

Foothill Transit Agency Battery Electric Bus Progress Report

Data Period Focus: Jul. 2019 through Dec. 2019

Leslie Eudy and Matthew Jeffers March 2020

NREL/PR-5400-75581

Table of Contents

<u>Introduction</u>	3
Results Summary	4
Fleet Profile	10
Evaluation Buses Specification	11
Infrastructure Description	13
Data Summary	14
Route Assignments	16
Fleet Mileage Accumulation	17
Availability Analysis	20
Fuel Economy and Cost Analysis	27
Reliability—Miles Between Roadcall	34
Maintenance Cost Analysis	36
Contacts	54
Acronyms and Abbreviations	55
Appendix: Fleet Summary Statistics	57

Introduction

This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel Valley area of Los Angeles. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The focus of this evaluation is to compare the performance and the operating costs of the BEBs to that of conventional technology buses and to track progress over time. Previous reports documented results from April 2014 through June 2019. (report references) This report extends the data analysis through December 2019. The data period focus of this report is July 2019—December 2019. NREL plans to publish progress reports on the Foothill Transit fleet every 6 months through 2020.

Each NREL evaluation tracks data and performance results for a specific transit agency operating a specific manufacturer's technology design. Results from different OEM designs will vary and are not necessarily representative of a specific technology. Results also will vary from agency to agency and even between facilities within the same agency. Readers should keep this in mind when using these results for decision making.

Results Summary

Bus fleets: This evaluation includes 12 Proterra 35-ft fast charge buses (BEB 35FC), two Proterra 40-ft Catalyst fast charge buses (BEB 40FC), and eight NABI 42-ft compressed natural gas (CNG) buses.

Bus use: The BEBs are operated on a 16-mile route (Line 291) that circles through the Pomona Transit Center (PTC) for charging. The average speed for this route is 10.6 mph. The CNG buses are randomly dispatched on all routes out of the operations facility, including higher speed commuter routes. The average speed for the CNG buses is 17.6 mph. This difference in duty cycle influences the comparison of mileage, fuel economy, and costs per mile between fleets.

Availability: Availability in the second half of 2019 was 65.6% for the BEB 35FC buses, 78.9% for the BEB 40FC buses, and 90.5% for the CNG buses. Most unavailable time for the BEBs was due to general bus-related problems. Issues with the low-voltage batteries affected BEB availability as well as problems with bus bodies. Other downtime resulted from issues with components such as high voltage electrical, cooling, suspension, air compressor, and traction motor. Foothill Transit is working with the manufacturer to correct the issues that have increased downtime from previous data periods.

Fuel economy: From the beginning of the evaluation, NREL has collected miles and energy use from the Proterra data system on each bus. In 2018, Proterra transitioned its data system to a new system to increase capability. During the transition, some data were lost. In early 2018, Foothill Transit installed individual data loggers on each of its BEBs. NREL is using these data for calculating the fuel economy for the 35-ft buses. The data logger data for the BEB 40-ft buses were not available until May 2019. These data gaps are marked on the charts.

BEB efficiency in the second half of 2019 was 2.16 kWh/mi for the BEB 35FC fleet and 2.07 kWh/mi for the BEB 40FC. Fuel economy for the for the CNG bus fleet was 3.42 mpgge. For comparison, diesel equivalent fuel economy was 17.43 mpdge for the BEB 35FC, 18.15 mpdge for the BEB 40FC, and 3.92 mpdge for the CNG fleet. The BEB fuel economy is approximately 4.5 times that of the CNG buses as they are currently operated by Foothill Transit. NREL collected data on CNG buses operating on Line 291 that showed an average fuel economy of 2.09 mpdge (see previous report for details*). The BEB fuel efficiency is 8.4 times that of the CNG buses in the same service. Note that the CNG buses are heavier than the BEBs which can affect fuel economy.

^{*} Foothill Transit Battery Electric Bus Demonstration Results: Second Report, NREL/TP-5400-67698, https://www.nrel.gov/docs/fy17osti/67698.pdf

Fuel cost: Since first placing its BEBs in service, Foothill Transit has been subject to three different electricity rate structures. The agency is currently on the TOU-EV-8 rate schedule with its utility provider, Southern California Edison. Based on energy purchased in the second half of 2019, the BEB fleet had a fuel cost of \$0.43/mi (at \$0.179/kWh) and the CNG fleet had a fuel cost of \$0.33/mi (at \$1.12/gge). The cost per unit of energy/fuel is the average for the data period of July 2019–December 2019.

To compare cost between buses in the same service, NREL estimated the cost per mile for the CNG buses if operated only on Line 291. An earlier analysis using data loggers to characterize the CNG bus operation on Line 291 resulted in a lower fuel economy of 2.09 mpdge. This lower fuel economy would increase the fuel cost of the CNG buses to an overall average of \$0.54/mi, which is 25% higher than the fuel cost of the BEB fleet.

[^]Foothill Transit Battery Electric Bus Demonstration Results: Second Report, NREL/TP-5400-67698, https://www.nrel.gov/docs/fy17osti/67698.pdf

Maintenance cost: Cost to maintain the buses in the second half of 2019 was \$0.84/mi for the BEB 35FC buses, \$0.53/mi for the BEB 40FC buses, and \$0.42/mi for the CNG buses. Several factors contributed to the high cost for the BEBs:

- The CNG buses are past the warranty period. The BEB 35FC buses are past the warranty period for most components, resulting in higher parts costs, such as a traction motor (~\$14,700).
- On-site contractor staff handle all maintenance. For some work orders, increased labor hours were needed to troubleshoot and repair the issue. Scheduled costs have dropped since the last report. During the second half of 2019, scheduled costs were \$0.05/mi for the BEB 35FC buses and \$0.04/mi for the BEB 40FC buses. Unscheduled labor has increased over time for both fleets. During the second half of 2019, the unscheduled cost was \$0.79/mi for the BEB 35FC buses and \$0.49/mi for the BEB 40FC buses. The scheduled maintenance costs for the CNG buses were higher than for the BEBs at \$0.10/mi. The unscheduled costs for the CNG buses at \$0.32/mi were 149% lower than that of the BEB 35FC buses and 55% lower than that of the BEB 40FC buses.

- Foothill Transit continues to have issues with the low-voltage batteries. NREL updated the low-voltage battery data analysis for all three bus fleets. The BEBs averaged 10.4 replacements per bus at approximately 11,000 miles between replacement. The CNG buses averaged 2.1 replacements per bus at more than 139,000 miles between replacement. One issue is that the accessories (farebox, cameras, etc.) continually draw power from these batteries. The CNG buses are equipped with an auto shutoff for the accessories; the BEBs are not. Proterra reports that it has developed an auto-shutoff feature for its new designs. The manufacturer will provide a retrofit for BEBs currently in service. Because this issue is not related to the BEB technology, NREL has provided the costs with and without the low-voltage battery replacement costs.
- Total maintenance cost without low-voltage battery costs was \$0.72/mi for the BEB 35FC buses, \$0.48/mi for the BEB 40FC buses, and \$0.39/mi for the CNG buses.

- FHT has experienced issues with the high voltage electrical system on several BEBs. The problem was traced to connectors under the bus that were damaged by moisture. The connector pins would rust and, in some cases, break off. Troubleshooting for the issue took more time than expected and resulted in downtime for several buses.
- As the older BEBs reach mid-life, problems have developed with bus body components.
 Foothill Transit is working with Proterra on a plan to address these issues and upgrade the buses.

Future analysis: NREL will continue to collect data on the two existing BEB fleets in comparison to the CNG baseline fleet and will add data from a fleet of 40-ft Proterra Catalyst E2 extended range buses. The new buses will be operated out of another depot and will be charged primarily through overnight depot charging. NREL will select another baseline fleet from this depot for comparison.

Fleet Profile

Foothill Transit serves a 327square-mile area covering the San Gabriel and Pomona Valley region of Los Angeles County. Foothill Transit's administrative office is located in West Covina, California. Foothill Transit is governed by a Joint Powers Authority of 22 member-cities and the County of Los Angeles.

Foothill Transit operates 36 local and express routes including commuter runs to downtown Los Angeles. The current bus fleet consists of 343 CNG buses and 33 BEBs.

Evaluation Buses: Specifications

Vehicle System	BEB 35FC	BEB 40FC	CNG
Number of buses	12	2	8
Bus manufacturer/model	Proterra/BE35	Proterra/Catalyst Fast Charge	NABI/BRT-07.03
Model year	2014	2016	2014
Bus purchase cost ^a	\$904,490	\$879,845	\$575,000
Length/width/height	35 ft/102 in./129 in.	42.5 ft/102 in./134 in.	42 ft/102 in./137 in.
GVWR/curb weight	37,320 lb/27,680 lb	39,050 lb/27,000 lb	42,540 lb/33,880 lb
Wheelbase	237 in.	296 in.	308 in.
Passenger capacity	35 seats, 2 wheelchair positions, 18 standees	40 seats, 2 wheelchair positions, 18 standees	38 seats, 2 wheelchair positions, 10 standees
Motor or engine	Permanent magnet, UQM, PP220	Permanent magnet, UQM, PP220	CNG engine, Cummins, 8.9 ISL G
Rated power	220 kW peak (295 hp)	220 kW peak (295 hp)	280 hp @ 2,200 rpm
Energy storage (BEB) Fuel capacity (CNG)	Lithium-titanate batteries, Altairnano, TerraVolt 368 volts, 88 kWh total energy	Lithium-titanate batteries, Toshiba, TerraVolt 331 volts, 106 kWh total energy	7 Type IV cylinders, 22,204 scf at 3,600 psi
Accessories	Electric	Electric	Mechanical
Emissions equipment	N/A	N/A	3-way catalyst
Transmission/retarder	Regenerative braking	Regenerative braking	N/A

^a Includes amenities such as painting of bus and livery, surveillance system, PA system, radio, safety vision monitor.

Evaluation Buses

BEB 35FC

Photo by Leslie Eudy, NREL

BEB 40FC

Photo courtesy of Foothill Transit

CNG

Photo by Leslie Eudy, NREL

Infrastructure Description

Foothill worked with the City of Pomona to establish an on-route fast charging station at the PTC. The station features two Eaton 500 kW chargers in a climate-controlled building with charge heads (right photo) positioned on either side (left photo). The two chargers operate as separate units with a dedicated control system for each. A common communication network serves both units with sensors to detect which charge head a bus is approaching to enable proper bus-to-charger communication for docking. The system is designed to fully charge a bus in under 10 minutes. For Line 291, typical charge times are around 7 minutes including docking time. Foothill Transit built a layover time into the schedule to allow enough time for charging. Software controls prevent charging from surpassing the kWh limit that results in high demand charges.

