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Executive Summary 
Motivation: Risk and uncertainty are core characteristics of research and development (R&D) 
programs. Attempting to do what has not been done before will sometimes end in failure, just as 
it will sometimes lead to extraordinary success. The challenge is to identify an optimal mix of 
R&D investments in pathways that provide the highest returns while reducing the costs of 
failure. The goal of the R&D Pathway and Portfolio Analysis and Evaluation project is to 
develop systematic, scalable pathway and portfolio analysis and evaluation methodologies and 
tools that provide high value to the U.S. Department of Energy (DOE) and its Office of Energy 
Efficiency & Renewable Energy (EERE). This work aims to assist analysts and decision makers 
identify and evaluate, quantify and monitor, manage, document, and communicate energy 
technology R&D pathway and portfolio risks and benefits. The project-level risks typically 
considered are technology cost and performance (e.g., efficiency and environmental impact), 
while the portfolio level risks generally include market factors (e.g., competitiveness and 
consumer preference). 

The Workshop: The Workshop on Methods for R&D Portfolio Analysis and Evaluation 
convened July 17–18, 2019, at the National Renewable Energy Laboratory in Golden, Colorado, 
and it examined strengths and weaknesses of the various methodologies applicable to R&D 
portfolio modeling, analysis, and decision support, given pragmatic constraints such as data 
availability, uncertainties in estimating the impact of R&D spending, and practical operational 
overheads. Participants employed their deep expertise in approaches such as stochastic 
optimization, real options, Monte Carlo analysis, Bayesian networks, decision theory, complex 
systems analysis, deep uncertainty, and technology-evolution modeling to critique the initial 
example models developed by the project’s core team and to conduct thought experiments 
grounded in real-life technology models, progress data, expert elicitation, and portfolio 
information. This engagement of participants’ methodological expertise with the practical 
requirements of real-life portfolio decision support yielded ideas for improved approaches, 
alternative methodological hypotheses, and hybridization of methodologies that are well-
grounded theoretically, computationally sound, and realistically executable given data 
availability and other practical constraints. These ideas will be explored in the subsequent 
research following this workshop. 

Major Challenges: A variety of challenges were identified in work leading up to this workshop, 
including addressing proprietary and competitiveness concerns; establishing consistent protocols 
across risk analysts and external experts; assessing and addressing correlations and dependencies 
within and between technologies; avoiding biases such as overconfidence, confirmation, and 
motivation; parsing projected costs due to R&D, learning, commodity price changes, etc.; 
optimizing multiple, sometimes conflicting, criteria such as economic cost, environmental 
pollution, greenhouse gas emissions, materials use, reliability, robustness, and resiliency; and 
others. Furthermore, these analyses were and must be done in the context of deep uncertainty 
about many of the resources, technologies, markets, competitors, and numerous other factors. 
How risks might be perceived were also of concern: for example, if one R&D investment had 
only a 10% chance of success and another had 70% but with a smaller potential payoff than the 
first, how would decision makers respond? If key benefits of a technology are not captured in 
high-level portfolio evaluations—for instance, if the evaluation considered only cost and not 
broader metrics such as temporal and spatial availability, economic impact, or consumer 
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preferences—this could substantially misrepresent the value of particular R&D investments. The 
following discussion of key findings from the workshop generally confirmed the significance of 
these challenges, amplified areas of concern, and suggested avenues of research and potential 
solutions. 

Key Issues and Discussion: Many of the major discussion issues raised by the invited 
participants involved better aligning modeling and analysis activities with requirements for R&D 
investment decision support. Models should have transparency in their assumptions and structure 
and treat the major determinants of R&D progress, including non-hardware or “soft” costs. 
Bottom-up technology-cost models were identified as a useful starting point for the development 
of more complex (e.g., combined) modeling approaches. Computations should estimate not only 
the basic economy, technology, and energy metrics, but also encompass market, societal, and 
qualitative impacts. There exists a pressing need for significantly improved data sources and 
estimation techniques to better understand the relationships between R&D investment levels 
and specific technological improvements. 

Participants also emphasized the importance of expert elicitation as another primary foundational 
input to the technology cost and performance modeling. Elicitations require deliberate framing, 
employment of bias-reduction techniques, and careful synthesis. Advances in expert-elicitation 
research over the past decade and recent experiments with new elicitation modalities promise 
substantial improvements in the quality of these difficult elicitations for R&D investment 
impacts, but further investigation and evaluation of online techniques pre-elicitation interaction 
of experts, allowance for feedback (for example showing R&D solutions to decision makers, 
then iterating to adjust the selection of optimal portfolios), aggregation methods, and framing is 
requisite. In particular, the hypothesis that technology experts may provide better information 
using learning rates (or individual components of experience curves) and odds ratios rather than 
current costs and probabilities, especially conditional ones, requires testing. Initial experiments 
by several of the participants indicate the potential for online expert elicitations to provide results 
comparable to in-person expert elicitations while reducing costs and logistical challenges, but 
may require more extensive testing and quality control of the elicitation survey tool (Baker et al. 
2019). Further experimentation comparing on-line and in-person expert elicitations in the context 
of the present study would be useful. 

