<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>NREL Overview</td>
</tr>
<tr>
<td>Energy System Challenges & H2@Scale</td>
</tr>
<tr>
<td>Demand and Resource Technical Potential</td>
</tr>
<tr>
<td>Why Electrolytic Hydrogen?</td>
</tr>
<tr>
<td>Economic Potential</td>
</tr>
<tr>
<td>Concluding Thoughts</td>
</tr>
</tbody>
</table>
Mission: NREL advances the science and engineering of energy efficiency, sustainable transportation, and renewable power technologies and provides the knowledge to integrate and optimize energy systems.

Example Technology Areas:

- Approximately 2,200 employees, postdoctoral researchers, interns, visiting professionals, and subcontractors
- 327-acre campus in Golden & 305-acre National Wind Technology Center 13 miles north
- 63 R&D 100 awards. More than 1000 scientific and technical materials published annually

www.nrel.gov/about
Partnering with Business for Competitive Advantage

Nearly 820 active partnerships with industry, academia, and government

In 2018 NREL had:

- 272 new partnership agreements
- $70.0 million value of new partnership agreements
- 69 unique new partners
- 528 unique active partners
NREL Overview

Energy System Challenges & H2@Scale

Demand and Resource Technical Potential

Why Electrolytic Hydrogen?

Economic Potential

Concluding Thoughts
Select (Relevant) Megatrends

- Increased global focus on emissions, increased policy regulations (market impact)
- Low, cost intermittent renewable electrons
- Increased electrification

When the Planet Looks Like a Climate-Change Ad (9/12/17)

Downtown Denver from NREL’s Energy System Integration Facility

The Great Barrier Reef’s catastrophic coral bleaching, in one map
Air Quality – Downtown Denver

27 September 2016 / GENEVA - A new WHO air quality model confirms that 92% of the world’s population lives in places where air quality levels exceed WHO limits.

WHO: Air pollution caused one in eight deaths / March 25, 2014

http://www.cnn.com/2014/03/25/health/who-air-pollution-deaths/
Changing Energy System – Policy

Renewable Portfolio Standards (RPS)
Senate Bill 100, signed by Gov. Edmund G. Brown, Jr. codifies 60% by 2030 & 100% by 2045 RPS (2018)
http://www.energy.ca.gov/renewables/

Zero Emission Vehicles (ZEV)
2016 ZEV Action Plan toward 1.5 million ZEVs
by 2025.

Renewable Gas Standard
SB-687 Renewable gas standard
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=20152016058687
Renewable electricity price trends

Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1’15 Report, 2. DOE EERE Wind Report, 2015
How much power does an investor get for a dollar?

Lazard LCOE analysis from https://www.lazard.com/perspective/levelized-cost-of-energy-analysis-100/
Variable Renewable Electricity Challenges

Denholm et al. 2008

[Graph showing PV penetration and hour with various energy sources including PV, Gas, Turbine, Pumped Storage, Hydro, Combined Cycle, Imports, Coal, Nuclear, Wind, Geo, and Exports.]
Curtailment will lead to an abundance of low value electrons, and we need solutions that will service our multi-sector demands.
Curtailment and Electricity Prices

Curtailment is increasing

Lower average electricity prices and hours with negative prices

Impacts of Curtailment Renewable Investment

- Reduced revenue would likely limit penetration of VRE generation outside of policy factors (RPS)
- If a purchaser could accept a low utilization factor, they could get low-price electricity and extend the VRE penetration limit

Options for Storing Electrical Energy

Long-term (e.g., seasonal) storage is challenging

Challenges Reaching High Renewable Electricity Penetrations

Note: % VRE in 2015

Actual Operating System
Modeled System

Deep Decarbonization
1400 GW wind
900 GW Solar

Credit: B. Kroposki, NREL

Alaska Village
Lanai
Mau
I
Denmark*
Ireland
CA 50%
WWSIS
ERGIS
REF
Cont. USA
CA*

DOE 2050 Goals
35% Wind (404 GW)
19% PV (632 GW)

Relatively Easy
Much harder
Extremely Difficult

* Part of a larger synchronous AC power system

WWSIS = Western Wind and Solar Integration Study
ERGIS = Eastern Renewable Generation Integration Study
REF = Renewable Electricity Futures Study
Electricity is Not the Only Energy Challenge

- Electrification is increasing in utilization sectors
- But they have limited electricity options
- Reducing emissions will need a combination of efficiency and reduced carbon sources

Source: https://www.nrel.gov/analysis/electrification-futures.html
"If you can't solve a problem, enlarge it"

Source: https://www.whitehouse.gov/sites/whitehouse.gov/files/images/first-family/34_dwight_d_eisenhower%5B1%5D.jpg
H2@Scale Concept

*Illustrative example, not comprehensive
Demand and Resource Technical Potential
H₂ is different and changing fast

H₂ Council*

- Launched in January 2017 its members include leading companies with over $10 billion in investments along the hydrogen value chain, including transportation, industry, and energy exploration, production, and distribution.

