23 GBARTER-306965:~/mdaoDevel/WISDEM/tutorial-notebooks $jupyter notebook

[T 22:23:18.211 NotebookApp] Serving notebooks from local directory: /Users/gbarter/mdaoDevel/WISDEM/tuto
rial-notebooks

[I 22:23:18.211 NotebookApp] The Jupyter Notebook is running at:

[I 22:23:18.211 NotebookApp] http://localhost:8888/?token=5b4823887789a2bc572b8dcOed2feeadd2221b3a2057abf
d

[T 22:23:18.211 NotebookApp] or http://127.0.0.1:8888/?token=5b4823881789a2bc572b8dcPed2feea®42221b3a205
7abfd

[I 22:23:18.212 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip ¢
onfirmation).

[C 22:23:18.296 NotebookApp]

To access the notebook, open this file in a browser:
file:///Users/gbarter/Library/Jupyter/runtime/nbserver-6182-open.html

Or copy and paste one of these URLs:
http://1ocalhost:8888/7token=5b4823881789a2bc572b8dcPed2feea®42221b3a2057abfd

or http://127.0.0.1:8888/?token=5b482388f789a2bc572b8dcled2feead®s42221b3a2057abfd

NREL | 13

— Jupyter quit | | Logout

Files Running Clusters
Select items to perform actions on them. Upload Neww &
0 ~ B/ Name < Last Modified File size

O img 5 days ago
& 01_cost_and_scaling.ipynb 5 days ago 63.4 kB
& 02_betz_limit.ipynb S5daysago 18.1kB
& 03_sellaripynb 5daysago 18.7kB
& 04_turbine_assembly.ipynb 5 days ago 35.2kB
O WISDEM_notebooks.pdf 5 days ago 804 kB

NREL | 14

Use
Shift+Enter
to evaluate
each block

In [1]:

In [2]:

Tutorial 1. Cost and scaling model (for a turbine)

WISDEM offers different levels of fidelity for estimating mass, cost, and LCOE. The simplest form is an implementation of a "spreadsheet" type model, where
given a few high-level parameters, such as rotor diameter and machine rating , the user can use a series of empirical relationships (regression-
based) to estimate turbine mass and cost. This is called the Cost and Scaling Model and we will call it here.

First, import the WISDEM code that will model our costs. Also import the pieces of OpenMDAQO that we'll need for the calculation.

from wisdem.turbine costsse.nrel csm _tcc_2015 import nrel_csm 2015
from openmdao.api import Problem
import numpy as np

Cost and Mass model
nrel_csm_2015 is aclass that contains a model to estimate the masses and costs of turbine components.

First, we instantiate the nrel_csm 2015 class. Then we make an OpenMDAQO Problem that uses this class. After that, we set the inputs for our model.

turbine = nrel csm 2015()
prob = Problem(turbine)
prob.setup()

prob['rotor diameter'] = 126.0
prob['turbine class'] = 1

preob['blade _has_carbon'] = False
prob['blade number'] = 3

prob['machine rating'] = 5000.0
prob['hub_height'] = 90.0

prob['bearing number']
prob['crane'] = True
prob['max_tip speed'] = 80.0
prob['max efficiency'] = 0.90

2

Now we are set to run the model:

15

Now we are set to run the model:

In [11]: prob.run driver()

Out[1ll]: False

That's it! The model has been executed and now we have to get at the outputs we are interested in. Since we don't know the names of the outputs variables,
we can just exhausively list (and store) all of the model inputs and outputs. There are simple commands for doing so:

In [4]: myinputs = prob.model.list_inputs(units=True)

219 Input(s) in 'model’

top
nrel csm mass

blade
rotor_diameter
blade_mass_coeff
blade user exp

hub
blade mass
hub_mass_coeff
hub mass_ intercept

pitch
blade mass
pitch_bearing mass_coeff
pitch bearing mass_intercept

Now list the model outputs.

[126.]
[0.5]
[2.5]

[18590.66820649]
[2.3]
[1320.]