Photos by Leslie Eudy, NREL

Data Summary: Total from Start of Service

Data Item	BEB 35FC	BEB 40FC	CNG
Number of buses	12	2	8
Data period	4/2014-12/2019	1/2017-12/2019	10/2014-12/2019
Number of months	69	36	63
Total mileage in data period	1,701,071	137,003	2,370,846
Average monthly mileage per bus	2,054	1,903	4,704
Availability (85% is target)	83.1%	81.6%	95.1%
Fuel consumption for BEBs (kWh/mile) or fuel economy for CNG buses (mpgge ^a)	2.16	2.13	3.78
Fuel economy (mpdge ^b)	17.41	17.67	4.33
Average speed, including stops (mph)	10.6	10.6	17.6
Miles between road call (MBRC ^c)—bus	5,766	8,059	26,343
MBRC ^c —propulsion system only	14,058	19,572	40,877
MBRC ^c —ESS ^d only	212,634	137,003	_
Total maintenance cost (\$/mile) ^e	0.45	0.48	0.29
Total maintenance cost without low-voltage battery costs (\$/mile) ^f	0.40	0.39	0.28
Maintenance cost—propulsion system only (\$/mile)	0.16	0.15	0.12
Propulsion system maintenance cost without low-voltage battery costs $(\$/mile)^f$	0.10	0.07	0.11

^a Miles per gasoline gallon equivalent

^b Miles per diesel gallon equivalent

^c MBRC data cumulative from the clean point of April 2014 through end of current data period

^d Energy storage system

^e Work order maintenance cost

^fSee issue with the low-voltage batteries explained on slide 54

Data Summary: Jul.-Dec. 2019

Data Item	BEB 35FC	BEB 40FC	CNG
Number of buses	12	2	8
Data period	7/2019-12/2019	7/2019-12/2020	7/2019-12/2021
Number of months	6	6	6
Total mileage in data period	117,993	23,063	216,894
Average monthly mileage per bus	1,639	1,922	4,519
Availability (85% is target)	65.6%	78.9%	90.5%
Fuel consumption for BEBs (kWh/mile) or fuel economy for CNG buses (mpgge ^a)	2.16	2.07	3.42
Fuel economy (mpdge ^b)	17.43	18.15	3.92
Average speed, including stops (mph)	10.6	10.6	17.6
Miles between road call (MBRC ^c)—bus	5,766	8,059	26,343
MBRC ^c —propulsion system only	14,058	19,572	40,877
MBRC ^c —ESS ^d only	212,634	137,003	_
Total maintenance cost (\$/mile) ^e	0.84	0.53	0.42
Total maintenance cost without low-voltage battery costs (\$/mile) ^f	0.72	0.48	0.39
Maintenance cost—propulsion system only (\$/mile)	0.39	0.13	0.21
Propulsion system maintenance cost without low-voltage battery costs $(\$/mile)^f$	0.27	0.08	0.18

^a Miles per gasoline gallon equivalent

^b Miles per diesel gallon equivalent

^c MBRC data cumulative from the clean point of April 2014 through end of current data period

^d Energy storage system

^e Work order maintenance cost

^fSee issue with the low-voltage batteries explained on slide 54

Route Assignments

Foothill Transit uses the BEB 35FC buses to fully electrify Line 291, which requires seven buses during peak hours. Line 291 is a 16.1-mile route between La Verne and Pomona that loops through the PTC in both directions. The average speed for the route is 10.6 mph. The agency adjusted the schedule to accommodate time for charging the buses. The additional buses are used as spares to allow for maintenance downtime and as fill-in buses for other appropriate routes that go through the PTC, such as Line 855. The two 40-ft buses (BEB 40FC) are also used on these routes. In October 2017, Line 855 was eliminated. From that period on, the buses were operated only on Line 291.

The CNG buses are randomly dispatched on all routes out of Pomona Operations including commuter routes. Average speed for Pomona Operations is 17.6 mph.

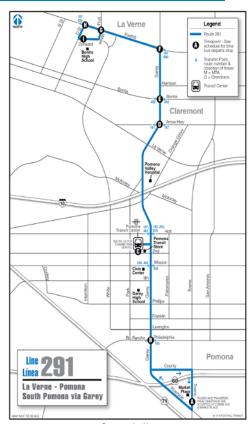
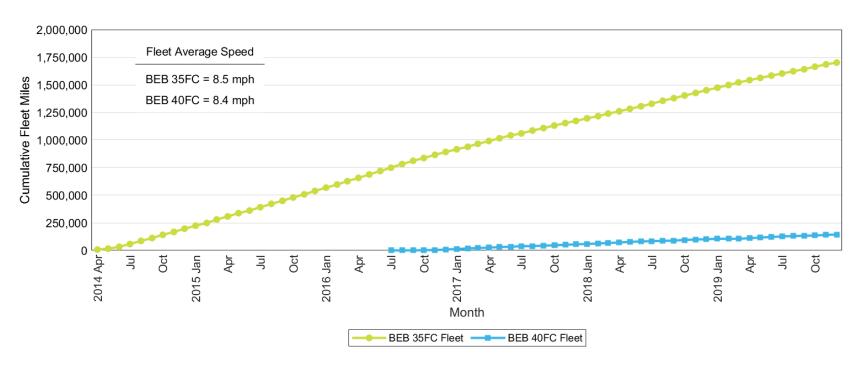
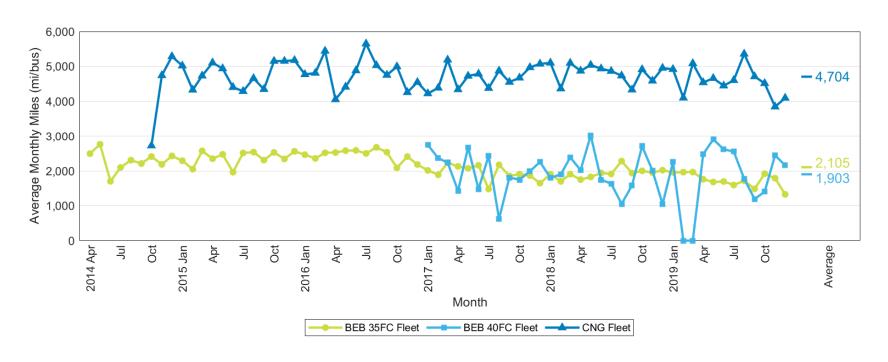



Image courtesy of Foothill Transit

BEB Fleet Total Miles

Combined totals are shown for 12 BEB 35FC buses and two BEB 40FC buses.

Fleet Average Monthly Miles by Bus: Jul.-Dec. 2019


Bus ID	Miles	Bus Months	Average Monthly Mileage
2004	14,300	6	2,383
2005	12,104	6	2,017
2006	6,349	6	1,058
2007	3,983	6	664
2008	10,365	6	1,728
2009	12,805	6	2,134
2010	8,436	6	1,406
2011	4,121	6	687
2012	4,800	6	800
2013	15,560	6	2,593
2014	12,367	6	2,061
2015	12,802	6	2,134
BEB 35FC Fleet	117,993	72	1,639
2016	10,846	6	1,808
2017	12,218	6	2,036
BEB 40FC Fleet	23,063	12	1,922

Bus ID	Miles	Bus Months	Average Monthly Mileage
2200	30,793	6	5,132
2201	27,108	6	4,518
2202	27,844	6	4,641
2203	29,719	6	4,953
2204	20,816	6	3,469
2205	26,482	6	4,414
2206	30,058	6	5,010
2207	24,074	6	4,012
CNG Fleet	216,894	48	4,519

The average monthly operating mileage per bus for the BEBs is less than half that of the CNG buses as operated by Foothill Transit. This is a result of the planned operation of the buses, in which the CNG buses accumulate miles faster than the BEBs.

The BEBs with the lowest mileage experienced issues that lowered availability: 2007 & 2011 had issues with the electric drive and high voltage batteries, 2012 had inverter and traction motor issues.

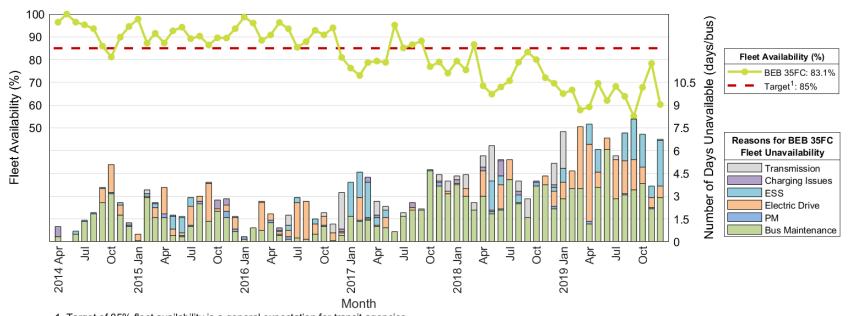
Fleet Average Monthly Miles

• The BEB 40FC buses were not operated in February, March, and part of April 2019.

Availability Analysis

Availability, which is a measure of reliability, is presented as the percentage of days the buses are available out of days that the buses are planned for passenger service. Buses available for service may have been used in passenger service, training, or special events, or they may have been available but not used. Buses unavailable for service may have had issues with the propulsion system (energy storage system, electric drive system), general bus maintenance, or issues with the charging system. Accidents are removed from the data—the bus is considered "not planned" during the repair time.

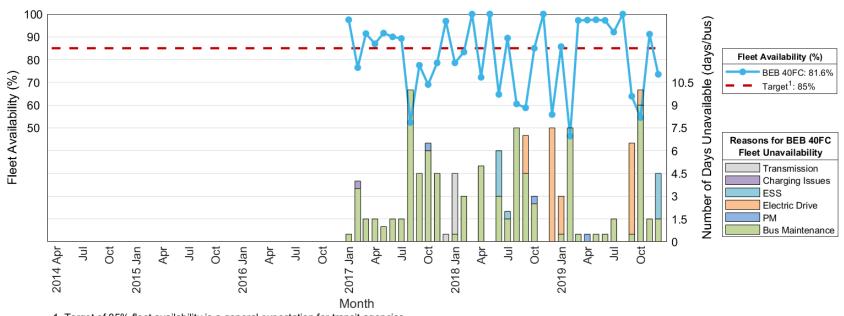
The data presented are based on availability for morning pull-out and don't necessarily reflect all-day availability. Transit agencies typically have a target of 85% availability for their fleets to allow for time to handle scheduled and unscheduled maintenance. The Foothill Transit buses are planned to operate every day, including weekends. For Foothill Transit, the source for availability data is garage activity sheets for Pomona Operations, which list each bus that is not available for morning pull-out and provide a general reason for unavailability. These activity sheets are for the facility as a whole and include the BEBs as well as the CNG buses. The garage activity sheets are typically available for weekdays.


NREL presents availability as a monthly average trend and as overall availability. Unavailable time is separated into several categories to show the primary reason for downtime.

