

System Modeling Frameworks for Wind Turbines and Plants

Review and Requirements Specifications

Wind Energy Systems Engineering Workshop Pamplona, Spain, October 3rd, 2019 Pietro Bortolotti, NREL, Evan Gaertner, NREL, Katherine Dykes, DTU

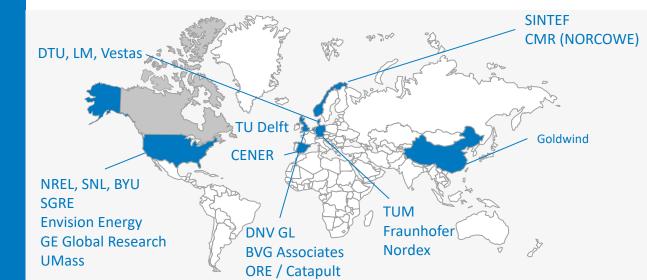
1 Overview of IEA Wind Task 37

- 2 WP 1: Background, Motivation, and Goals
- **3 MDAO Workflows**
- **4** Turbine and Plant Ontology Overview
- **5** A Dive into the Rotor Ontology
- 6 Conclusions and Next Steps

IEA Wind Task 37 Wind Energy Systems Engineering

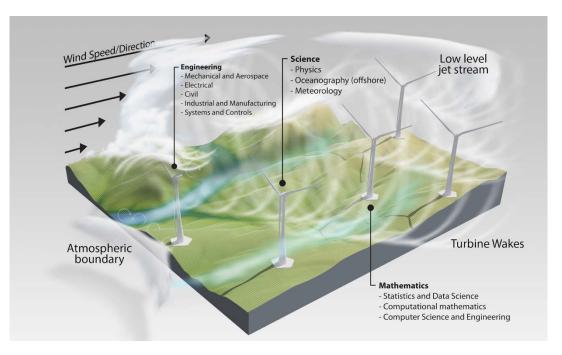
Phase I: WP 1: Guidelines for a common framework WP 2: Reference systems WP 3: MDAO case studies

Phase II starts now!


Project Objectives and Outcomes

Improve quality of systems engineering by practitioners through development of best practices and benchmarking exercises

Promote general knowledge and value demonstrations of systems engineering tools and methods applied to wind energy RD&D


Target audience

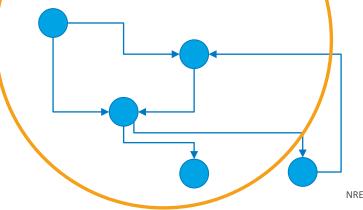
Wind turbine OEMs, developers, owner/operators, consultancies, and research community

WP 1

- Growing number of multidisciplinary design, analysis and optimization (MDAO) approaches to tackle
 system-level questions for turbine and plant
- Coordination is needed to facilitate interactions and comparisons

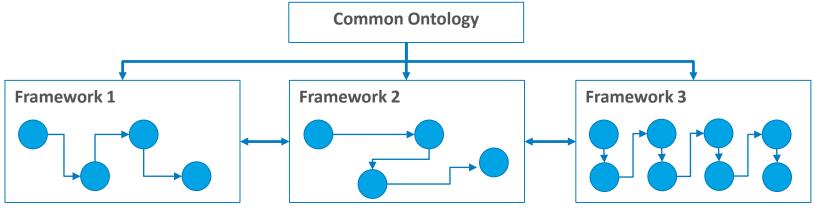
Background

MDAO


Problem Formulation

Identification of the elements of an analysis or design optimization including variables, parameters, and outputs and quantities of interest (for analysis) or constraints and objective(s) (for optimization)

←	Objective function
←	Equality constraints
←	Inequality constraints
←	Variable bounds
	← ←


Workflow Architecture

How models pass information to one another within the overall analysis and/or optimization

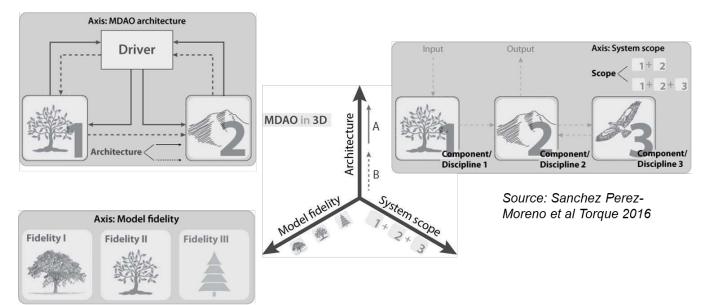
Motivation

IEA Wind Task 37 have developed an **ontology** to help standardize the representation of information that flows **to** and **across** MDAO workflows applied to wind turbine and plant design, operation and control

What is an Ontology?