Conscientiously accounting for and communicating uncertainty in R&D project and portfolio 
evaluation is critical. Expected outcomes, distributional information (e.g., error bars, quantiles, 
and tornado plots), and measures of regret (via the “minimax” principle) should be estimated 
using ensemble methods in a real-options and deep-uncertainty context to develop robust 
strategies that support decision-making. Two-stage stochastic, multi-objective optimization can 
comprise the primary computational technique used to develop such strategies. Multistage 
optimization techniques beyond two-stage optimization were deemed by participants as not 
providing sufficient additional information to justify their increased computational intensity. 
Scenario-based analysis and techniques for decision-making under deep uncertainty complement 
stochastic optimization approaches.  When probability distributions for the uncertain factors are 
unavailable, robust optimization is another option. 
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Any decision-support tool for R&D investment should assist decision makers in discovering and 
interpreting information that they might otherwise overlook or misinterpret, provide a relatively 
small set of critical criteria on which decisions can be made, and adapt to the decision-making 
style and concerns of the users. Presenting decision makers with a set of satisfactory portfolios in 
optimal risk-informed visualizations comprising both influence diagrams and quantitative plots 
(including those showing Pareto optimality frontiers), rather than presenting one optimal answer, 
can assist them in robust decision-making that engenders trust through increased transparency 
and builds intuition over complex dimensional spaces to inform decision-making. This is 
particularly important to decision makers who might be disinclined towards probabilistic 
analysis or when specific probability distributions are not readily available. Tools must allow 
decision-makers to alter input parameters and assumptions interactively and immediately view 
updated results: this entails having fast-running analytic models. 

Supplemental Material: The appendix to this report include biographies of the workshop 
attendees, revised copies of the material presented at the workshop, fact sheets describing 
exploratory analyses that raise methodological issues, and an extensive bibliography of portfolio-
analysis literature.  
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Introduction  
This report summarizes the key discussions and ideas generated at the Workshop on Methods for 
R&D Portfolio Analysis and Evaluation, convened on 17–18 July 2019 at the National 
Renewable Energy Laboratory in Golden, Colorado. The goal of the R&D Pathway and Portfolio 
Analysis and Evaluation project is to assist funding decision-making across technology pathways 
and portfolios by developing methodologies and tools for systematic, scalable pathway and 
portfolio analysis and evaluation. Such tools will provide high value to the U.S. Department of 
Energy (DOE) and the Office of Energy Efficiency & Renewable Energy (EERE) by assisting 
analysts and decision makers in identifying, evaluating, quantifying, monitoring, managing, 
documenting, and communicating the risks and benefits of prospective energy technology R&D 
pathways and portfolios. Key questions that these methodologies and tools must help analysts 
and decision makers address include the following: 

• Where should the next dollar of R&D be invested to increase the likelihood of achieving 
desired returns at the project and portfolio levels? 
o How impactful will specific investments be in advancing a particular technology? 
o What is the likelihood that particular R&D pathways will achieve their goals? 
o At what point should R&D investment be cut or alternative pathways explored? 
o What are the opportunity costs of not investing in a research pathway? 
o What are ideal balances between supporting fewer projects with more resources as 

opposed to a wider range of projects with fewer resources? 

• How should the portfolio be balanced taking into consideration risk, return, time, 
technology mix, and markets? 

• How can risk scoring be made more consistent across projects, portfolios, markets, expert 
elicitations, and time? 

• How can the results of these analyses be quantified and validated? Are the results 
statistically significant and reproducible, and are they robust when audited by decision 
makers and external experts? 

• What are the most effective mechanisms for communicating these evaluations in different 
contexts of decision-making? 

Addressing these questions can provide significant value by helping decision-makers target R&D 
opportunities, thereby accelerating the pace of technology development while meeting 
stakeholder-defined objectives, such as cost, efficiency, environmental impact, etc. They may 
also help external stakeholders to better understand and assist EERE and DOE R&D decisions 
and activities.  
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Challenges 
The following issues were emphasized by workshop participants. 