[18590.66820649]
[0.1295]
[491.31]

In [5]: myoutputs = prob.model.list outputs(units=True)

None
None

kg
None
None

kg
None
None

91 Explicit Output(s) in 'model’

NREL

16

User Overrides

The Cost and Scaling model can be used to estimate mass and cost from a limited set of inputs. If the user already knows the mass or cost of a particular
component, the easiest thing to do is to override the mass or cost scaling coefficient. This can also be used to conduct scaling studies at different and mass

and cost growth sensitivities:

In [6]: prob['gearbox mass coeff'] = 75.0
prob['gearbox mass cost coeff'] = 10.0
prob.run_driver()

Out[6]: False

If we store these inputs and outputs into new containers, we can easily compare the impact of the changes

In [7]: newinputs = prob.model.list_inputs(units=True)

219 Input(s) in 'model’

varname value
top
nrel csm mass
blade
rotor diameter [126.]
blade mass_coeff [0.5]
blade_user_ exp [2.5]
hub
blade mass [18590.66820649)
hub mass coeff [2.3]
hub mass_intercept [1320.]
pitch
blade_mass [18590.66820649]
pitch_bearing mass_coeff [0.1295]

pitch_bearing mass_intercept [491.31]

R 1 e omAna

Al r——

Trm TR1s natmndErndo = mraklh madal THded Aandrndo fnnd Fo=Mena

None
None

kg
None
None

kg
None
None

NREL

17

e L A AAAa

In [8]: newoutputs = prob.model.list_outputs(units=True)

91 Explicit Output(s) in 'model’

varname value units
top
nrel_csm_mass
sharedIndeps
machine rating [5000.1 kw
rotor diameter [126.] m
blade
blade_mass [18590.66820649] kg
hub
hub mass [44078.53687493] kg
pitch
pitch_system mass [10798.90594644] kg
spinner
spinner_mass [973.] kg
1lss

Scrolling through the outputs, we can see that these new values for gearbox mass and cost changed the cost of the turbine from $726/kW to $672/kW.

Another approach is to split out the mass scaling and cost scaling routines, but we will leave that for another tutorial

NREL | 18

 (Brief) Introduction to
WISDEM and OpenMDAO

. . WISDEM installation
Some more detail on (essentials only)

OpenMDAO e Tutorial 1: Run a simple

WISDEM calculation with
Jupyter Notebooks

. Some more detail on
OpenMDAO

* Tutorial 2: Deriving the Betz
Limit through OpenMDAO
optimization

* Tutorial 4: Modeling a whole
turbine and plant

NREL | 19

OpenMDAO building blocks and concepts

Driver (optimization or analysis)
eDesign variables ¢Objective(s) eConstraints

Recorder

IndepVar

Outputs

Component

Connection: Explicit or
same-name “promotes”

Subsystem, ‘B’

Inputs
Outputs

Subsystem, ‘A’

Inputs

Subsystem, ‘C’

Group

Component

Inputs
Outputs

Component

(Component

Outputs

Inputs
Outputs

NREL | 20

 (Brief) Introduction to
WISDEM and OpenMDAO

Betz Limit through (essentials only)

* Tutorial 1: Run a simple
OpenMDAO WISDEM calculation r\,/vith
optimization Jupyter Notebooks

. Some more detail on
OpenMDAO

* Tutorial 2: Finding the Betz
Limit through OpenMDAO
optimization

* Tutorial 4: Modeling a whole
turbine and plant

NREL | 21

OpenMDAO model building steps applied to the Betz

Problem

Component Steps Group and Problem Steps

« Create an OpenMDAO Component ° Create an OpenMDAO Group.
Add a subsystem of independent

* Add the actuator disk inputs and variables
outputs — Add the disk Component as a
* Use declare_partials() to declare subsystem
e — Connect variables through connect()
statements or same name promotion
— Finite difference or exact analytic « Create an OpenMDAO Problem
options are available — Set the model = Group instance
* Create a compute() method to — Add optimization Driver
compute outputs from inputs — Add design variables
* Create a compute_partials() — Add the objective

method for the derivatives * Setup and run problem driver

NREL | 22

— Jupyter quit | | Logout

Files Running Clusters
Select items to perform actions on them. Upload Neww &
0 ~ B/ Name < Last Modified File size

O img 5 days ago
& 01_cost_and_scaling.ipynb 5 days ago 63.4 kB
& 02_betz_limit.ipynb S5daysago 18.1kB
& 03_sellaripynb 5daysago 18.7kB
& 04_turbine_assembly.ipynb 5 days ago 35.2kB
O WISDEM_notebooks.pdf 5 days ago 804 kB

NREL | 23

Tutorial 2: Betz Limit

Now that we have ran a simple calculator model using WISDEM, let's look at OpenMDAQ. OpenMDAO is the code that connects the various components of
turbine models into a cohesive whole that can be optimized in systems engineering problems. WISDEM uses OpenMDAO to build up modular components
and groups of components to represent a wind turbine. Fortunately, OpenMDAO already provides some excellenet training examples on their website. This
tutorial is based on the OpenMDAO example, Optimizing an Actuator Disk Model to Find Betz Limit for Wind Turbines, which we have extracted and added
some additional commentary. The aim of this tutorial is to summarize the key points you'll use to create basic WISDEM models. For those interested in
WISDEM development, getting comfortable with all of the core OpenMDAO training examples is strongly encouraged.