"In computer science and information science, an ontology is a formal naming and definition of the types, properties, and interrelationships of the **entities** that really or fundamentally exist for a particular **domain of discourse**.

It is thus a practical application of philosophical ontology, with a taxonomy. An ontology compartmentalizes the variables needed for some set of computations and establishes the relationships between them."


This wind energy MDAO ontology has two primary objectives:

- 1. Share system descriptions and analysis results for supporting more **transparent benchmarking** and **comparison**
- Integrate models together into streamlined workflows within and across organizations for improving the efficiency and performance of wind turbine and power plant design processes

All MDAO frameworks should use the common ontology as I/O!

Why is it difficult?

Every model is different (even for the exact same discipline and fidelity level) and **every workflow is different**

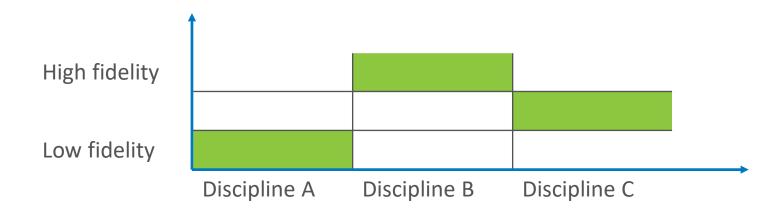
MDAO Toolsets - Turbine

Survey on **existing toolsets** for turbine MDAO returned a fairly long list. Many more are for internal use only at OEMs

#	Name	Organization	Research/Commercial
1	BladeOASIS	CENER, ES	Research
2	Cp-Max	TU Munich, DE / Politecnico di Milano, IT	Research
3	FOCUS6	Knowledge Centre WMC, NL	Commercial
4	HAWTOPT2	DTU Wind Energy, DK	Research, partially open-source
5	LMS Samtech Samcef Wind Turbines	LMS Samtech (Siemens), DE	Commercial
6	OneWind Modelica Library	Fraunhofer IWES, DE	Research, partially open-source
7	QBlade	TU Berlin, DE	Research, fully open-source
8	Turbine.Architect	DNVGL, UK	Commercial
9	WISDEM	NREL, USA	Research, fully open-source

NRFI

10


MDAO Toolsets - Plant

Similar effort for plant MDAO tools

#	Name	Organization	Research/Commercial
1	Openwind	UL - AWS Truepower	Commercial, partially open-source
2	TopFarm	DTU Wind Energy	Research, partially open-source
3	WindFarmDesigns Park Optimizer	WindFarmDesigns	Commercial
4	Windfarmer	DNV-GL	Commercial
5	Window	TU Delft	Research, fully open-source
6	WindPRO	EMD	Commercial
7	WISDEM	NREL	Research, fully open-source

Discipline/Fidelity Matrices

From the toolsets, **discipline/fidelity** matrices were created for each component. Green cells highlight the **most common combinations**