Availability Summary: Jul.-Dec. 2019

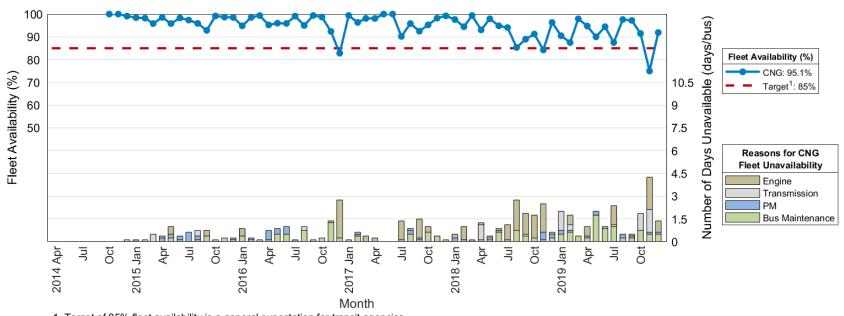
Category	BEB 35FC (# days)	BEB 35FC (%)	BEB 40FC (# days)	BEB 40FC (%)	CNG (# days)	CNG (%)
Planned work days	1,339	_	228	_	912	_
Days available	878	65.6	180	78.9	825	90.5
Unavailable	461	34.4	48	21.1	87	9.5
ESS	125	9.3	6	2.6	_	_
CNG engine	_	_	_	_	34	3.7
Electric drive	111	8.3	14	6.1	-	_
Charging issues	0	0.0	0	0.0	ı	_
Preventive maintenance	2	0.1	0	0.0	5	0.5
General bus maintenance	219	16.4	28	12.3	26	2.9
Transmission	4	0.3	0	0.0	22	2.4

- The per-bus availability for the BEBs ranged from a low of 42% to a high of 81% during the data period.
- Most unavailable time for the BEBs and CNG buses was attributed to general bus maintenance.
- General bus maintenance includes everything that doesn't fall into one of the other categories.

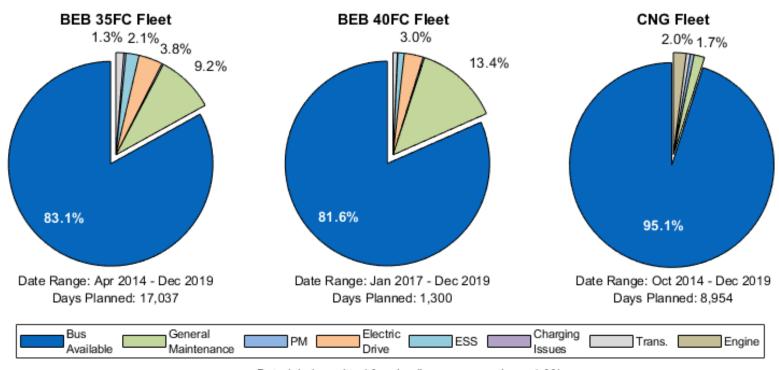

Monthly Availability: BEB 35FC Fleet

- 1. Target of 85% fleet availability is a general expectation for transit agencies
- The green line tracks the average monthly availability for the BEB 35FC fleet.
- The stacked bars provide the number of unavailable days by bus each month separated by six categories.
- Electric drive downtime was attributed to traction motor and DC-DC converter issues.
- ESS issues included time for troubleshooting high voltage electrical and replacing a cable.

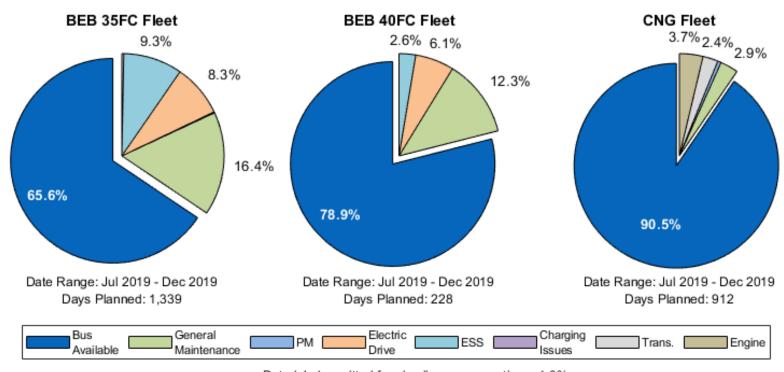
22


Monthly Availability: BEB 40FC Fleet

- 1. Target of 85% fleet availability is a general expectation for transit agencies
- The blue line tracks the average monthly availability for the BEB 40FC fleet.
- The stacked bars provide the number of unavailable days by bus each month separated by six categories.
- The buses were available but not used for several months during the first half of 2019.
- ESS issues were primarily labor for troubleshooting high voltage electrical.


23

Monthly Availability: CNG Fleet


- 1. Target of 85% fleet availability is a general expectation for transit agencies
- The blue line tracks the average monthly availability for the CNG fleet.
- The stacked bars provide the number of unavailable days by bus each month separated by four categories.

Overall Fleet Availability: Full Data Period

Data labels omitted for pie slices representing < 1.0%

Overall Fleet Availability: Jul.-Dec. 2019

Data labels omitted for pie slices representing < 1.0%

Energy Consumption/Fuel Economy Analysis

Proterra records and stores data—including total electrical energy consumed (kWh), number of charges, and miles driven—on each of the buses. These data were provided to NREL for calculating efficiency of the buses in kWh per mile. Foothill Transit's CNG buses are typically fueled once each day. Foothill Transit provided individual fueling records for the CNG buses. CNG is typically dispensed in units of gasoline gallon equivalent (gge).

To compare the BEBs to the baseline buses, NREL converted the electrical energy from kWh to diesel gallon equivalent (dge) and converted the CNG fuel energy from gge to dge using the following conversion factors.

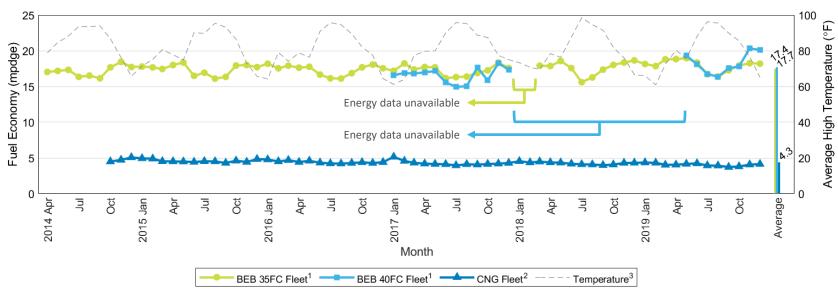
Energy content of fuel (DOE Alternative Fuels Data Center: https://afdc.energy.gov/fuels/properties)

- Electricity: 3,414 Btu/kWh
- CNG: 112,114 Btu/gge (LHV)
- Diesel: 128,488 Btu/dge (LHV)

Conversion factors

- Electrical energy to dge: 37.64 kWh/dge
- CNG fuel energy to dge: 1.146 gge/dge

Fuel Consumption/Fuel Economy: Jul.-Dec. 2019

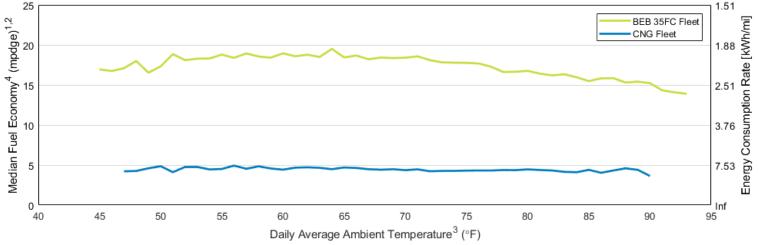

Bus ID	Miles	Energy ^a (kWh)	kWh/mi	Diesel Gallon Equiv.	Fuel economy (mpdge)
2004	14,300	30,942.9	2.16	822.2	17.39
2005	12,104	26,706.2	2.21	709.6	17.06
2006	6,349	13,535.2	2.13	359.6	17.65
2007	3,983	8,888.4	2.23	236.2	16.87
2008	10,365	22,520.2	2.17	598.4	17.32
2009	12,805	27,561.7	2.15	732.3	17.49
2010	8,436	17,293.0	2.05	459.5	18.36
2011	4,121	8,911.4	2.16	236.8	17.40
2012	4,800	9,388.7	1.96	249.5	19.24
2013	15,560	34,109.5	2.19	906.3	17.17
2014	12,367	26,312.5	2.13	699.1	17.69
2015	12,802	28,622.0	2.24	760.5	16.83
BEB 35FC Fleet	117,993	254,791.9	2.16	6,770.0	17.43
2016	10,846	22,582.2	2.08	600.0	18.08
2017	12,218	25,239.2	2.07	670.6	18.22
BEB 40FC Fleet	23,063	47,821.4	2.07	1,270.6	18.15

Bus ID	Miles	CNG (gge)	mpgge	Diesel Gallon Equiv.	Fuel economy (mpdge)
2200	28,700	8,244.7	3.48	7,194.0	3.99
2201	25,228	7,444.5	3.39	6,495.8	3.88
2202	25,056	7,123.6	3.52	6,215.7	4.03
2203	27,224	7,693.6	3.54	6,713.1	4.06
2204	18,227	6,125.8	2.98	5,345.1	3.41
2205	23,909	6,714.4	3.56	5,858.7	4.08
2206	26,438	7,771.9	3.40	6,781.5	3.90
2207	23,158	6,759.8	3.43	5,898.4	3.93
CNG Fleet	197,940	57,878.3	3.42	50,502.4	3.92

- The BEB fuel economy is approximately 4.5 times the CNG fuel economy, as operated on current routes.
- Previous testing showed the CNG buses had a fuel economy of 2.09 mpdge on Line 291. The BEB fuel economy is more than 8 times the fuel economy of the CNG buses on the same route.