Technology modeling: Numerous tradeoffs must be considered and many modeling decisions 
must be made in constructing appropriately detailed technology models in support of pathway 
and portfolio analysis. Modeling challenges are exacerbated by the uncertain techno-economic 
input data (of varied quality) for speculative, nascent, and even established technologies. In order 
for technology modeling to be tractable, it must focus on the points of leverage for R&D 
investment—points of leverage which in many cases are poorly known and must be determined 
in consultation with experts and from exploratory analysis—and on metrics relevant for decision-
making stakeholders. 

Analysis approaches: Decision support analyses must account for the considerable uncertainties 
regarding techno-economic input parameters to models, model structure, and the response of the 
state of technology to R&D investments. A pragmatic method for R&D portfolio decision 
support must be constructed from the numerous approaches proposed in the academic literature 
or applied in other practical application areas. It is not obvious whether a single approach 
adequately meets the requirements for the type of problems considered here or whether a 
hybridization of techniques can combine the strengths of several methods while avoiding their 
weaknesses. For instance, some methods rely extensively on propagating probability 
distributions that originate from expert elicitations whereas other eschew distributional 
assumptions. The computational resources and runtime of methods vary by orders of magnitude. 

Expert elicitation: Past efforts have highlighted both the necessity and challenges of eliciting 
expert opinions in support of technological forecasts, but there is much active research and 
differing schools of thought in this area. Primary challenges are the intensity of effort (overhead 
and resources) required by some elicitation methods, the need to correct experts’ cognitive biases 
such as overconfidence and confirmation, and the selection of precise elicitation questions that 
yield ranges or distributions. Emerging variations or alternatives to classical expert elicitation 
such as on-line methods, patent analysis, and historical data may warrant consideration. 

Data collection: Techno-economic data on R&D pathways and historical data on those 
pathways’ progress complements the results of expert elicitation but can be similarly difficult to 
gather and harmonize. In particular, detailed correlations between past R&D investments and 
progress in specific determinants of technology performance  would be invaluable for future 
technology forecasts. Both timeliness and detail in data pose challenges. 

Portfolio analysis: Perhaps inevitably, some technology system or subsystem models may be far 
more detailed than others, a situation which poses challenges for meaningful consistent 
comparisons of disparate technologies. There is a risk that lack of information will unfairly bias 
portfolio decisions towards or away from emerging or high-risk technologies. Portfolio-level 
decisions may require the simultaneous consideration of a disparate variety of hard and soft 
metrics, the evaluation of numerous technology models across multiple renewable-energy and 
energy-efficiency domains, and the treatment of a diversity of levels of maturity. 
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Communication of results: The variety of decision-making questions, styles, and contexts 
challenges the creation of tools informing decisions. Complex risk analysis may require complex 
visualizations and intensive computation, but streamlined, intuitive, and rapid presentation of 
results may be most effective for decision support. Tools may be designed to be run interactively 
versus in batch mode, individually versus collectively, for point estimates versus probabilistic 
ones, on single versus multiple metrics, or prospectively versus retrospectively. 

Approaches to Decision Support 
Decisions must be framed carefully, with agreement between model-builders, analysts, and 
decision makers on what question is being asked and what decision is being made. Agreement on 
and transparency around which basic assumptions are to be used in making the decision is also 
critical. Any re-framing of decisions must be done carefully and deliberately, with transparency 
around any changes in assumptions. This clarity is necessary to determine the scope and level of 
detail required in the modeling effort. 

A decision support tool should assist decision makers in discovering and interpreting information 
that they might otherwise overlook or misinterpret. The tool should provide a relatively small set 
of critical criteria on which decisions can be made. These criteria can be expressed as 
expectations over probability distributions of uncertain model inputs and parameters or as regret 
representing lost opportunities or opportunity cost. Both types of criteria will aid decision-
makers in understanding the long-term consequences, positive and negative, of specific decisions 
and short-term actions. In addition to the critical criteria, a decision support tool should be able 
to account for institutional lock-in and be flexible enough to inform decisions made amongst a 
subset of available options.  

Technology Analysis 
Model Design 
Level of detail: Attendees agreed that models should be computationally tractable and capture 
the most significant points of leverage for R&D investment and the metrics required for 
decision-making. There was no explicit agreement regarding the level of detail to include in the 
models. Model tractability, data availability, and user preferences were discussed as important 
criteria. 

Bottom-up approach: There were some advocates for starting with simple, top-down modeling 
and perhaps including more detail as the importance of individual components or subcomponents 
becomes apparent. A predominance of attendees advised bottom-up, cost modeling, whereby 
models represent the impact of engineering properties and other technology characteristics on the 
cost of components and subsystems. Both engineering- and physics-based models can serve as 
starting points for further analysis. The level of technical detail should be adjusted to the 
availability of data and the metrics relevant to decision makers. Key considerations for this are 
the synergies between expert elicitation and model building.  Workshop discussion advocated 
exploring how to effectively merge elements of these two approaches using existing work and 
how to balance these efforts to minimize overhead resources. 
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Staged decisions: Workshop attendees encouraged focusing on influential components, as 
represented graphically through tornado diagrams, and removing fixed or non-impactful 
components from the model in order to more clearly compete potential investments in the more 
influential components. Decision-making might proceed in stages, with the most impactful 
portfolio-level decisions being made first. 