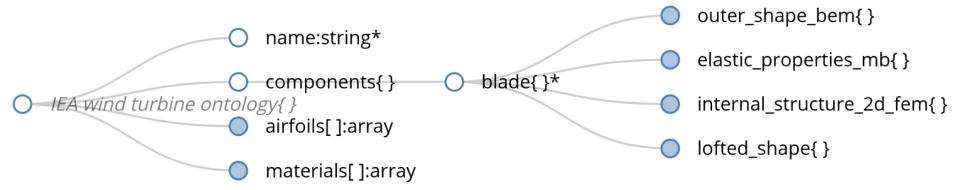
Discipline/Fidelity Matrices

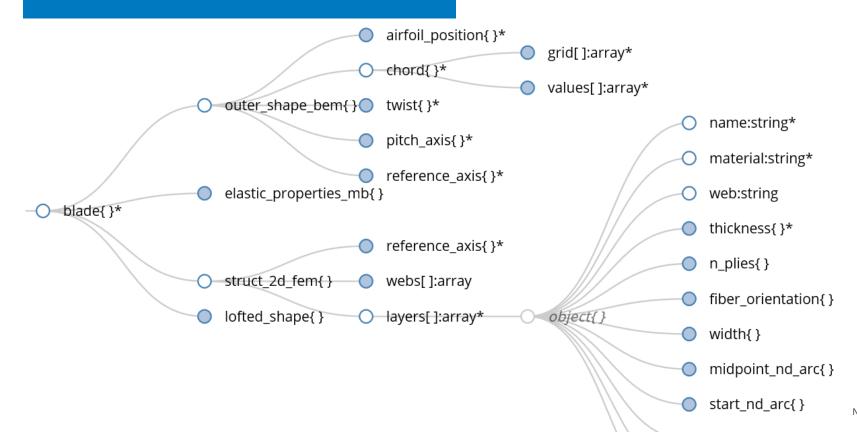
The results for the **WT** rotor and wind farm AEP look like this:

Infl	lowaero	Airfoilaero	Rotor aero	Structures	Cross-sectional analysis	Controls	Aeroacoustics	Cost
Ste	ady inflow	Look-up Table	Look-up Table CT&Power	Rigid	Analytical solid	Prescribed operation	Semi-empirical	Empirical parametric
Uns	steady uniform	Panel methods	BEM	Modal	Euler	Power/speed regulation	Frequency-based models	Empirical design- based
0 Eng uns	gineering steady 3D eers/Mann)	Inviscid Euler methods	Vortex methods	Multi-body (linear/non-linear)	Timoshenko	Load mitigation	Time- and frequency- based models	Full BOM and manufacturing process flow
DW	лм	RANS CFD	Actuator Disc CFD	Elemental non- linearity (GEBT)	Generalized 6x6	Safety protection functions		Full BOM and end- to-end virtual factory model
Vor	rtex methods	LES	Actuator Line CFD	Super-element		Supervisory controllers		
	ne resolved 6 CFD		Blade resolved CFD	3D shell			Time resolved LES	
			Hi-fi time resolved turbulence modelled CFD	3D solid				

