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Introduction and Motivation
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– Bioreactor: use microbial action for conversion 
• Pharmaceutical industry
• Waste water treatment
• Biofuels and molecules (Research at NREL)

– Ethanol/Butane-diol/Methane

– Fermentation is a large cost contributor1

• Cost is important: low value products

– Improve economics through bioreactor design
• More engineering than biology
• Validated high-fidelity modeling
• Scale-up/reactor-design optimization 
• Techno-economic analysis

Biomethanation reactor (NREL)

Algae bioreactor

1Humbird, D., R. Davis, and J. D. McMillan. "Aeration costs in stirred-tank and bubble 
column bioreactors." Biochemical engineering journal 127 (2017): 161-166.
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Objectives

– Optimization and scale-up of bioreactors via 
Computational fluid dynamics (CFD) simulations

• Validation at lab scale
• Comparison of reactor designs

– Bubble column, airlift, stirred tank

• Optimization 
– Sensitivity to scale-up
– Effective mixing – oxygen distribution
– Geometry and operating conditions

– Coupling to Techno economics and cost prediction
– Systems engineering for overall optimization of conversion process
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Mathematical model and numerical methods
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Multiphase Euler-Euler equations
• Gas and liquid as continuous interpenetrating phases

• Bubble sizes are small compared to reactor dimensions
• Constant bubble size - 6 mm

• Compressible low Mach RANS equations 

Volume fraction constraint

Mass conservation

Momentum conservation

Species transport within 
each phase
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Mass transfer
Oxygen mass transfer (Higbie et al. 1 )

Oxygen transfer rate

Henry’s law

Mass transfer coefficient

Microbial oxygen uptake (Monod model)

1 Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365–389. 
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Computational model

• Transport properties

• Fermentation broth properties are similar to water
• Grace drag model for bubbles
• Wilke-Chang diffusion of species 
• Multiphase k-ϵ turbulence model
• Wall lubrication effects

• Customized solver TwoPhaseEulerFoam in OpenFOAM

• Multi-Reference-Frame (MRF) method for rotating cases with impellers

• Simulations performed using

• 72 Intel Skylake processors
• 48 hours of run time to simulate 500 seconds

• More details in Rahimi et al., Chem. Engg. Res. Design, 139, 2018
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Geometry and meshing

• Bottom inlet with a gas fraction that specifies sparger mass flow rate
• Lateral walls use no-slip condition for liquid and slip for gas
• ~ 300,000 cells – sufficient for grid convergent solutions

airliftBubble column Stir tank Sparger
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Results
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Model validation with small-scale bubble column

• Validation done for a small-scale bubble column  (1 m height, 15 cm diameter)
• Average mass transfer coefficient matches Heijnen and Van’t Riet (1984)1

• Gas holdup matches experiments/simulations by Mcclure et al. (2013) 2

1 Heijnen, J. J., Van’t Riet, K., Apr. 1984. Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chem. Eng. J. 28 (2), B21–B42.
2 McClure, D. D., Kavanagh, J. M., Fletcher, D. F., Barton, G. W., 2013.  Development of a CFD model of bubble column bioreactors: Part one - a 
detailed experimental study. Chem. Eng. Technol. 36 (12), 2065–2070. 

Superficial gas velocity:
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Transient fluid dynamics (comparison)

• Superficial gas velocity = 0.1 m/s, impeller speed = 2 rad/s
• Gas hold up is similar for all cases
• Faster time scale to steady state with impellers
• Draft tube and impellers aid better mixing

Gas fraction
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Oxygen transfer

OUR=150 mol/m3/h

OUR=0

• All reactors show almost the same average concentration 
without microbial uptake

• Higher mass transfer rate in that case of stir tank reactor
• Stir-tank reactor higher average oxygen concentration with 

microbial uptake

Oxygen concentration in mol/m3
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Oxygen limited regions

Bubble column airlift Stir tank

• Oxygen limited regions are 
where microbial uptake is 
sub-optimal < 0.15 mol/m3

• OURmax = 150 mol/m3/h

• Radial transport is limited in 
bubble column, mitigated in 
airlift and stir tank

• O2 limited regions towards 
the top and the wall 
boundaries
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Streamlines and mixing

• Streamlines obtained from 
temporal averaging of liquid 
velocity at steady-state

• Draft tube allows for better 
top to bottom mixing

• Impellers in the stir tank form 
Taylor vortices that aid in 
better mixing

Bubble column airlift Stir tank
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Sensitivity to reactor height

Pressure (Pa)
O2 conc 
(mol/m3)

10
 m

40
 m

5 m

• Cases are at superficial gas velocity of 2 cm/s

• Larger hydrostatic pressure head with greater height
• Larger oxygen transfer due to higher Henry saturation concentration
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Automated meshing of stir-tank reactor

3 impellers, 
10 baffles

9 impellers, 
5 baffles

5 impellers, 
6 baffles

• Automated python script allows for a generic design that can be used for optimization



NREL    |    17

Stir tank optimization

Sensitivity of stir-tank reactor

• 5 m dia, 17 m height
• Vgs=2 cm/s

• average O2 concentration
• Rotational speed
• No: of blades
• No: of impellers

3 impellers, 4 blades

3 impellers, 20 rpm 4 blades, 20 rpm

O2 (mol/m3)
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Conclusions and future work
• Conclusions

• Computational model
• OpenFOAM based multiphase solver with oxygen uptake

• Results
• Validated small scale bubble column
• Comparison between bubble column, airlift and stir-tank reactors

• Better mixing in stir tanks: Taylor vortices aid in mixing
• Greater pressure heads leads to greater O2 transfer

• Optimization of stir tank reactor
• Asymptotic performance for varying 

• Angular velocity, Number of impellers, Rotational speed

• Future work
• Surrogate models for optimizing stir-tank reactors
• High fidelity LES instead of RANS 
• Bubble size distribution
• Systems level engineering

• Coupling with other unit operations
• Techno-economics

• Impeller costs may outweigh better mixing
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