Experience Curves and Learning by Doing 
Experience curves and learning by doing are important to consider in evaluating R&D impacts 
by setting a baseline for expert elicitation and when evaluating how the cost of a technology will 
adapt post R&D. Discussion in the workshop examined the importance of these experience 
curves from many perspectives: the choice of dependent and independent variables for the 
curves; the availability of data; the techniques and quality of statistical models for experience 
curves; and uncertainties associated with them. 

Soft costs: Soft costs, which can be encompassed in learning curves, include labor such as 
marketing and sales for customer acquisition, permitting, and installation, and are important to 
consider. These are more likely to vary regionally when compared with hard costs since learning 
is local, and information transfers as people move and companies expand (Nemet 2019). 

Experience curves and learning by doing (LBD): Some discussion supported directly 
modeling the impact of investments on experience curves and including this in learning rates. 
Challenges of this approach include determining the appropriate learning rate baselines for novel 
technologies and at later stages of R&D and commercialization. Thus, it is practical to include 
uncertainty bands when examining learning curves, to assign maximum and minimum potential 
learning based on past measurements along the curve (Lafond, et al., 2018). 

Handling Uncertainty 
Uncertainty inherent to forecasting future events is a primary source of uncertainty in R&D 
Pathway and Portfolio Analysis. Representing this uncertainty as probability distributions in 
technology cost and performance is useful in technology pathway analysis and is similarly useful 
in considering whether an event will occur when implementing a portfolio model, but such 
estimates are difficult to elicit from experts. Alternate approaches are further discussed in the 
Expert Elicitation section. Disagreement among experts regarding probability distributions 
perhaps could be avoided by techniques such as decision-making under deep uncertainty 
(situations lacking consensus on system models and probability distributions) and robust 
decision-making (iterative decision-analytic frameworks for identifying robust strategies), which 
do not make strong distributional assumptions. It is important to distinguish between uncertainty 
in the model structure versus uncertainty in the model inputs and parameters and identify which 
uncertainties can be controlled and by whom.  

There was little interest in examining extreme outliers or “black swan” events, but some interest 
in considering how to incorporate such events into the analysis as low-probability, high-impact 
incidents. 
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Sensitivity analyses can assist in understanding how sources of uncertainty can impact 
predictions. First, the ranges of inputs should be studied to assess the uncertainty surrounding 
parametric estimates. For instance, can we expect cost or environmental impact estimates to be 
more accurate? Then, a similar study should be conducted to assess experts’ uncertainty in 
outcomes. Finally, sensitivity analyses can be conducted on the simulation results by studying 
the predicted outcomes over a range of input parameter combinations. 

Analysis Methodology 
The models discussed in the workshop drew from fundamentally different methodologies, 
including Monte Carlo simulation, stochastic optimization, inverse optimization (a blend of 
statistics and machine learning), direct policy search, real options, robust decision-making, and 
decision-making under deep uncertainty. Both stochastic and inverse optimization support 
multistage decision-making, and there was agreement amongst workshop attendees that two 
stages are sufficient for the purpose of R&D pathway and portfolio decision-making. The first 
stage represents an optimal (potentially irreversible) decision, and the first and second stages 
together represent an optimal strategy. For additional details, see the presentations and fact 
sheets in the appendix. While a single stage is insufficiently flexible for decision-makers, 
additional stages beyond two quickly become too computationally complex and are thus of 
limited value in this context. Regardless of the model methodology, methods for dealing with 
multiple, potentially conflicting objectives are essential. These methods could be “flat” and 
involve weighting the objectives according to relative importance or be “hierarchical’ and 
involve making successive decisions. Conversely, one objective may be highlighted with the 
other ones constrained to be at acceptable levels (i.e., the constraint method).  Scenario-based 
analysis and techniques for decision-making under deep uncertainty (i.e., situations lacking 
consensus on system models and probability distributions) complement the explicitly 
probabilistic optimization approaches. 

There was also agreement amongst attendees that strategies, or longer-term sets of decisions, 
should be robust across a wide range of scenarios that include a variety of probability 
distributions or intervals for parameters. A good way to choose strategies is by eliminating 
strategies that fail to be robust. For instance, if one strategy out-performs another across all 
scenarios being considered, then the out-performed strategy can be discarded as it is always 
dominated by the better one. This method enables decisions that avoid the worst outcomes rather 
than attempting to identify a best possible outcome.  