A classic problem of wind energy engineering is the Betz limit. This is the theoretical upper limit of power that can be extracted from wind by an idealized rotor.
While a full explanation is beyond the scope of this tutorial, it is explained in many places online and in textbooks. One such explanation is on Wikipedia
https://en.wikipedia.org/wiki/Betz%27s law .

Problem formulation
According to the Betz limit, the maximum power a turbine can extract from wind is:

C, = % ~ 0.593

Where C, is the coefficient of power.

We will compute this limit using OpenMDAQ by optimizing the power coefficient as a function of the induction factor (ratio of rotor plane velocity to freestream
velocity) and a model of an idealized rotor using an actuator disk.

Here is our actuator disc:

NREL | 24

In

[1]

OpenMDAO implementation

First we need to import OpenMDAO
import openmdao.api as om
Now we can make an ActuatorDisc class that models the actuator disc for the optimization.

class ActuatorDisc(om.ExplicitComponent):
def setup(self):
Inputs into the the model
self.add input('a', 0.5, desc='Indcued velocity factor')
self.add input('Area', 10.0, units='m**2', desc='Rotor disc area')
self.add input('rho', 1.225, units='kg/m**3', desc='Air density')
self.add input('Vu', 10.0, units='m/s', desc='Freestream air velocity, upstream of rotor')

Outputs

self.add output('vr',
self.add output('vd',
self.add output('Ct',

.0, units='m/s', desc='Air velocity at rotor exit plane')

.0, units='m/s', desc='Slipstream air velocity, downstream of rotor')
.0, desc='Thrust coefficient')

self.add output('Cp', 0.0, desc='Power coefficient')

self.add output('power', 0.0, units='W', desc='Power produced by the rotor')

self.add output('thrust', 0.0, units='m/s')

-0 O O o

self.declare partials('vr', ['a', 'Vu'l])
self.declare partials('vd', '
self.declare partials('Ct’',
self.declare partials('thrust', ['a',
self.declare partials('Cp', 'a')
self.declare partials('power', [

a')
'a')
! 'Area', 'rho', 'vu'])

a', 'Area', 'rho', 'vu'])

NREL | 25

def compute(self, inputs, outputs):
a = inputs['a']
Vu = inputs['Vu']
rho = inputs['rho']
Area = inputs['Area']
gA = 0.5 * rho * Area * Vu ** 2
outputs['Vd'] vd = Vu * (1 - 2 * a)
outputs['Vr'] = 0.5 * (Vu + vd)
outputs['Ct'] =Ct =4 * a * (1 - a)

outputs['thrust'] = Ct * gA
outputs['Cp'] = Cp = Ct * (1 - a)
outputs['power'] = Cp * gA * Vu

def compute partials(self, inputs, J):
a = inputs['a']
Vu = inputs['Vu']
Area = inputs['Area']
rho = inputs['rho']

a_times area = a * Area
one minus a = 1.0 - a
a_area_rho vu = a_times_area * rho * Vu

J['vr', 'a'] = -Vu

J['Vr', 'Vu'] = one minus_a
Jp'vd', 'a'] = -2.0 * Vu
Jp'ct', 'a'] = 4.0 - 8.0 * a

J['thrust', 'a']l = 0.5 * rho * Vu**2 * Area * J['Ct', 'a']
J['thrust', 'Area']l = 2.0 * Vu**2 * a * rho * one minus_a
= 4.0

J['thrust', 'vVu'] * a area_rho _vu * one_minus_a

Ji'cp', 'a'l] = 4.0 * a * (2.0 * a - 2.0) + 4.0 * one_minus_a**2

J['power', 'a']l] = 2.0 * Area * Vu**3 * a * rho * (2.0 * a - 2.0) + 2.0 * Area * Vu**3 * rho * one_minus_a#**2
J['power', 'Area']l = 2.0 * Vu**3 * a * rho * one minus_a ** 2