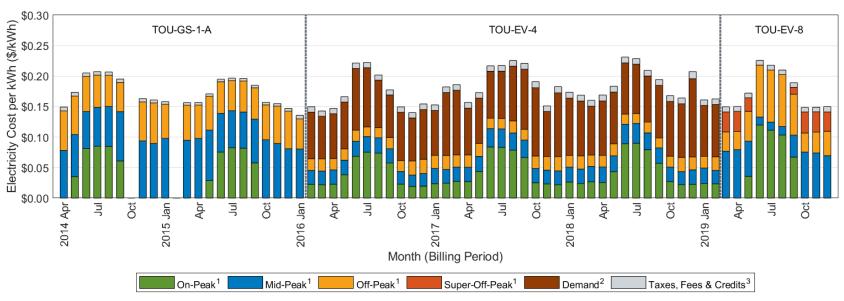
^a Total energy consumed by the bus, does not include losses during charging

Fleet Average Monthly Fuel Economy



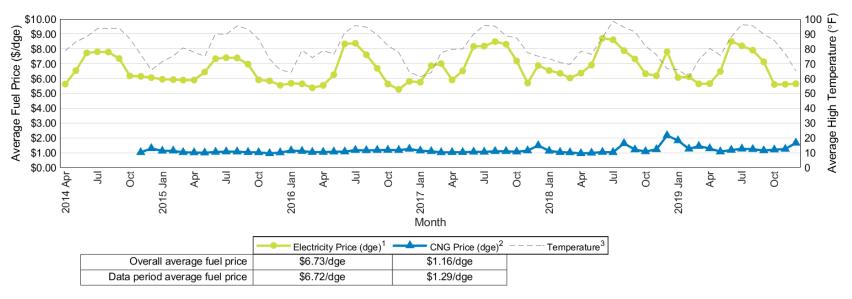
- 1. Electrical energy converted from kWh to diesel gallon equivalent (dge); conversion factor = 37.64 kWh/dge
- 2. CNG fuel energy converted from gasoline gallon eqivalent (gge) to diesel gallon equivalent (dge); conversion factor = 1.146 gge/dge
- 3. Average daily high temperatures at Ontario International Airport, CA; data acquired from: https://www.ncdc.noaa.gov/

	Ove	rall	JulDe	c. 2019
Fleet	kWh/mi, mpgge mpdge k		kWh/mi, mpgge	mpdge
BEB 35FC	2.16	17.41	2.16	17.43
BEB 40FC	2.13	17.67	2.07	18.15
CNG	3.78	4.33	3.42	3.92

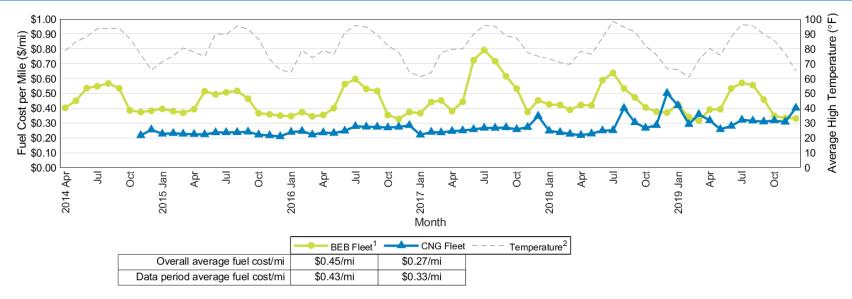

Fuel Economy by Ambient Temperature

To begin evaluating the sensitivity of bus fuel economy to ambient temperature, daily average temperature data for the entire evaluation period (2014–2019) were compared to daily fuel economy values for all BEB 35FC buses and all CNG buses. Median absolute deviation method was used to identify outliers and remove those data points from the analysis. The median fuel economy of each fleet was calculated for every unique daily average temperature and plotted below. The chart shows the overall affect of ambient temperature on bus fuel economy (primarily cabin heating and cooling effects) but does not account for other major factors such as passenger loading, driver behavior, or traffic conditions. The equivalent energy consumption rate (kWh/mi) is included on the right for reference. Foothill Transit reports that it does not typically need to operate heating for the buses due to the mild climate.

- 1. Electrical energy converted from kWh to diesel gallon equivalent (dge); conversion factor = 37.64 kWh/dge
- 2. CNG fuel energy converted from gasoline gallon eqivalent (gge) to diesel gallon equivalent (dge); conversion factor = 1.146 gge/dge
- 3. Daily average temperatures at Ontario International Airport, CA; data acquired from: https://www.ncdc.noaa.gov/
- 4. Median fuel economy for fleet calculated for each unique daily average temperature


Monthly Electric Utility Costs

- 1. Time of use charge categories include respective costs for delivery and generation
- 2. Demand charges introduced in February 2016 with change to TOU-EV-4 and eliminated in March 2019 with change to TOU-EV-8
- 3. 'Taxes, Fees & Credits' category includes all remaining utility bill items (positive & negative charges)


	TOU-GS-1-A	TOU-EV-4	TOU-EV-8	Summer Avg (Jun Sep.)	Winter Avg (Oct May)
\$/kWh	0.17	0.18	0.18	0.21	0.16
\$/dge	6.55	6.84	6.69	7.83	6.08

Monthly Average Fuel Price

- 1. Electrical energy converted from kWh to diesel gallon equivalent (dge); conversion factor = 37.64 kWh/dge
- 2. CNG fuel energy converted from gasoline gallon eqivalent (gge) to diesel gallon equivalent (dge); conversion factor = 1.146 gge/dge
- 3. Average daily high temperatures at Ontario International Airport, CA; data acquired from: https://www.ncdc.noaa.gov/
- Electricity prices vary seasonally; CNG prices are consistent throughout the data period, but CNG prices increased in August 2018 and December 2018 due to temporary disruptions in regional CNG supply.
- CNG cost includes price of fuel, transmission, and operations and maintenance cost for station.
- On average, electricity cost is approximately 6 times the cost of CNG.

Monthly Average Fuel Cost Per Mile

- 1. BEB Fleet includes all battery buses using fast charger (BEB 35FC & BEB 40FC fleets)
- 2. Average daily high temperatures at Ontario Intenational Airport, CA; data acquired from: https://www.ncdc.noaa.gov/
- Fuel cost per mile for the BEBs tracks with the ambient temperature when summer electric rates are higher, and efficiency is lower due to air conditioning use.
- Baseline bus cost per mile spikes when the CNG cost is higher.

Fuel Cost Per Mile

The operating duty cycle of a bus has a significant effect on fuel economy and therefore cost. Earlier in the evaluation, NREL collected drive cycle data on a selection of CNG buses that were operated on a variety of Foothill Transit routes including Line 291. On Line 291, the average fuel economy for the CNG buses was 2.09 mpdge.

During the second half of 2019, Foothill Transit paid an average of \$1.12/gge (\$1.29/dge) for CNG. The average cost of electricity during the second half of 2019 was \$0.18/kWh (\$6.72/dge). The table provides the cost per mile for the BEBs and CNG buses as operated by the fleet and estimates the cost per mile of the CNG buses if they were only operated on Line 291. The lower CNG fuel economy would increase the overall CNG fuel cost to an average of \$0.48/mi, which is slightly higher than the BEBs' fuel cost of \$0.45/mi.

	Average Service Speed (mph)	Fuel Economy (mpdge)	Overall Fuel \$/mi	Data Period Fuel \$/mi
BEB 35FC	10.6	17.41	0.45	0.43
BEB 40FC	10.6	17.67	0.45	0.43
CNG	17.6	4.33	0.27	0.33
CNG on Line 291	10.6	2.09	0.48	0.54

Road Call Analysis

A road call, or revenue vehicle system failure, is defined as a failure of an in-service bus that causes the bus to be replaced on route or causes a significant delay in schedule. If the problem with the bus can be repaired during a layover and the schedule is kept, it is not considered a road call. The analysis described here includes only road calls that were caused by "chargeable" failures. Chargeable road calls include systems that can physically disable the bus from operating on route, such as interlocks (doors, air system), engine, or things that are deemed to be safety issues if operation of the bus continues. They do not include road calls for things such as problems with radios, fareboxes, or destination signs.

The transit industry measures reliability as mean distance between failures, also documented as MBRC. NREL tracks MBRC by total bus road calls, propulsion-related road calls, and ESS-related road calls (for electric buses). Total bus road calls include all chargeable road calls. Propulsion-related road calls is a subset of total road calls and includes all road calls due to propulsion-related systems including the battery system (or engine for a conventional bus), electric drive, fuel, exhaust, air intake, cooling, non-lighting electrical, and transmission systems. The ESS-related road calls—a subset of the propulsion-related road calls—and MBRC are included for the BEBs.

Cumulative MBRC

- 1. Ultimate Target adopted from: DOE FCTO Program Record #12012, Sept. 2012, http://www.hydrogen.energy.gov/pdfs/12012 fuel cell bus targets.pdf
- The upper chart shows cumulative MBRC for all chargeable road calls.
- The lower chart shows MBRC for propulsion-related road calls.
- The ESS-related MBRC for the BEB 35FC fleet is 212,634.
- The ESS-related MBRC for the BEB 40FC fleet is 137,003.

Maintenance Analysis

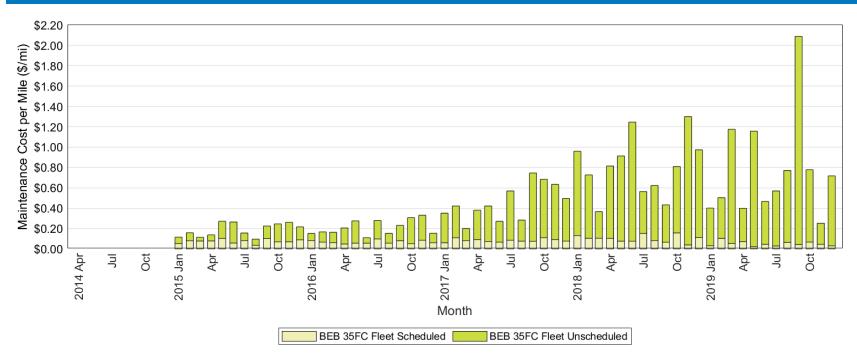
NREL collects all work orders for the evaluation buses to calculate a maintenance cost per mile. Costs for accident-related repair, which are extremely variable from bus to bus, were eliminated from the analysis. Warranty costs are not included in the cost-per-mile calculations because those costs are covered in the capital cost of the buses. For consistency, NREL uses a constant \$50 per hour labor rate. This does not reflect an average rate for Foothill Transit. Cost per mile is calculated as follows:

Cost per mile = [(labor hours * 50) + parts cost] / mileage

NREL calculates total cost per mile, scheduled maintenance cost per mile, and unscheduled maintenance cost per mile. NREL also categorizes maintenance cost by system to provide insight into what systems have the most costs for each technology. The work orders are coded using vehicle maintenance reporting standards (VMRS) developed by the American Trucking Association to aid the industry in tracking equipment and maintenance using a common standard.

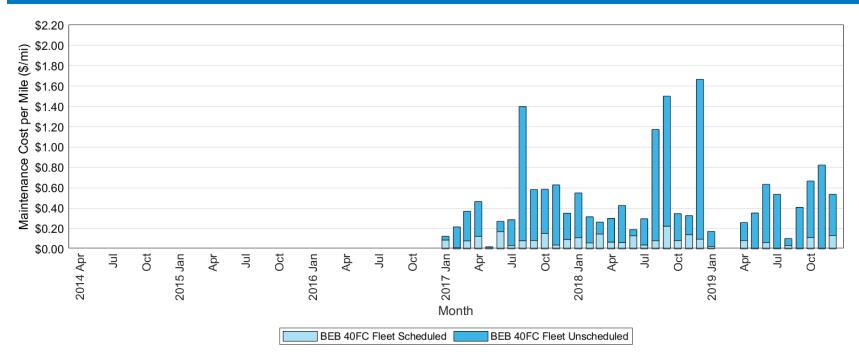
The propulsion system costs are of particular interest. Propulsion-related vehicle systems include the exhaust, fuel, engine, battery modules, electric propulsion, air intake, cooling, non-lighting electrical, and transmission systems. These systems have been separated to highlight maintenance costs most directly affected by the different advanced propulsion systems for the buses.