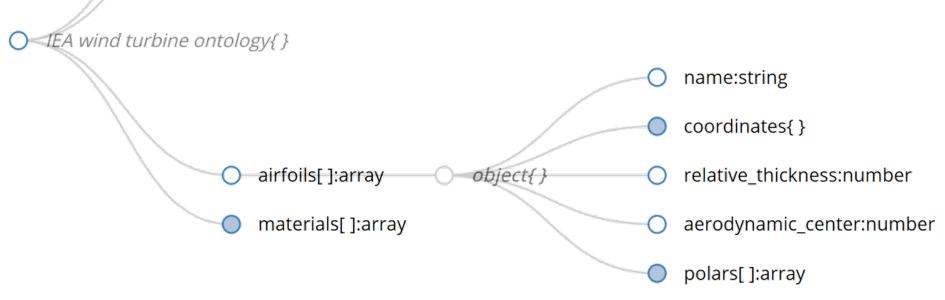
System Scope: Disciplines Included

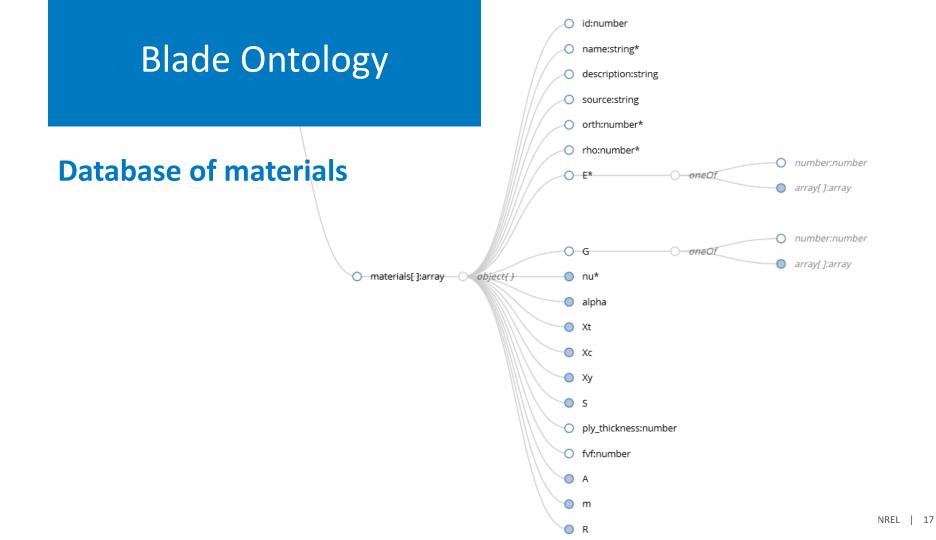
ŧ


	Resource / Inflow	Rotor (aero and control)	Wind farm Control	Wakes / plant flow	Power conversion	Energy Aggregation	Loss model - non wakes
Mot	Uniform resource distirbution	Look-up table Thrust & Power curves	Prescribed Operation/Look- up table	Steady - Analytic- Semi-empirical	Analytic - Empirical	Convolution	Empirical
ling Fide	Non-uniform resource distribution	BEM	Open-loop	Steady - Field PDE (Ainslie)		Time-series	Semi-empirical explicit electric array cable
	Semi-empirical turbulent inflow Semi-empirical turbulent inflow	Vortex methods	Closed-loop	Vortex methods			
		Actuator Disc CFD	Dynamic closed- loop	DWM / Linearized CF	D		
	CFD: Rans (2D and 3D) (Steady State)	Actuator Line CFD		CFD: Rans (2D and 3D) (Steady State)		
	CFD: Rans (2D and 3D) (Unsteady)	Blade resolved CFD		CFD: Rans (2D and 3D) (Unsteady)		
	CFD: LES	Hi-fi time-resolved turbulence modeled CFD		CFD: LES			


System Scope: Disciplines Included

Similar tables were populated for other components


From the green cells, a **wind turbine ontology** was initiated, starting with the **rotor blades**


The blade ontology has been developed with an **aerostructural MDAO approach** in mind

Database of airfoils, each airfoil can have multiple sets of polars

The ontology has been coded into a **.yaml** file, which offers some nice features:

- 1. yaml is a **human- and machine- readable** data-serialization language
- 2. It supports commenting and descriptions
- 3. User-friendliness and flexibility to accommodate **multiple disciplinaries and fidelity levels** for each component
- 4. It supports JSON schema, which is a vocabulary that allows to annotate and validate JSON and YAML documents, providing clear human- and machine- readable documentation

Conclusions and Future Work

The IEA Wind Task 37 community has converged to a common ontology for wind energy systems

- It is being adopted by multiple institutions worldwide
- It is used to define the reference wind turbines from WP2:
 - <u>https://github.com/IEAWindTask37/IEA-3.4-130-RWT/</u>
 - <u>https://github.com/IEAWindTask37/IEA-10.0-198-RWT</u>
- It will be expanded to cover the whole wind turbine and wind farm components and disciplines
- It will be soon fully documented in an IEA technical report

Acknowledgments

The IEA Wind Task 37 community:

BYU -		Andrew Ning, Andrew PJ Stanley	DTU
-------	--	--------------------------------	-----

- NREL Garrett Barter
- TUM Carlo Bottasso, Helena Canet
- SNL Christopher Kelley, Joshua Paquette
- **TU Delft** Erik Quaghebeur, Sebastian Sanchez Perez-Moreno, Michiel Zaaijer

SINTEF

Uni Stutt

- Michael McWilliam, Frederik Zahle
- Karl Merz

-

- Fiona Lüdecke

Thank You

www.nrel.gov

NREL/PR-5000-75658

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Transforming ENERGY