J['power', 'rho'] = 2.0 * a_times_area * Vu ** 3 * (one_minus_a)**2

J['power', 'Vu'] = 6.0 * Area * Vu**2 * a * rho * one minus_a**2

In OpenMDAO, multiple components can be connected together inside of a Group. There will be some other new elements to review, so let's take a look:

Betz Group:

In [3]: class Betz(om.Group):

nun

Group containing the actuator disc equations for deriving the Betz limit.

nun

def setup(self):
indeps = self.add subsystem('indeps', om.IndepVarComp(), promotes=['#*'])
indeps.add_output('a', 0.5)
indeps.add output('Area’', 10.0, units='m**2"')
indeps.add_output('rho', 1.225, units='kg/m**3")
indeps.add output('vu', 10.0, units='m/s')

self.add subsystem('a disk', ActuatorDisc(), promotes=['a', 'Area'’, 'rho', 'Vu'])

The Betz class derives off of the OpenMDAQO Group class, which is typically the top-level class that is used in an analysis. The OpenMDAQ Group class
allows you to cluster models in hierarchies. We can put multiple components in groups. We can also put other groups in groups.

Components are added to groups with the self.add subsystem command, which has two primary arguments. The first is the string name to call the
subsystem that is added and the second is the component or sub-group class instance. A common optional argument is promotes= , which elevatest the
input/ouput variable string names to the top-level namespace. The Betz group shows examples where the promotes= can be passed a list of variable
string names or the '*' wildcard to mean all input/output variables.

The first subsystem that is added is an IndepVarComp , which are the independent variables of the problem. Subsystem inputs that are not tied to other
subsystem outputs should be connected to an independent variables. For optimization problems, design variables must be part of an IndepvVarComp . In the
Betz problem, we have a , Area, rho,and Vvu . Note that they are promoted to the top level namespace, otherwise we would have to access them by

'indeps.x' and 'indeps.z' .

NREL | 27

[4]

[5]

[6]

Let's optimize our system!

Even though we have all the pieces ina Group , we still need to put them into a Problem to be executed. The Problem instance is where we can assign
design variables, objective functions, and constraints. It is also how the user interacts with the Group to set initial conditions and interrogate output values.

First, we instantiate the Problem and assign an instance of Betz to be the root model:

prob = om.Problem()
prob.model = Betz()

Next we assign an optimization driver to the problem instance. If we only wanted to evaluate the model once and not optimize, then a driver is not needed:

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'

With the optimization driver in place, we can assign design variables, objective(s), and constraints. Any IndepVarComp can be a design variable and any
model output can be an objective or constraint.

We want to maximize the objective, but OpenMDAQ will want to minimize it as it is consistent with the standard optimization problem statement. So we
minimize the negative to find the maximum. Note that Cp is not promoted from a_ disk . Therefore we must reference it with a_disk.Cp

prob.model.add design var('a', lower=0.0, upper=1.0)
prob.model.add design var('Area', lower=0.0, upper=1.0)
prob.model.add objective('a disk.Cp', scaler=-1.0)

NREL

28

[4]

[5]

[6]

Let's optimize our system!

Even though we have all the pieces ina Group , we still need to put them into a Problem to be executed. The Problem instance is where we can assign
design variables, objective functions, and constraints. It is also how the user interacts with the Group to set initial conditions and interrogate output values.

First, we instantiate the Problem and assign an instance of Betz to be the root model:

prob = om.Problem()
prob.model = Betz()

Next we assign an optimization driver to the problem instance. If we only wanted to evaluate the model once and not optimize, then a driver is not needed:

prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'

With the optimization driver in place, we can assign design variables, objective(s), and constraints. Any IndepVarComp can be a design variable and any
model output can be an objective or constraint.

We want to maximize the objective, but OpenMDAQ will want to minimize it as it is consistent with the standard optimization problem statement. So we
minimize the negative to find the maximum. Note that Cp is not promoted from a_ disk . Therefore we must reference it with a_disk.Cp

prob.model.add design var('a', lower=0.0, upper=1.0)
prob.model.add design var('Area', lower=0.0, upper=1.0)
prob.model.add objective('a disk.Cp', scaler=-1.0)

NREL

29

Now we can run the optimization:

In [7]: prob.setup()
prob.run driver()

Optimization terminated successfully. (Exit mode 0)
Current function value: -0.5925925906659251
Iterations: 5
Function evaluations: 6
Gradient evaluations: 5

Optimization Complete

Out[7]: False

Finally, the result:

Above, we see a summary of the steps in our optimization. Don't worry about the output False for now. Next, we print out the values we care about and list
all of the inputs and outputs that are problem used.