Maintenance Analysis Results: Jul.-Dec. 2019

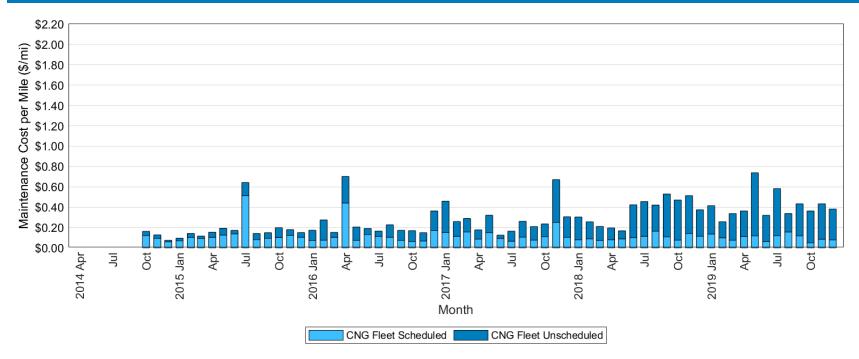

Bus ID	Mileage	Parts (\$)	Labor Hours	Scheduled Cost (\$/mi)	Unscheduled Cost (\$/mi)	Total Cost (\$/mi)
2004	14,300	\$4,780.86	90.6	\$0.04	\$0.61	\$0.65
2005	12,104	\$5,856.04	85.2	\$0.06	\$0.78	\$0.84
2006	6,349	\$17,130.92	114.1	\$0.08	\$3.52	\$3.60
2007	3,983	\$3,120.08	131.2	\$0.08	\$2.35	\$2.43
2008	10,365	\$847.15	52.1	\$0.06	\$0.28	\$0.33
2009	12,805	\$2,912.52	54.4	\$0.04	\$0.40	\$0.44
2010	8,436	\$6,304.49	44.6	\$0.04	\$0.97	\$1.01
2011	4,121	\$1,550.69	63.9	\$0.04	\$1.12	\$1.15
2012	4,800	\$140.44	56.4	\$0.03	\$0.59	\$0.62
2013	15,560	\$1,856.57	72.9	\$0.05	\$0.31	\$0.35
2014	12,367	\$5,277.26	85.9	\$0.05	\$0.73	\$0.77
2015	12,802	\$3,292.79	62.8	\$0.04	\$0.46	\$0.50
BEB 35FC Fleet	117,993	\$53,069.81	913.8	\$0.05	\$0.79	\$0.84
2016	10,846	\$3,521.65	47.39	\$0.04	\$0.50	\$0.54
2017	12,218	\$3,447.87	59	\$0.05	\$0.48	\$0.52
BEB 40FC Fleet	23,063	\$6,969.52	106.4	\$0.04	\$0.49	\$0.53

Bus ID	Mileage	Parts (\$)	Labor Hours	Scheduled Cost (\$/mi)	Unscheduled Cost (\$/mi)	Total Cost (\$/mi)
2200	30,793	\$4,440.76	98.4	\$0.13	\$0.17	\$0.30
2201	27,108	\$3,670.08	163.6	\$0.10	\$0.33	\$0.44
2202	27,844	\$5,621.32	77.1	\$0.10	\$0.24	\$0.34
2203	29,719	\$6,555.48	80.8	\$0.10	\$0.25	\$0.36
2204	20,816	\$8,955.79	115.3	\$0.13	\$0.58	\$0.71
2205	26,482	\$6,473.95	91.2	\$0.10	\$0.32	\$0.42
2206	30,058	\$6,859.83	99.9	\$0.08	\$0.31	\$0.39
2207	24,074	\$8,758.33	70.7	\$0.09	\$0.42	\$0.51
CNG Fleet	216,894	\$51,335.54	796.9	\$0.10	\$0.32	\$0.42

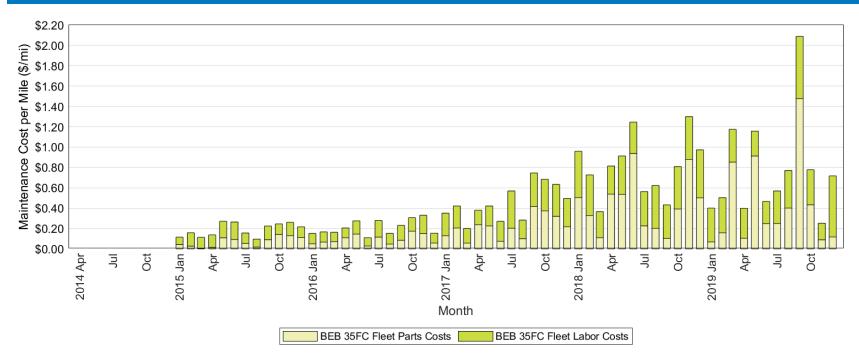
BEB issues included:


- Low-voltage battery replacement
- DC-DC converter replaced
- High voltage electrical
- Traction motor replaced
- Transmission
- Air system.

Monthly Scheduled and Unscheduled Maintenance Cost: **BEB 35FC Fleet**


- The warranty period has ended, and transit staff are handling all the maintenance work.
- Issues with the low-voltage batteries continue to result in increasing costs.
- Expensive parts and lower mileage accumulation result in higher per-mile costs (traction motor, air compressor).

Monthly Scheduled and Unscheduled Maintenance Cost: BEB 40FC Fleet


- Issues with the low-voltage batteries resulted in costs that were higher than expected.
- Because the fleet consists of only two buses, the monthly cost per mile is more sensitive to cost increases.
- The fleet accumulated low or no mileage February 2019 through April 2019.

Monthly Scheduled and Unscheduled Maintenance Cost: CNG Fleet

- Spikes in costs for some months are caused by multiple buses reaching the mileage target for a major preventive maintenance (PM) during the same month.
- Unscheduled costs in the last year have risen primarily due to engine issues.

Monthly Parts and Labor Maintenance Cost: BEB 35FC Fleet


- The warranty period has ended, and transit staff are handling all the maintenance work.
- Issues with the low-voltage batteries continue to result in increasing costs.
- Expensive parts and lower mileage accumulation result in higher per-mile costs (traction motor, air compressor).

Monthly Parts and Labor Maintenance Cost: BEB 40FC Fleet

- Issues with the low-voltage batteries resulted in costs that were higher than expected.
- Because the fleet consists of only two buses, the monthly cost per mile is more sensitive to cost increases.
- The fleet accumulated low or no mileage February 2019 through April 2019.

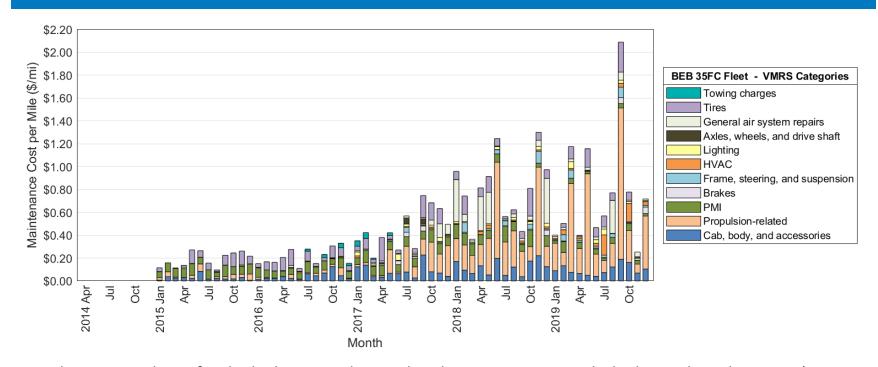
Monthly Parts and Labor Maintenance Cost: CNG Fleet

- Spikes in costs for some months are caused by multiple buses reaching the mileage target for a major preventive maintenance (PM) during the same month.
- Unscheduled costs in the last year have risen primarily due to engine issues.

Maintenance Cost per Mile by System: Jul.-Dec. 2019

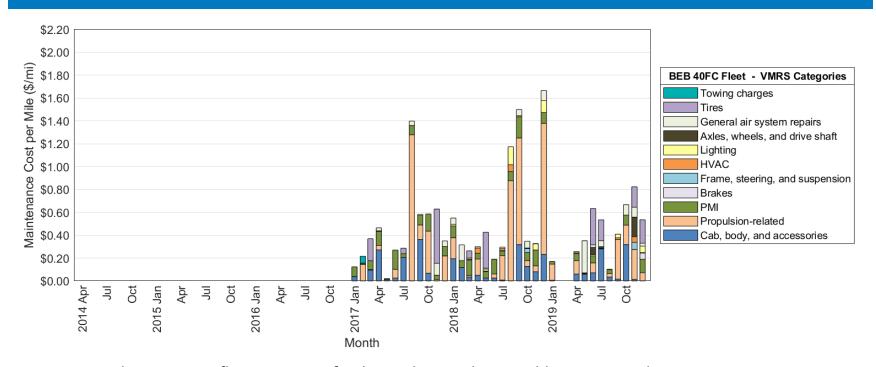
	BEB	35FC	BEB	BEB 40FC		IG
System	Cost per Mile (\$)	Percent of Total (%)	Cost per Mile (\$)	Percent of Total (%)	Cost per Mile (\$)	Percent of Total (%)
Cab, body, and accessories	0.385	46	0.131	25	0.206	49
Propulsion-related	0.120	14	0.111	21	0.049	12
PMI	0.039	5	0.038	7	0.044	10
Brakes	0.020	2	0.010	2	0.016	4
Frame, steering, and suspension	0.027	3	0.013	2	0.006	1
HVAC	0.070	8	0.013	2	0.020	5
Lighting	0.019	2	0.015	3	0.003	1
General air system repairs	0.001	0	0.047	9	0.024	6
Axles, wheels, and drive shaft	0.075	9	0.040	7	0.006	1
Tires	0.081	10	0.117	22	0.046	11
Towing charges	0.000	0	0.000	0	0.000	0
Total	0.837	100	0.533	100	0.420	100
Total w/o low voltage battery costs	0.72		0.48		0.39	

Color coding:

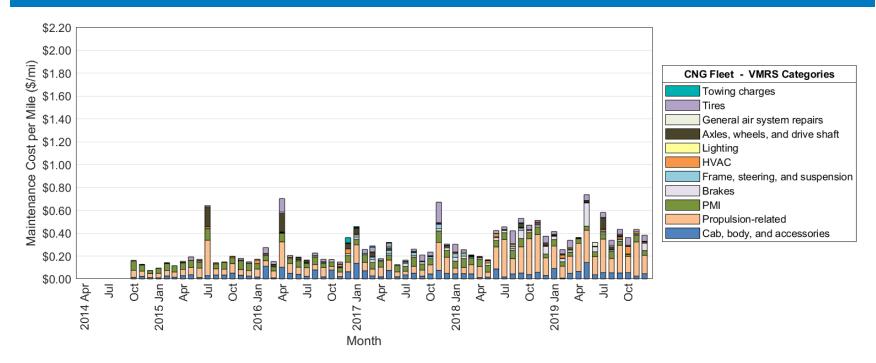

Highest cost

Second highest cost

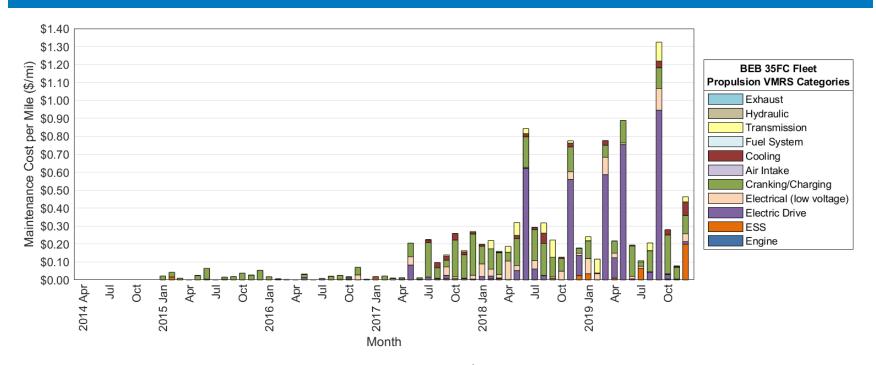
Third highest cost


- Propulsion-related repairs for the BEBs were for low-voltage batteries, high voltage electrical, cooling system, traction motor, and transmission.
- Overall cost per mile without low-voltage battery costs for the BEB 35FC buses was 84% higher than the CNG bus cost; cost for the BEB 40FC buses was 23% higher than the CNG bus cost.

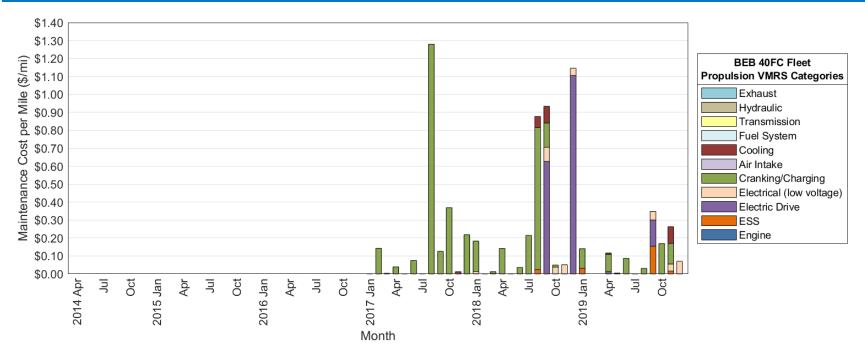
Maintenance Cost by System: **BEB 35FC Fleet**


- The primary driver for the higher propulsion-related cost was issues with the low-voltage batteries (see cost per mile by propulsion subsystem for BEB 35FC fleet).
- High-cost parts and multiple labor hours were required for several repairs including DC-DC converters, traction motor, transmission, suspension, and electrical system.

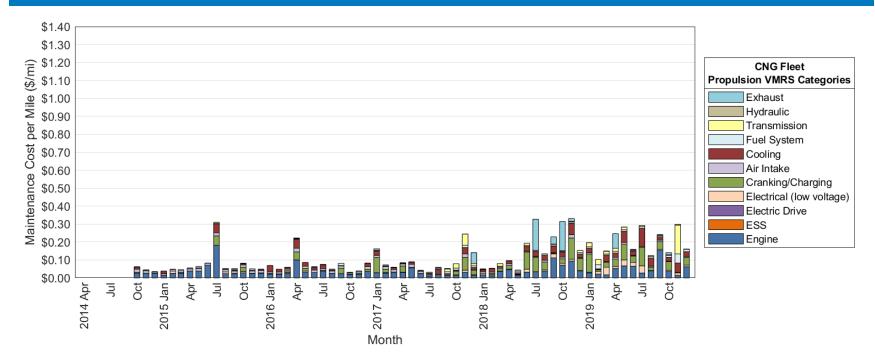
Maintenance Cost by System: BEB 40FC Fleet


- Because the BEB 40FC fleet consists of only two buses, the monthly cost per mile is more sensitive to cost increases. The buses were not operated in February, March, and most of April 2019.
- The buses still experience issues with the low-voltage batteries (see <u>cost per mile by propulsion subsystem</u> for BEB 40FC fleet).

Maintenance Cost by System: **CNG Fleet**


- CNG bus maintenance cost shows an increase over time as the buses age and pass the warranty period.
- During the high-cost months, multiple buses reached the mileage for a major PM.
- Multiple buses had brake relines.
- Higher propulsion system costs in the second half of 2019 were due to low-voltage batteries, cooling system, and engine control module failures.

Propulsion System Maintenance Cost by Subsystem: **BEB 35FC Fleet**


- Low-voltage battery replacements fall into the cranking/charging category.
- Electric drive issues in September were for replacement of a traction motor (high parts cost).
- Extended labor hours for diagnosis/repair were required in some cases (high voltage electrical system, traction motor, transmission, suspension, low-voltage electrical).

Propulsion System Maintenance Cost by Subsystem: BEB 40FC Fleet

- Mileage was low for both buses during the first half of 2019.
- Both buses in the BEB 40FC fleet had low-voltage battery changeouts.

Propulsion System Maintenance Cost by Subsystem: **CNG Fleet**

- Increased costs in the second half of 2019 fall into several categories:
 - Transmission—rebuild
 - Cranking/charging—low-voltage batteries
 - Engine—control module failures.

51

Propulsion-Related Maintenance Costs by Subsystem: Jul.—Dec. 2019

Maintenance System		BEB 35FC	BEB 40FC	CNG
Mileage		117,993	23,063	216,894
	Parts cost (\$)	25,066.68	1,306.96	29,587.99
Total Propulsion-Related	Labor hours	407.3	34.1	303.5
Systems	Total cost (\$)	45,433.68	3,010.96	44,761.99
(Roll-Up of All Systems)	Total cost (\$) per mile	0.385	0.131	0.206
	Without battery changeouts	0.272	0.081	0.180
	Parts cost (\$)	0.00	0.00	202.05
Exhaust System Repairs	Labor hours	0.0	0.0	6.2
Litiaust System Repairs	Total cost (\$)	0.00	0.00	513.05
	Total cost (\$) per mile	0.000	0.000	0.002
	Parts cost (\$)	0.00	0.00	2,171.91
Fuel System Repairs	Labor hours	0.0	0.0	25.5
ruei system Repairs	Total cost (\$)	0.00	0.00	3,447.91
	Total cost (\$) per mile	0.000	0.000	0.016
	Parts cost (\$)	0.00	0.00	7,529.13
Powerplant System Repairs	Labor hours	90.4	8.9	94.0
(ESS for BEBs)	Total cost (\$)	90.35	8.93	94.03
	Total cost (\$) per mile	0.038	0.019	0.056
	Parts cost (\$)	15,456.80	0.00	0.00
Electric Propulsion System	Labor hours	62.6	7.0	0.0
Repairs	Total cost (\$)	18,588.30	348.50	0.00
	Total cost (\$) per mile	0.158	0.015	0.000

Propulsion-Related Maintenance Costs by Subsystem: Jul.—Dec. 2019

Maintenance System		BEB 35FC	BEB 40FC	CNG
Non-Linksing Florida I Contains	Parts cost (\$)	8,527.09	851.96	9,081.45
Non-Lighting Electrical System Repairs (General Electrical, Charging, Cranking, Ignition)	Labor hours	153.1	18.2	59.7
	Total cost (\$)	16,183.59	1,760.96	12,064.45
Charging, Cranking, Ighitton)	Total cost (\$) per mile	0.137	0.076	0.056
	Parts cost (\$)	60.90	0.00	1,062.30
Air Intoko System Bonoirs	Labor hours	0.0	0.0	0.0
Air Intake System Repairs	Total cost (\$)	60.90	0.00	1,063.30
	Total cost (\$) per mile	0.001	0.000	0.005
	Parts cost (\$)	934.40	455.00	3,976.03
Cooling System Bonoins	Labor hours	33.9	0.0	113.1
Cooling System Repairs	Total cost (\$)	2,627.90	455.00	9,631.03
	Total cost (\$) per mile	0.022	0.020	0.044
	Parts cost (\$)	87.49	0.00	5,439.09
Transmission System Banairs	Labor hours	66.9	0.0	3.9
Transmission System Repairs	Total cost (\$)	3,432.99	0.00	5,635.59
	Total cost (\$) per mile	0.029	0.000	0.026
	Parts cost (\$)	0.00	0.00	126.03
Hydraulic System Banairs	Labor hours	0.5	0.0	1.0
Hydraulic System Repairs	Total cost (\$)	22.50	0.00	176.03
	Total cost (\$) per mile	0.000	0.000	0.001

Low-Voltage Battery Maintenance Analysis

Foothill Transit continues to have issues with the low-voltage (LV) batteries. The tables summarize the LV battery changeout data from the BEB and CNG buses. The BEBs are averaging 10.4 changeouts per bus at approximately 11,000 miles between changeout. The CNG buses average 2.1 changeouts per bus at more than 139,000 miles between changeouts. One issue is that the accessories (farebox, cameras, etc.) continually draw power from these batteries. If the BEB master switch is not turned off at the end of operation, the accessories continue to draw power from the LV batteries. The CNG buses are equipped with an auto shutoff for the accessories; the BEBs are not.

BEB	LV Battery Changeouts	Accumulated Miles	Miles between Changeout	Data Period
2004	7	119,050	17,007	2
2005	12	128,617	10,718	3
2006	10	130,886	13,089	1
2007	9	124,689	13,854	2
2008	11	123,258	11,205	1
2009	10	139,624	13,962	2
2010	6	124,398	20,733	1
2011	10	127,880	12,788	1
2012	8	126,610	15,826	0
2013	8	105,299	13,162	0
2014	10	137,221	13,722	2
2015	20	116,496	5,825	1
2016	14	66,753	4,768	1
2017	10	70,250	7,025	1
Total	145	1,641,030 11,317		18
Per Bus	10.4	_	_	1.3

Proterra is aware of the issue and has developed an auto shutoff to address the problem. New designs include this feature.