13 members (Jan 2017).

32 steering members and 20 supporting members (Nov 2018). *Steering members shown, additional supporting members www.hydrogencouncil.com

Potential Impacts from Hydrogen Council Roadmap Study. By 2050:
- $2.5 trillion in global revenues
- 30 million jobs
- 400 million cars, 15-20 million trucks
- 18% of total global energy demand
Agencies should invest in early-stage, innovative technologies that show promise in harnessing American energy resources safely and efficiently.

Source: Hydrogen Council

“Hydrogen Scaling Up”

“Roadmap to a US Hydrogen Economy” (2019)
Demand potential of hydrogen market by 2050 is >9X.

Other applications are possible based on technology and policy growth as well as smaller applications.

Demand Potential

<table>
<thead>
<tr>
<th>Application</th>
<th>Demand Potential (MMT/yr)</th>
<th>2015 Market for On-Purpose H2 (MMT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refineries and the chemical processing industry (CPI) a</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Metals</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Ammonia</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Biofuels</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Synthetic fuels and chemicals</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Natural gas supplementation</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Seasonal energy storage for the electricity grid</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Industry and Storage Subtotal</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td>Light-duty fuel cell electric vehicles (FCEVs)</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Medium- & Heavy-Duty FCEVs</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Transportation Fuel Subtotal</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>10</td>
</tr>
</tbody>
</table>

Definition: The demand potential is the estimated market size constrained by the services for which society currently uses energy, real-world geography, system performance, and by optimistic market shares but not by economic calculations.
Technical Potential Supply from Renewable Resources

<table>
<thead>
<tr>
<th>Solid Biomass</th>
<th>EIA 2015 current consumption (quads/yr)</th>
<th>Required to meet demand of 99 MMT / yr (quads/yr)</th>
<th>Technical Potential (quads/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.7</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Wind Electrolysis</td>
<td>0.68</td>
<td>16</td>
<td>170</td>
</tr>
<tr>
<td>Solar Electrolysis</td>
<td>0.17</td>
<td>16</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Total demand including hydrogen is satisfied by ≈10% of wind, 2% of solar, and ≈150% of biomass technical potential.

Wind Technical Potential

- Current consumption 2015
- Residual Technical Potential

Solar Technical Potential

- Required to meet demand of 99 MMT of H2
- Preliminary Results
Hydrogen can be produced from diverse domestic resources to meet aggressive growth in demand.

![Graph showing resource consumption by type (Quads per year) and years to depletion.](Image)

- Natural Gas: Required to meet demand of 99 MMT of H2 in 2040
- Natural Gas: 16 years
- Natural Gas: Current consumption 2015
- Natural Gas: ≈ 60 years
- Coal: 22 years
- Coal: ≈ 180 years
- Coal: ≈ 250 years
- Nuclear: 27 years
- Nuclear: ≈ 250 years
- Nuclear: ≈ 180 years
- Nuclear: 8 years

Resource Consumption by Type (Quads per year)

Current consumption 2015

- Years to depletion based on proven and unproven reserves
- Years to depletion based on reasonably assured reserves at <$260/kg and both once-through and breeder reactors

Preliminary Results

Hydrogen consumption and depletion based on type of resource.
<table>
<thead>
<tr>
<th>NREL Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy System Challenges & H2@Scale</td>
</tr>
<tr>
<td>Demand and Resource Technical Potential</td>
</tr>
<tr>
<td>Why Electrolytic Hydrogen?</td>
</tr>
<tr>
<td>Economic Potential</td>
</tr>
<tr>
<td>Concluding Thoughts</td>
</tr>
</tbody>
</table>
Electricity Prices Vary Across the Year

- Hours with energy at very low and very high prices are increasing
- Other revenue streams (e.g., capacity, services) are becoming more critical
- Wind and solar power purchase agreements (PPAs) are key opportunities

Figure created using data from publicly available CA-ISO and SPP datasets
Potential Opportunity: Low Temperature Electrolysis

Electrolytic H₂ has the potential to be cost competitive.

Availability of low-cost electricity can help enable low-cost H₂ production, even at low capacity factors.

Potential Levelized Costs of H₂ Production

Source: Bryan Pivovar & Josh Eichman
Opportunity for Electrolytic Hydrogen Generation

Palo Verde 2017

- Electrolytic hydrogen could be cost-competitive if flexible, low-temperature electrolyzers can be purchased at $400/kW and markets are available

$400/kW electrolyzer purchase cost. Operating during lowest cost hours of the year
A Dispatchable Load Could Utilize Low-Cost, Dispatch-Constrained Electricity (LDE)

A controllable, dispatchable load could remove the cap on penetration of variable renewable generation.

