Multiphase Reacting Flow Simulations and Optimization of Commercial-Scale Aerobic Bioreactors

Hari Sitaraman, Mohammad Rahimi, James Lischeske and Jonathan Stickel

2019 AIChE Annual Meeting, Orlando, Florida
11th November 2019
Introduction and Motivation

- Bioreactor: use microbial action for conversion
 - Pharmaceutical industry
 - Waste water treatment
 - Biofuels and molecules (Research at NREL)
 - Ethanol/Butane-diol/Methane

- Fermentation is a large cost contributor\(^1\)
 - Cost is important: low value products

- Improve economics through bioreactor design
 - More engineering than biology
 - Validated high-fidelity modeling
 - Scale-up/reactor-design optimization
 - Techno-economic analysis

Objectives

– Optimization and scale-up of bioreactors via Computational fluid dynamics (CFD) simulations

• Validation at lab scale
• Comparison of reactor designs
 – Bubble column, airlift, stirred tank

• Optimization
 – Sensitivity to scale-up
 – Effective mixing – oxygen distribution
 – Geometry and operating conditions

– Coupling to Techno economics and cost prediction
– Systems engineering for overall optimization of conversion process
Mathematical model and numerical methods
Multiphase Euler-Euler equations

- Gas and liquid as continuous interpenetrating phases
 - Bubble sizes are small compared to reactor dimensions
 - Constant bubble size - 6 mm
- Compressible low Mach RANS equations

\[\alpha_L + \alpha_G = 1 \]

\[\frac{\partial}{\partial t}(\alpha_i \rho_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \vec{V}_i) = 0 \]

\[\frac{\partial}{\partial t}(\alpha_i \rho_i \vec{V}_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \vec{V}_i \vec{V}_i) = -\alpha_i \vec{\nabla} P + \alpha_i \rho_i \vec{g} + \vec{\nabla} \cdot (\alpha_i \vec{R}_i) + \vec{F}_i \]

\[\frac{\partial}{\partial t}(\alpha_i \rho_i Y_{ij}) + \vec{\nabla} \cdot (\alpha_i \rho_i Y_{ij} \vec{V}_i) = \vec{\nabla} \cdot (\alpha_i \rho_i \vec{D}_{ij} \vec{\nabla} Y_{ij}) + \vec{R}_{ij}^{MT} \]
Mass transfer

Oxygen mass transfer (Higbie et al. ¹)

\[
\text{OTR} = k_L a (C_{O_2}^* - C_{O_2})
\]

\[
C_i^* = \frac{X_{i,GP}}{H_i} \frac{\rho_L}{M_L}
\]

\[
k_L = \sqrt{\frac{4D}{\pi}} \frac{|u_{\text{slip}}|}{d_b} \quad a = \frac{6\alpha_G}{d_b}
\]

Microbial oxygen uptake (Monod model)

\[
\text{OUR} = \text{OUR}_{\text{max}} \frac{C_{O_2}}{K_O + C_{O_2}} \alpha_L
\]

Computational model

• Transport properties
 • Fermentation broth properties are similar to water
 • Grace drag model for bubbles
 • Wilke-Chang diffusion of species
 • Multiphase k-ε turbulence model
 • Wall lubrication effects

• Customized solver *TwoPhaseEulerFoam* in OpenFOAM

• Multi-Reference-Frame (MRF) method for rotating cases with impellers

• Simulations performed using
 • 72 Intel Skylake processors
 • 48 hours of run time to simulate 500 seconds

• More details in Rahimi et al., Chem. Engg. Res. Design, 139, 2018
Geometry and meshing

- Bottom inlet with a gas fraction that specifies sparger mass flow rate
- Lateral walls use no-slip condition for liquid and slip for gas
- ~300,000 cells – sufficient for grid convergent solutions
Results
Model validation with small-scale bubble column

- Validation done for a small-scale bubble column (1 m height, 15 cm diameter)
- Average mass transfer coefficient matches *Heijnen and Van’t Riet (1984)*\(^1\)
- Gas holdup matches experiments/simulations by Mcclure et al. (2013)\(^2\)

\[\nu_g = \frac{V_{\text{mid}}}{A_{\text{reactor}}} \]

Transient fluid dynamics (comparison)

- Superficial gas velocity = 0.1 m/s, impeller speed = 2 rad/s
- Gas hold up is similar for all cases
- Faster time scale to steady state with impellers
- Draft tube and impellers aid better mixing
All reactors show almost the same average concentration without microbial uptake.

Higher mass transfer rate in that case of stir tank reactor.

Stir-tank reactor higher average oxygen concentration with microbial uptake.
Oxygen limited regions are where microbial uptake is sub-optimal < 0.15 mol/m³

- OUR_{max} = 150 mol/m³/h
- Radial transport is limited in bubble column, mitigated in airlift and stir tank
- O₂ limited regions towards the top and the wall boundaries
Streamlines and mixing

- Streamlines obtained from temporal averaging of liquid velocity at steady-state
- Draft tube allows for better top to bottom mixing
- Impellers in the stir tank form Taylor vortices that aid in better mixing
Sensitivity to reactor height

- Cases are at superficial gas velocity of 2 cm/s

- Larger hydrostatic pressure head with greater height
 - Larger oxygen transfer due to higher Henry saturation concentration
Automated meshing of stir-tank reactor

3 impellers, 10 baffles
9 impellers, 5 baffles
5 impellers, 6 baffles

• Automated python script allows for a generic design that can be used for optimization
Stir tank optimization

Sensitivity of stir-tank reactor

- 5 m dia, 17 m height
- $V_{gs} = 2$ cm/s
- Average O_2 concentration
 - Rotational speed
 - No: of blades
 - No: of impellers

3 impellers, 4 blades

<table>
<thead>
<tr>
<th>Rotational speed (rad/s)</th>
<th>O$_2$ concentration (mol/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.29</td>
</tr>
<tr>
<td>1</td>
<td>0.31</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
</tr>
</tbody>
</table>

3 impellers, 20 rpm

<table>
<thead>
<tr>
<th>Number of blades</th>
<th>O$_2$ concentration (mol/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
</tr>
</tbody>
</table>

4 blades, 20 rpm

<table>
<thead>
<tr>
<th>Number of impellers</th>
<th>O$_2$ concentration (mol/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Conclusions and future work

• **Conclusions**
 • Computational model
 • OpenFOAM based multiphase solver with oxygen uptake
 • Results
 • Validated small scale bubble column
 • Comparison between bubble column, airlift and stir-tank reactors
 • Better mixing in stir tanks: Taylor vortices aid in mixing
 • Greater pressure heads leads to greater O_2 transfer
 • Optimization of stir tank reactor
 • Asymptotic performance for varying
 • Angular velocity, Number of impellers, Rotational speed

• **Future work**
 • Surrogate models for optimizing stir-tank reactors
 • High fidelity LES instead of RANS
 • Bubble size distribution
 • Systems level engineering
 • Coupling with other unit operations
 • Techno-economics
 • Impeller costs may outweigh better mixing
Thank You

www.nrel.gov

NREL/PR-2C00-75490