CNG Bus	LV Battery Changeouts	Accumulated Miles	Miles between Changeout
2200	3	292,397	97,466
2201	0	291,218	
2202	1	296,478	296,478
2203	3	298,912	99,637
2204	2	282,814	141,407
2205	2	297,858	148,929
2206	1	308,149	308,149
2207	5	303,020	60,604
Total	17	2,370,846	139,462
Per Bus	2.13	_	_

Contacts

NREL

Leslie Eudy

Phone: 303-275-4412

Email: leslie.eudy@nrel.gov

Foothill Transit

Roland Cordero

Phone: 626-931-7246

Email: rcordero@foothilltransit.org

California Air Resources Board

Yachun Chow

Phone: 919-322-7450

Email: yachun.chow@arb.ca.gov

Proterra

Mike Finnern

Phone: 864-214-0393

Email: mfinnern@Proterra.com

Acronyms and Abbreviations

battery electric bus BEB British thermal unit Btu CNG compressed natural gas dge diesel gallon equivalent ESS energy storage system FC fast charge gasoline gallon equivalent gge gross vehicle weight rating **GVWR** hp horsepower HVAC heating, ventilation, and air conditioning lower heating value LHV LV low voltage **MBRC** miles between roadcalls mpdge miles per diesel gallon equivalent

mpgge miles per gasoline gallon equivalent
mph miles per hour
NREL National Renewable Energy Laboratory
OEM original equipment manufacturer
PM preventive maintenance

PMI preventive maintenance inspection
PTC Pomona Transit Center

VMRS Vehicle Maintenance Reporting

Standards

Previous Foothill Transit Evaluation Reports

- 1. Foothill Transit Battery Electric Bus Demonstration Results, NREL/TP-5400-65274, https://www.nrel.gov/docs/fy16osti/65274.pdf
- 2. Foothill Transit Battery Electric Bus Demonstration Results: Second Report, NREL/TP-5400-67698, https://www.nrel.gov/docs/fy17osti/67698.pdf
- 3. Foothill Transit Agency Battery Electric Bus Progress Report: Data Period Focus: Jan. 2017 through Dec. 2017, NREL/PR-5400-71292, https://www.nrel.gov/docs/fy18osti/71292.pdf
- 4. Foothill Transit Agency Battery Electric Bus Progress Report: Data Period Focus: Jan. 2018 through Jun. 2018, NREL/PR-5400-72207, https://www.nrel.gov/docs/fy19osti/72207.pdf
- 5. Foothill Transit Agency Battery Electric Bus Progress Report: Data Period Focus: Jul. 2018 through Dec. 2018, NREL/PR-5400-72209, https://www.nrel.gov/docs/fy19osti/72209.pdf
- 6. Foothill Transit Agency Battery Electric Bus Progress Report: Data Period Focus: Jan. 2019 through Jun. 2019, NREL/PR-5400-73516, https://www.nrel.gov/docs/fy20osti/73516.pdf

Acknowledgments

Produced under direction of the California Air Resources Board by the National Renewable Energy Laboratory (NREL) under Work for Others Agreement number FIA-17-1847.

Appendix: Fleet Summary Statistics

Fleet Summary Statistics

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Number of vehicles	12	12	2	2	8	8
Period used for fuel and oil analysis	4/14-12/19	7/19-12/19	1/17-12/19	7/19-12/19	10/14-12/19	7/19-12/19
Total number of months in period	69	6	36	6	63	6
Fuel and oil analysis base fleet mileage	1,657,806	117,993	63,980	23,063	2,123,613	197,940
Period used for maintenance analysis	1/15-12/19	7/19-12/19	1/17-12/19	7/19-12/19	10/14-12/19	7/19-12/19
Total number of months in period	60	6	36	6	63	6
Maintenance analysis base fleet mileage	1,504,027	117,993	137,003	23,063	2,370,846	216,894
Availability	83	66	82	79	95	90
Fleet fuel/energy usage in kWh (BEB) or gge (CNG)	3,582,903	254,792	136,242	47,821	562,495	57,878
Roadcalls	295	10	17	1	90	5
Total MBRC	5,766	11,799	8,059	23,063	26,343	43,379
Propulsion roadcalls	121	7	7	1	58	3
Propulsion MBRC	14,058	16,856	19,572	23,063	40,877	72,298
Fleet kWh/mile (BEB) or mpgge (CNG)	2.16	2.16	2.13	2.07	3.78	3.42
Representative fleet mpg (energy equiv.)	17.41	17.43	17.67	18.15	4.33	3.92
Energy cost per kWh or CNG cost per gge	0.179	0.179	0.179	0.179	1.008	1.124
Fuel cost per mile	0.45	0.43	0.45	0.43	0.27	0.33
Total scheduled repair cost per mile	0.07	0.05	0.07	0.04	0.11	0.10
Total unscheduled repair cost per mile	0.37	0.79	0.41	0.49	0.17	0.32
Total maintenance cost per mile	0.45	0.84	0.48	0.53	0.29	0.42
Total operating cost per mile	0.90	1.27	0.93	0.96	0.56	0.75

Maintenance Cost Summary

Maintenance Cost Summary

	BEB 35FC	BEB 35FC	BEB 40FC	BEB 40FC	CNG	CNG
	All Data	Data Period	All Data	Data Period	All Data	Data Period
Fleet mileage	1,504,027	117,993	137,003	23,063	2,370,846	216,894
Total parts cost	339,192.71	53,069.81	27,129.31	6,969.52	365,793.81	51,335.54
Total labor hours	6,743.2	913.8	773.4	106.4	6,410.5	796.9
Average labor cost (@ \$50.00 per hour)	337,162.00	45,689.50	38,671.00	5,319.50	320,525.50	39,844.50
Total maintenance cost	676,354.71	98,759.31	65,800.31	12,289.02	686,319.31	91,180.04
Total maintenance cost per bus	56,362.89	8,229.94	32,900.16	6,144.51	85,789.91	11,397.51
Total maintenance cost per mile	0.450	0.837	0.480	0.533	0.289	0.420
without low-voltage battery cost	0.395	0.724	0.394	0.483	0.281	0.394

Propulsion System Maintenance Cost Summary

	BEB 35FC	BEB 35FC	BEB 40FC	BEB 40FC	CNG	CNG			
	All Data	Data Period	All Data	Data Period	All Data	Data Period			
Total Engine/Fuel-Related Systems (ATA VMRS	Total Engine/Fuel-Related Systems (ATA VMRS 27, 30, 31, 32, 33, 41, 42, 43, 44, 45, 46, 65)								
Parts cost	142,946.64	25,066.68	10,243.15	1,306.96	194,500.21	29,587.99			
Labor hours	1,831.97	407.34	209.76	34.08	1,692.61	303.48			
Average labor cost	91,598.50	20,367.00	10,488.00	1,704.00	84,630.50	15,174.00			
Total cost (for system)	234,545.14	45,433.68	20,731.15	3,010.96	279,130.71	44,761.99			
Total cost (for system) per bus	19,545.43	3,786.14	10,365.58	1,505.48	34,891.34	5,595.25			
Total cost (for system) per mile	0.156	0.385	0.151	0.131	0.118	0.206			
without low-voltage battery cost	0.101	0.272	0.065	0.081	0.110	0.180			

	BEB 35FC	BEB 35FC	BEB 40FC	BEB 40FC	CNG	CNG
	All Data	Data Period	All Data	Data Period	All Data	Data Period
Exhaust System Repairs (ATA VMRS 43)						
Parts cost	0.00	0.00	0.00	0.00	18,872.24	202.05
Labor hours	0.0	0.0	0.0	0.0	66.5	6.2
Average labor cost	0.00	0.00	0.00	0.00	3,325.50	311.00
Total cost (for system)	0.00	0.00	0.00	0.00	22,197.74	513.05
Total cost (for system) per bus	0.00	0.00	0.00	0.00	2,774.72	64.13
Total cost (for system) per mile	0.000	0.000	0.000	0.000	0.009	0.002
Fuel System Repairs (ATA VMRS 44)						
Parts cost	0.00	0.00	0.00	0.00	7,090.79	2,171.91
Labor hours	0.0	0.0	0.0	0.0	115.9	25.5
Average labor cost	0.00	0.00	0.00	0.00	5,794.00	1,276.00
Total cost (for system)	0.00	0.00	0.00	0.00	12,884.79	3,447.91
Total cost (for system) per bus	0.00	0.00	0.00	0.00	1,610.60	430.99
Total cost (for system) per mile	0.000	0.000	0.000	0.000	0.005	0.016
Power Plant (Engine) Repairs (ATA VMRS 45)						
Parts cost	56.34	0.00	0.00	0.00	63,816.14	7,529.13
Labor hours	156.7	90.4	12.7	8.9	513.6	94.0
Average labor cost	7,835.00	4,517.50	635.00	446.50	25,679.00	4,701.50
Total cost (for system)	7,891.34	4,517.50	635.00	446.50	89,495.14	12,230.63
Total cost (for system) per bus	657.61	376.46	317.50	223.25	11,186.89	1,528.83
Total cost (for system) per mile	0.005	0.038	0.005	0.019	0.038	0.056

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Electric Propulsion Repairs (ATA VMRS 46)						
Parts cost	71,772.66	15,456.80	0.00	0.00	0.00	0.00
Labor hours	344.3	62.6	95.5	7.0	0.0	0.0
Average labor cost	17,216.00	3,131.50	4,772.50	348.50	0.00	0.00
Total cost (for system)	88,988.66	18,588.30	4,772.50	348.50	0.00	0.00
Total cost (for system) per bus	7,415.72	1,549.03	2,386.25	174.25	0.00	0.00
Total cost (for system) per mile	0.059	0.158	0.035	0.015	0.000	0.000
Electrical System Repairs (ATA VMRS 30-Electrical G	eneral, 31-Cha	rging, 32-Cranl	king, 33-Ignitio	n)		
Parts cost	64,897.67	8,527.09	9,751.87	851.96	47,546.53	9,081.45
Labor hours	956.6	153.1	85.5	18.2	460.3	59.7
Average labor cost	47,829.00	7,656.50	4,275.50	909.00	23,014.50	2,983.00
Total cost (for system)	112,726.67	16,183.59	14,027.37	1,760.96	70,561.03	12,064.45
Total cost (for system) per bus	9,393.89	1,348.63	7,013.69	880.48	8,820.13	1,508.06
Total cost (for system) per mile	0.075	0.137	0.102	0.076	0.030	0.056
Air Intake System Repairs (ATA VMRS 41)						
Parts cost	108.20	60.90	6.20	0.00	21,657.56	1,062.30
Labor hours	3.9	0.0	0.0	0.0	9.8	0.0
Average labor cost	195.00	0.00	0.00	0.00	489.00	1.00
Total cost (for system)	303.20	60.90	6.20	0.00	22,146.56	1,063.30
Total cost (for system) per bus	25.27	5.08	3.10	0.00	2,768.32	132.91
Total cost (for system) per mile	0.000	0.001	0.000	0.000	0.009	0.005