Data Gathering 
Data collection poses a major challenge to the R&D Portfolio Analysis modeling effort and was 
an important focus of the workshop discussion. There is little historical data to relate detailed 
R&D expenditures and specific technological improvements, so statistically significant 
correlations between the two are difficult to find. A majority of workshop attendees agreed on 
expert elicitation as a key data collection methodology for the R&D models, and discussion 
centered around its associated challenges. 
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Expert Elicitation 
Challenges associated with expert elicitations are the subject of significant research as well as 
workshop discussion. The toy models developed in preparation for this workshop incorporate 
probabilities of technological advances, R&D impact on cost, and other relevant parameters. 
However, these factors are difficult to elicit. Conditional probabilities, such as the probability of 
an advance in one area enabling a subsequent advance, and branching probabilities are 
particularly problematic. Odds ratios predicting the relative probability of two events may be 
easier to elicit. There was a dominant implicit assumption that uncertainty would be represented 
by probability distributions. However, probability distributions (especially conditional and joint 
distributions) are challenging to elicit, and instead estimating ranges or moments of the 
distributions could prove more intuitive to experts.  Such interval “ambiguity sets” could then be 
used in a robust optimization setting. 

Elicitation Framing: Clearly and succinctly framing questions is extremely important to guide 
experts in obtaining pertinent data for model use. For example, the toy models developed prior to 
the workshop considered impacts on specific parameters affected by R&D, such as component 
cost. A serious challenge in expert elicitation is anchoring. Elicitations that frame questions 
around costs may tend to anchor on metrics, such as current costs and linear reductions, but cost 
reductions over time often go down learning curves which are exponential. Several attendees 
encouraged focusing expert elicitation on learning curve rates, such as Swanson’s law for 
photovoltaics (Swanson 2006). Assessing experience curves for individual components poses a 
challenge, since experience curves are typically drawn for technologies as a whole (Lafond et al. 
2018); the discussion briefly examined the possibility of combining learning curves for 
individual components. Workshop attendees recommended presenting experts with background 
and historical data to help provide context as the experts made their estimates. 

Identification and Bias: Expert elicitation can be a two-stage process. A quick screening can 
help identify the level of knowledge and foresight possessed by each expert in order to focus 
questions appropriately, with additional follow-up elicitation to gain more detailed predictions if 
warranted. True experts must be deeply involved with the technology. Elicitations across small 
sets of experts are acceptable and have demonstrated high performance (Kao and Couzin 2014). 
Experts are often researchers with a personal and professional interest in the amount of R&D 
funding a field receives or are optimistic about progress in their fields, which introduce the 
potential for bias. Such biases need to be assessed and calibrated to make realistic predictions. 
There was some discussion of the employment of methods from the field of “superforecasting” 
(see below), which relied on expert generalists rather than on specialists in a particular 
technology. 

Strategy: Interaction between experts can produce more accurate estimations if carefully 
managed. The Delphi method, for example, introduces iterative expert elicitations, interspersed 
with feedback from the other experts (Brown 1968). This approach has its drawbacks, 
particularly groupthink, and alternative approaches were discussed during the workshop, with 
varying levels of interactivity among experts. At the lowest level, elicitors could present experts 
with anonymized assessments by other experts. Facilitating discussion between experts prior to 
or during elicitations can encourage thoughtful engagement and help ensure that important 
identified information is available to all experts. This informal discussion could take place 
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possibly online or via a wiki, or in the process of a face-to-face elicitation. At the highest level of 
interactivity, there was brief discussion of group model building, which could produce more 
accurate results. However, increasing levels of interactivity can, in turn, increase the cost of 
expert elicitation, which must be considered. 

In-person vs. online: Constructing a platform that encourages continuous interaction could 
improve predictions by addressing discrepancies in assessments by directly questioning experts 
with differing estimates. Providing long-term feedback to experts has the potential to increase 
estimation accuracy over time and increase engagement by making the elicitation a more 
rewarding experience, as described by (Tetlock and Gardner 2016) and cited by participants. 
However, there are many complexities and conflicting evidence regarding digital versus in-
person expert elicitation, which must be addressed (Baker et al. 2019): further experimentation 
comparing on-line and in-person expert elicitations is warranted. 

Data processing: Once estimates have been elicited as raw data, they will need to be aggregated 
into usable information. Expert opinions can be averaged using Laplace’s method or Bayesian 
techniques, and that pooling may take place either before or after further analysis. Uncertainty 
absorption (March and Simon 1958) provides a perhaps more qualitative avenue for abstracting 
expert opinion into actionable forecasts. The data processing may include removal of biases, 
differentially weighting each expert’s estimates, discarding expert estimates determined to be 
problematic, or other data-cleansing procedures. 