In [8]: print('Coefficient of power Cp = ', prob['a _disk.Cp'])
print('Induction factor a =', prob['a'])
print('Rotor disc Area =', prob['Area'], 'm"2')
all inputs = prob.model.list inputs(values=True)
all outputs = prob.model.list outputs(values=True)

Coefficient of power Cp = [0.59259259]
Induction factor a = [0.33335528]
Rotor disc Area = [1l.] m"2

NREL | 30

 (Brief) Introduction to
WISDEM and OpenMDAO

* WISDEM installation
(essentials only)

Tutorial 4: Modeling a
e Tutorial 1: Run a simple

whole turbine and WISDEM calculation with
plant Jupyter Notebooks

. Some more detail on
OpenMDAO

Tutorial 2: Finding the Betz
Limit through OpenMDAO
optimization

* Tutorial 4: Modeling a whole
turbine and plant

NREL | 31

— Jupyter quit | | Logout

Files Running Clusters
Select items to perform actions on them. Upload Neww &
0 ~ B/ Name < Last Modified File size

O img 5 days ago
& 01_cost_and_scaling.ipynb 5 days ago 63.4 kB
& 02_betz_limit.ipynb S5daysago 18.1kB
& 03_sellaripynb 5daysago 18.7kB
& 04_turbine_assembly.ipynb 5 days ago 35.2kB
O WISDEM_notebooks.pdf 5 days ago 804 kB

NREL | 32

Tutorial 4: Turbine Assembly
Here's what we've done so far in these tutotirals:

« Ran two simple cost models of turbines. In these, we estiamted masses of components and cost per kilogram of those components.

+ We learned how OpenMDAO makes components when we calculated the Betz limit by modelling an idealized ActuatorDisc as a subclass of
ExplicitComponent .

+ We learned how to group multiple components into groups with the OpenMDAQO Group class when we modelled the Sellar problem.

We can now turn our attention back to WISDEM and put together a rotor, drivetrain and tower to model a complete wind turbine. We will use the tools we have
gained so far in these tutorials to accomplish this.

This is a significant increase in complexity from our previous toy examples. This tutorial doesn't aim to give an exhaustive line-by-line explanation of nearly
400 lines of source code. However, these fundamental building blocks of components, groups and susbsytems are used to model systems of significant
complexity.

First, we need to import our dependencies
There are many dependencies we need to import. Of key interesst to use here are various parts of WISDEM that we will assemble into our model.

from wisdem.rotorse.rotor import RotorSE, Init RotorSE wRefBlade

from wisdem.rotorse.rotor_ geometry_yaml import ReferenceBlade

from wisdem.towerse.tower import TowerSE

from wisdem.commonse import NFREQ

from wisdem.commonse.environment import PowerWind, LogWind

from wisdem.commonse.turbine constraints import TurbineConstraints

from wisdem.turbine costsse.turbine costsse 2015 import Turbine CostsSE 2015
from wisdem.plant_financese.plant_ finance import PlantFinance

from wisdem.drivetrainse.drivese omdao import DriveSE

Thank you

www.nrel.gov

NREL/PR-5000-75659

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy,
LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by U.S.

Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The "ﬁa
views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. i 1
Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. ‘_I‘

Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

NATIONAL RENEWABLE ENERGY LABORATORY

	Starting with WISDEM (TM): The Short Course
	NREL has both turbine- and plant/system-focused research programs
	Agenda
	(Brief) Introduction to WISDEM and OpenMDAO
	WISDEM: Creates a virtual, vertically integrated wind plant from components to operations
	Software platform is built with Python using the OpenMDAO library
	WISDEM installation (essentials only)
	WISDEM install (essentials only): For full instructions see nwtc.nrel.gov/wisdem

	Tutorial 1: Run a simple WISDEM calculation with JupyterNotebooks
	Use WISDEM as a calculator to estimate component masses and costs from simple scaling relationships
	There are many ways to run WISDEM (and python) beyond Jupyter Notebooks
	Jupyter Notebook: Interacting with the Python “shell” through a browser in a live code “diary”
	Some more detail on OpenMDAO
	OpenMDAO building blocks and concepts

	Tutorial 2: Finding the Betz Limit through OpenMDAOoptimization
	OpenMDAO model building steps applied to the Betz Problem
	Tutorial 4: Modeling a whole turbine and plant