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Cooling System Repairs (ATA VMRS 42)						
Parts cost	4,307.51	934.40	485.08	455.00	22,853.58	3,976.03
Labor hours	116.5	33.9	16.1	0.0	421.7	113.1
Average labor cost	5,827.00	1,693.50	805.00	0.00	21,086.00	5,655.00
Total cost (for system)	10,134.51	2,627.90	1,290.08	455.00	43,939.58	9,631.03
Total cost (for system) per bus	844.54	218.99	645.04	227.50	5,492.45	1,203.88
Total cost (for system) per mile	0.007	0.022	0.009	0.020	0.019	0.044
Hydraulic System Repairs (ATA VMRS 65)						
Parts cost	0.00	0.00	0.00	0.00	126.03	126.03
Labor hours	2.0	0.5	0.0	0.0	1.0	1.0
Average labor cost	97.50	22.50	0.00	0.00	50.00	50.00
Total cost (for system)	97.50	22.50	0.00	0.00	176.03	176.03
Total cost (for system) per bus	8.13	1.88	0.00	0.00	22.00	22.00
Total cost (for system) per mile	0.000	0.000	0.000	0.000	0.000	0.001
General Air System Repairs (ATA VMRS 10)						
Parts cost	38,226.53	6,132.77	1,260.36	196.36	4,095.79	884.76
Labor hours	355.2	55.3	114.8	17.6	67.9	8.8
Average labor cost	17,761.50	2,766.00	5,740.50	879.50	3,397.00	437.50
Total cost (for system)	55,988.03	8,898.77	7,000.86	1,075.86	7,492.79	1,322.26
Total cost (for system) per bus	4,665.67	741.56	3,500.43	537.93	936.60	165.28
Total cost (for system) per mile	0.037	0.075	0.051	0.047	0.003	0.006

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Brake System Repairs (ATA VMRS 13)						
Parts cost	3,043.04	1,119.48	0.00	0.00	19,850.49	1,782.35
Labor hours	110.5	24.6	13.2	4.7	341.1	34.9
Average labor cost	5,524.00	1,227.50	659.00	233.50	17,054.00	1,746.00
Total cost (for system)	8,567.04	2,346.98	659.00	233.50	36,904.49	3,528.35
Total cost (for system) per bus	713.92	195.58	329.50	116.75	4,613.06	441.04
Total cost (for system) per mile	0.006	0.020	0.005	0.010	0.016	0.016
Transmission Repairs (ATA VMRS 27)						
Parts cost	1,804.26	87.49	0.00	0.00	12,537.35	5,439.09
Labor hours	252.0	66.9	0.0	0.0	103.9	3.9
Average labor cost	12,599.00	3,345.50	0.00	0.00	5,192.50	196.50
Total cost (for system)	14,403.26	3,432.99	0.00	0.00	17,729.85	5,635.59
Total cost (for system) per bus	1,200.27	286.08	0.00	0.00	2,216.23	704.45
Total cost (for system) per mile	0.010	0.029	0.000	0.000	0.007	0.026
Inspections Only—No Parts Replacements (101)						
Parts cost	0.00	0.00	0.00	0.00	0.00	0.00
Labor hours	2169.3	92.8	185.4	17.5	2566.6	190.7
Average labor cost	108,465.00	4,639.00	9,272.00	874.50	128,332.00	9,534.00
Total cost (for system)	108,465.00	4,639.00	9,272.00	874.50	128,332.00	9,534.00
Total cost (for system) per bus	9,038.75	386.58	4,636.00	437.25	16,041.50	1,191.75
Total cost (for system) per mile	0.072	0.039	0.068	0.038	0.054	0.044

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period			
Cab, Body, and Accessories Systems Repairs (ATA VMRS 02-Cab and Sheet Metal, 50-Accessories, 71-Body)									
Parts cost	33,258.47	5,145.26	4,209.32	1,979.21	44,743.18	3,037.22			
Labor hours	1398.6	179.7	181.9	11.5	1188.2	149.9			
Average labor cost	69,928.50	8,985.50	9,097.00	574.00	59,410.50	7,494.00			
Total cost (for system)	103,186.97	14,130.76	13,306.32	2,553.21	104,153.68	10,531.22			
Total cost (for system) per bus	8,598.91	1,177.56	6,653.16	1,276.61	13,019.21	1,316.40			
Total cost (for system) per mile	0.069	0.120	0.097	0.111	0.044	0.049			
HVAC System Repairs (ATA VMRS 01)									
Parts cost	7,566.51	5,231.04	158.79	0.00	12,467.88	3,299.21			
Labor hours	156.5	59.5	12.9	5.9	112.3	21.8			
Average labor cost	7,824.50	2,976.00	647.00	295.00	5,614.00	1,090.00			
Total cost (for system)	15,391.01	8,207.04	805.79	295.00	18,081.88	4,389.21			
Total cost (for system) per bus	1,282.58	683.92	402.90	147.50	2,260.24	548.65			
Total cost (for system) per mile	0.010	0.070	0.006	0.013	0.008	0.020			
Lighting System Repairs (ATA VMRS 34)									
Parts cost	4,568.18	368.69	362.57	118.96	622.22	82.30			
Labor hours	235.1	37.7	23.4	4.5	57.5	12.9			
Average labor cost	11,757.00	1,884.00	1,172.00	227.00	2,876.50	642.50			
Total cost (for system)	16,325.18	2,252.69	1,534.57	345.96	3,498.72	724.80			
Total cost (for system) per bus	1,360.43	187.72	767.29	172.98	437.34	90.60			
Total cost (for system) per mile	0.011	0.019	0.011	0.015	0.001	0.003			

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period			
Frame, Steering, and Suspension Repairs (ATA VMRS 14-Frame, 15-Steering, 16-Suspension)									
Parts cost	6,368.45	1,655.59	331.52	143.04	9,003.14	521.35			
Labor hours	211.2	30.6	3.1	3.1	98.4	13.8			
Average labor cost	10,560.50	1,530.50	155.50	154.50	4,917.50	691.50			
Total cost (for system)	16,928.95	3,186.09	487.02	297.54	13,920.64	1,212.85			
Total cost (for system) per bus	1,410.75	265.51	243.51	148.77	1,740.08	151.61			
Total cost (for system) per mile	0.011	0.027	0.004	0.013	0.006	0.006			
Axle, Wheel, and Drive Shaft Repairs (ATA VMRS 11	-Front Axle, 18	-Wheels, 22-Re	ar Axle, 24-Dr	ive Shaft)					
Parts cost	1,892.90	0.00	799.69	799.69	25,576.51	3,534.01			
Labor hours	16.6	2.4	10.1	2.3	81.3	33.2			
Average labor cost	827.50	121.00	503.50	113.50	4,062.50	1,658.50			
Total cost (for system)	2,720.40	121.00	1,303.19	913.19	29,639.01	5,192.51			
Total cost (for system) per bus	226.70	10.08	651.60	456.60	3,704.88	649.06			
Total cost (for system) per mile	0.002	0.001	0.010	0.040	0.013	0.024			
Tire Repairs (ATA VMRS 17)									
Parts cost	95,036.99	8,350.30	9,478.91	2,425.30	52,233.19	8,606.35			
Labor hours	258.3	23.9	18.7	5.3	203.6	27.5			
Average labor cost	12,915.00	1,193.00	936.50	264.00	10,181.00	1,376.50			
Total cost (for system)	107,951.99	9,543.30	10,415.41	2,689.30	62,414.19	9,982.85			
Total cost (for system) per bus	8,996.00	795.28	5,207.71	1,344.65	7,801.77	1,247.86			
Total cost (for system) per mile	0.072	0.081	0.076	0.117	0.026	0.046			

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Towing Charges						
Charge	6,285.00	0.00	285.00	0.00	2,701.20	0.00
Labor hours	0.00	0.00	0.00	0.00	1.00	0.00
Average labor cost	0.00	0.00	0.00	0.00	50.00	0.00
Total cost (for system)	6,285.00	0.00	285.00	0.00	2,751.20	0.00
Total cost (for system) per bus	523.75	0.00	142.50	0.00	343.90	0.00
Total cost (for system) per mile	0.004	0.000	0.002	0.000	0.001	0.000

Fleet Summary Statistics: SI Units

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Number of vehicles	12	12	2	2	8	8
Period used for fuel and oil analysis	4/14-12/19	7/19-12/19	1/17-12/19	7/19-12/19	10/14-12/19	7/19-12/19
Total number of months in period	69	6	36	6	63	6
Fuel and oil analysis base fleet kilometers	2,667,907	189,885	102,963	37,116	3,417,530	318,545
Period used for maintenance analysis	1/15-12/19	7/19-12/19	1/17-12/19	7/19-12/19	10/14-12/19	7/19-12/19
Total number of months in period	60	6	36	6	63	6
Maintenance analysis base fleet kilometers	2,420,431	189,885	220,479	37,116	3,815,402	349,048
Average monthly kilometers per vehicle	3,802	2,637	3,062	3,093	7,570	7,272
Availability	83	66	82	79	95	90
Fleet fuel/energy usage in kWh (BEB) or liter (CNG)	3,582,903	254,792	136,242	47,821	2,129,277	219,093
Roadcalls	295	10	17	1	90	5
Total KBRC	9,280	18,989	12,969	37,116	42,393	69,810
Propulsion roadcalls	121	7	7	1	58	3
Propulsion KBRC	22,624	27,126	31,497	37,116	65,783	116,349
Representative fleet L/100 km (energy equiv.)	13.48	13.47	13.28	12.94	55.76	61.56
Energy cost per kWh or CNG cost per liter	0.18	0.18	0.18	0.18	0.27	0.30
Fuel cost per kilometer	0.28	0.27	0.28	0.27	0.17	0.20
Total scheduled repair cost per km	0.05	0.03	0.05	0.03	0.07	0.06
Total unscheduled repair cost per km	0.23	0.49	0.25	0.30	0.11	0.20
Total maintenance cost per km	0.28	0.52	0.30	0.33	0.18	0.26
Total operating cost per km	0.56	0.79	0.58	0.60	0.35	0.47

Maintenance Cost Summary: SI Units

Maintenance Cost Summary

	BEB 35FC All Data	BEB 35FC Data Period	BEB 40FC All Data	BEB 40FC Data Period	CNG All Data	CNG Data Period
Fleet kilometers	2,420,431	189,885	220,479	37,116	3,815,402	349,048
Total parts cost	339,192.71	53,069.81	27,129.31	6,969.52	365,793.81	51,335.54
Total labor hours	6,743.2	913.8	773.4	106.4	6,410.5	796.9
Average labor cost (@ \$50.00 per hour)	337,162.00	45,689.50	38,671.00	5,319.50	320,525.50	39,844.50
Total maintenance cost	676,354.71	98,759.31	65,800.31	12,289.02	686,319.31	91,180.04
Total maintenance cost per bus	56,362.89	8,229.94	32,900.16	6,144.51	85,789.91	11,397.51
Total maintenance cost per km	0.28	0.52	0.30	0.33	0.18	0.26
without low-voltage battery cost	0.25	0.45	0.25	0.30	0.17	0.24

www.nrel.gov

NREL/PR-5400-75581

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the California Air Resources Board. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