Alternatives to Subject Matter Experts: Experts involved deeply in the field do not necessarily 
have the prescience to predict the economic impact of their research. There was some 
consideration toward dispensing with experts and using experience-curve models from historical 
data. Another alternative raised was the use of “superforecasters”. Superforecasters have 
excellent foresight into the likelihood of some categories of near-term future events (Tetlock and 
Gardner 2016). Superforecasters could prove more adept at predicting “surprise” low-
probability, high-payoff technological advances, as well as more steady progress if provided with 
historical data to aid their predictions. 

Portfolio Analysis 
Metrics 
A variety of metrics can be used to assess the viability of a new technology. The cost of energy 
and installed capacity were the main metric of interest when discussing investment impact, but 
investments can impact technical, environmental, and social metrics as well (Wang et al. 2009). 
It is difficult to combine these into a single objective, particularly since some metrics are not 
quantifiable, such as absorptive capacity, the ability of a company to understand and apply new 
information, or the ability of a company or an industry to pivot focus as new information 
becomes available. The impacts on these areas might be felt on different time scales, 
necessitating a clearly defined time frame for the evaluation of benefits. 
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Markets and Policy 
Markets and policy influence both the impact of R&D on the cost of energy and the cost of 
energy itself, irrespective of research advances. As new technologies become possible, policy 
can be implemented to support and/or regulate their deployment. There was discussion at the 
workshop as to the importance of considering policy and markets, but no conclusions were 
drawn as to how to incorporate them into models, other than to leverage the Stochastic Energy 
Deployment System (SEDS) framework previously developed for EERE.1 SEDS is an economy-
wide energy model of the U.S. that focuses on explicitly simulating uncertainties in energy 
technology, markets, and policy using a non-equilibrium stochastic methodology that employs 
system-dynamics modeling techniques and stochasticity in input parameters and system 
evolution. 

Niche markets are beneficial to industries beginning commercialization, and national or 
international innovative systems can spur technological progress and drive costs down the 
learning curve, as was the case in the solar industry (Nemet 2019). Policy support for 
technologies can create constituencies that support a technological program and enable R&D 
persistence. Conversely, policy might stymie technology deployment and diminish potential 
investment impact. R&D investment strategies should hedge against policy changes and volatile 
markets, which add importance to the absorptive capacity of a technology. Skeptical and 
contrarian investors, issues of consumer response, and other decision factors make cost impact 
difficult to predict, and more consideration must be taken regarding how to address them in the 
analysis at the project level and at the portfolio level. Government investment can signal to 
external investors that a technology has potential and spur additional investment, injecting 
uncertainty into the total value of R&D investment. The interaction between policy, cost, and 
R&D progress poses a significant challenge to project evaluation. 

Communication and Interaction with Stakeholders 
At its core, the R&D Pathway and Portfolio Analysis project strives to aid decision makers in 
making impactful investments. Communicating results is a key factor in achieving this goal. 
There was discussion among workshop attendees as to whether a tool that serves this purpose 
could be standalone or would need to be used by a decision-maker and an analyst 
collaboratively. However, discussion provided insight into considerations essential to designing 
such tools to benefit public-sector decision-makers and private-sector investors. The 
aforementioned SEDS tool is a publicly available example of an uncertainty-aware, energy-
system, decision-support model. 

Visualization: Elegant interfaces with influence diagrams and limiting information to that 
necessary and sufficient to answer questions can help clarify the decision options  (Oviatt 2006). 
Presenting decision makers with a set of satisfactory portfolios, rather than one optimal answer, 
can assist in robust decision-making and provide increased transparency, which is particularly 
important to decision makers who might be hesitant to embrace probabilistic analysis. 

 
 
1 See https://www.nrel.gov/analysis/seds/ for details and for access to the SEDS model. 

https://www.nrel.gov/analysis/seds/
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Interactivity: Elegant models that are only as complex as necessary will compute results more 
quickly and increase the potential for interactivity. Interactive tools allow decision makers to 
explore the model by experimenting with, and challenging, assumptions and approaches as they 
gain insight into the decision landscape. This could also be helpful after priority investment 
strategies have been selected in order to better understand options for distributing the remainder 
of the R&D investments across the portfolio. 