We developed a method to estimate LDE availability providing a flexible load will pay for it.
LDE Generation

Used ReEDS to estimate generator fleet and generation mix at multiple LDE values

Buildout with $0/MWh LDE

2050 Results at Various LDE Values

High Curtailment Scenario
Future Opportunities for LDE Utilization at Palo Verde

Under parameters that lead to high variable renewable generation and with a $20/MWh price floor,

- Additional LDE is available
- Electrolytic hydrogen can be cost competitive at Palo Verde
A Dispatchable Load Could Utilize Low-Cost, Dispatch-Constrained Electricity (LDE)

A controllable, dispatchable load could remove the cap on penetration of variable renewable generation.

We developed a method to estimate LDE availability providing a flexible load will pay for it.

- Set willingness to pay for LDE
- Run ReEDS to estimate optimal generator fleet
- Transfer fleet results to PLEXOS
- Run PLEXOS to estimate quantity and availability of LDE
- Develop LDE supply curve
Used PLEXOS Unit Commitment Model to create supply / availability curves for LDE
Developed supply curves for LTE-generated hydrogen based on each price / availability factor combination

Low Temperature Electrolysis of Low-Cost, Dispatch-Constrained Electricity:

- **Calculated hydrogen levelized costs** using H2A Future Central Hydrogen Production from PEM Electrolysis model at each price / availability factor combination
- **Added $20/MWh for transaction fees** for “Retail” prices and $10/MWh for “Retail w/ Services”
- Assume storage and delivery costs ~$0.40/kg\(H_2\) (cost for pipeline transport of 200,000 MT/yr 250 miles with geologic storage)
NREL Overview

Energy System Challenges & H2@Scale

Demand and Resource Technical Potential

Why Electrolytic Hydrogen?

Economic Potential

Concluding Thoughts
Economic Potential Methodology: Market Equilibrium

Demand Curve: how much are consumers willing and able to pay for a good?

Supply Curve: threshold prices showing how much are producers willing and able to produce at each?

Economic Equilibrium: Quantity where demand price is equal to the supply price.
- No excess supply or demand.
- Market pushes price and quantity to equilibrium.

Economic Potential: Five National Scenarios

<table>
<thead>
<tr>
<th>Scenario Name</th>
<th>Reference</th>
<th>Low NG Resource</th>
<th>Improved Electrolysis</th>
<th>Available Biomass Resource</th>
<th>Lowest-Cost Electrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas price assumption</td>
<td>Reference</td>
<td></td>
<td>Higher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Temperature Electrolysis (LTE) capital costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-cost, Dispatch-constrained Electricity purchase assumption</td>
<td>Current Trajectory</td>
<td>Improvements</td>
<td>Aggressive Assumptions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td></td>
<td></td>
<td>Not available</td>
<td>Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Metals demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key differences in scenarios: 1) natural gas price assumption, 2) electrolyzer cost assumption, 3) electrolyzers’ access to grid service markets, 4) increased threshold price in metals industry, & 5) competition for biomass resource
The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.
• Lowest natural gas prices; thus, higher penetrations of FCEVs
• About 10% of U.S. nuclear generation to H₂
• Refineries and ammonia demands based on growing markets
• Biofuels demand limited to Renewable Fuels Standard
Higher natural gas prices than reference scenario

Thus, negligible growth in hydrogen demand

Only economic demands: refining, ammonia, biofuels
• Low-Temperature electrolyzer (LTE) purchase cost reduced to $200/kW & reduced electricity price adder
• Supply growth due to electrolytic hydrogen
• Increased willingness to pay for H2 for metals refining
• Leads to demand for growing domestic metals refining industry
Only scenario with biomass available for hydrogen production
Lowest cost biomass resource assumed available
Lower cost hydrogen allows demand growth
Low-Temperature electrolyzer (LTE) purchase cost reduced to $100/kW & no electricity price adder

- Electrolytic hydrogen less costly than steam methane reforming
- Larger ammonia and chemicals opportunities than other scenarios
Potential Impact of H2@Scale on Wind and Solar PV Markets

Hydrogen is a potential dispatchable load that can increase economic demand for variable electricity.

- Estimates are based on national scenarios with minimal resolution into regional constraints.
- Lowest-Cost Electrolysis assumes aggressive electrolyzer costs ($100/kW)
Concluding Thoughts

• Energy requirements are getting more complex and H2@Scale is a potential opportunity
• The potential demand of hydrogen demand in the U.S. is >9X current annual consumption.
• The economic potential of hydrogen demand in the U.S. is 1.4-4X current annual consumption.
• Up to 20% of current nuclear power plants could improve their profitability by producing hydrogen.
• At high penetrations, the H2@Scale concept could increase PV penetration by about 30% and almost double wind generation
Thank You
Mark.Ruth@nrel.gov

Additional information on H2@Scale can be found at:
http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.