Additional resources: Decision makers might also benefit from additional information to 
supplement model results. This could include maps, historical data, current prices, and relevant 
policies, which might also be provided to experts during the elicitation period. Providing 
decision makers with similar information, although not directly part of the modeling effort, could 
encourage model adoption by providing users with the data that influenced model construction 
and help them make decisions optimized to their own objectives. 
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Appendix 
Workshop Prospectus 
Motivation: The National Renewable Energy Laboratory (NREL) and the U.S. Department of 
Energy’s Office of Energy Efficiency and Renewable Energy (EERE) are pursuing the 
development of systematic, scalable methodologies and tools for R&D pathway analysis that will 
assist decision-making across energy research activities. Such methodologies and tools aim to 
identify and evaluate, quantify and monitor, and document and communicate energy technology 
R&D pathway risks and benefits, answering questions such as the following: 

• Where should the next dollar of R&D be invested to increase the likelihood of achieving 
specific goals at the project, program, and portfolio levels? 

• Under what circumstances is it better to support fewer projects with more resources per 
project versus a wider range of projects with fewer resources? 

• When should R&D investment be redirected to explore alternative pathways? 
• What is the likelihood that particular R&D pathways and resourcing will achieve their 

goals? 
To date, the project team has surveyed the literature, evaluated methodologies, and performed 
computational experiments for several alternative approaches to address these issues. The team 
believes that the realization of a high-impact R&D portfolio decision-support capability will 
require carefully crafting a practical approach grounded in state-of-the art methodologies and 
theories for portfolio modeling, optimization, scenario analysis, and decision under uncertainty. 

Goal: The workshop participants will evaluate strengths and weaknesses of the various 
methodologies applicable to R&D portfolio modeling, analysis, and decision support, given 
pragmatic constraints such as data availability, uncertainties in estimating the impact of R&D 
spending, and practical operational overheads. Participants will employ their deep expertise in 
approaches such as stochastic optimization, real options, Monte Carlo analysis, Bayesian 
networks, decision theory, complex systems analysis, deep uncertainty, and technology-
evolution modeling to critique the initial example models developed by the project’s core team 
and to conduct thought experiments grounded in real-life portfolio information, technology 
models, and progress data. This engagement of participants’ methodological expertise with the 
practical requirements of real-life portfolio decision support will yield ideas for improved 
approaches, alternative methodological hypotheses, and hybridization of methodologies that are 
well grounded theoretically, computationally sound, and realistically executable given data 
availability and other practical constraints. 

Format: This highly interactive one and one-half day workshop emphasizes dialog, exploration, 
and evaluation of methods for R&D project and portfolio modeling and analysis. It will combine 
presentations of best practices from multiple methodological points of view and data-informed 
experimentation to conceptualize hybrid approaches. 

Product: Following the workshop, participants will have the opportunity to prepare papers 
building on the results of the workshop and other information for publication in a special issue of 
a peer-reviewed journal. These papers will advance efforts to identify, develop, and enable 
implementation of an R&D portfolio decision-support capability by exploring the strengths, 
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weaknesses, and potential hybridization of methodologies for real-life, risk-aware R&D project 
and portfolio evaluation and decisions. 

Workshop Agenda 
July 17 

5:30–7:00 Reception at SpringHill Suites by Marriott Denver West/Golden 
1315 Colorado Mills Pkwy, Lakewood, CO 80401 

 

July 18 

8:00 Breakfast  

8:30 Welcome, goals, and format Sam Baldwin 
Brian Bush 
Maggie Mann 

8:40 Introductions All 

9:00 Experiences to date and practical realities Sam Baldwin 

9:15 Participant presentations and Q&A – part I  

 Retrospective: Conclusions from 2010 Workshop on RD&D Planning Leon Clarke 

 Observations on R&D investment from empirical work on 
technological change 

Greg Nemet 

 Robust Portfolio Decision Analysis Erin Baker 

 RAND Methods for R&D Portfolio Selection Steven Popper 

10:30 Break  

10:45 Participant presentations and Q&A – part II  

 Real Options and Stochastic Dynamic Programming for Energy R&D 
Projects 

Steve Gabriel 

 How accurate were past expert elicitations on energy technologies? 
How can we do better? 

Max Henrion 

 Uncertain Clean Energy R&D in Integrated Assessment Models: 
Expert Elicitation and Approximate Dynamic Programming to the 
Rescue 

Giacomo 
Marangoni 

 Experience curve forecast distributions and applications Rupert Way 

 Technology cost evolution modeling: Lessons learned from 
photovoltaics and nuclear 

Magdalena  
Klemun 

12:15 Lunch  

 Molecules to Markets Doug Arent 

1:00 Exploratory modeling (“toy models”)  

 Stochastic Energy Deployment System (SEDS) Emily Newes 

 Stochastic Optimization for Biorefinery R&D and Process Design Rebecca Hanes 

 Monte Carlo Modeling for Optimization of R&D Investment Caroline Hughes 

 Real Options Applied to a Polysilicon PV Cell Model Brian Bush 
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 Summary of Lessons Learned and Puzzles Brian Bush 

2:00 Questions and critique of exploratory modeling All 

2:30 Break  

2:45 Reflections on provisional conclusions/recommendations Invitees 

4:30 Summary and plan for next morning All 

5:00 Adjourn  

6:30 Dinner at Table Mountain Grill 
1310 Washington Ave, Golden, CO 80401 

 

July 19 

8:00 Breakfast  

8:30 Reflections on previous day and areas of general agreement All 

9:00 Thought experiments and comparison/hybridization of approaches All 

10:15 Break  

10:30 Provisional conclusions/recommendations Invitees 

12:00 Lunch All 

12:45 Planning for special issue of journal and follow-up activities All 

1:30 Adjourn  

Biographies of Attendees 

Doug Arent 
Doug Arent is the Deputy Associate Lab Director of the Scientific Computing and Energy 
Analysis Directorate at the National Renewable Energy Laboratory (NREL). In addition to his 
NREL responsibilities, Arent is Senior Visiting Fellow at the Center for Strategic and 
International Studies, serves on the American Academy of Arts and Sciences Steering 
Committee on Social Science and the Alternative Energy Future, is a member of the National 
Research Council Committee to Advise to U.S. Global Change Research Program (USGCRP), 
and is a Member of the Keystone Energy Board. Arent is the Editor in Chief for Renewable 
Energy Focus and is Associate Editor for the journal Renewable and Sustainable Energy 
Reviews. Arent serves on the World Economic Forum Future of Electricity Working Group and 
is a member of the International Advisory Board for the journal Energy Policy and for Energy 
Academy Europe. 

Arent was a Coordinating Lead Author for the 5th Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC). He has been a member of Policy Subcommittee of the 
National Petroleum Council Study on Prudent Development of North America Natural Gas and 
Oil Resources, served from 2008 to 2010 on the National Academy of Sciences Panel on 
Limiting the Magnitude of Future Climate Change, and also served on the Executive Council of 
the U.S. Association of Energy Economists. 
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His research interests are centered in energy and sustainability, where he has been active for 
more than 30 years. He has published extensively on topics of clean energy, renewable energy, 
power systems, natural gas, and the intersection of science and public policy. Arent has a Ph.D. 
from Princeton University, an MBA from Regis University, and a Bachelor of Science from 
Harvey Mudd College in California. 

Erin Baker 
Erin Baker is Associate Dean for Research at the College of Engineering; the Armstrong 
Professional Development Professor; and Professor of Industrial Engineering and Operations 
Research at University of Massachusetts, Amherst. She is the Director of the Wind Energy 
Fellows, a follow-on from the NSF-funded IGERT: Offshore wind energy engineering, 
environmental impacts, and policy. She has a Ph.D. in Engineering-Economic Systems & 
Operations Research from the department of Management Science and Engineering at Stanford 
University, and a B.A. in Mathematics from U.C. Berkeley. Her research is in decision-making 
under uncertainty applied to the field of energy and the environment, with a focus on publicly 
funded energy technology Research and Development portfolios in the face of climate change. 
She has received grants from the National Science Foundation, the U.S. E.P.A., NOAA,  the U.S. 
Department of Energy, the Sloan Foundation and others. She has given invited keynote talks at 
WINDFARMS in Madrid and the International Energy Workshop in College Park, Maryland. 
She is on the editorial boards of Energy Economics, and is an Associate Editor of IISE 
Transactions and Decision Analysis. 

Sam Baldwin 
Sam Baldwin is a PhD. Physicist and has served as the Chief Scientist for the Office of Energy 
Efficiency and Renewable Energy, U.S. Department of Energy (DOE) since 2000. At DOE, he 
also spent three years on detail to the Office of the Under Secretary for Science and Energy, 
leading the Quadrennial Technology Review 2015 on R&D opportunities for the Science and 
Energy programs at DOE, coordinating crosscutting R&D teams, and conducting portfolio 
analysis. In previous positions he has served with the White House Office of Science and 
Technology Policy (OSTP), the National Renewable Energy Laboratory (NREL), the 
Congressional Office of Technology Assessment (OTA), Princeton University, the Sahelian 
Anti-Drought Committee (CILSS) in West Africa, the U.S. Senate, and elsewhere. He is the 
author or coauthor of more than a dozen books and monographs at DOE, OSTP, OTA, and 
elsewhere, and more than 30 papers and technical reports on energy technology and policy, 
physics, and other issues. He was elected as a Fellow of the American Association for the 
Advancement of Science in 2007. 

Brian Bush 
Brian W. Bush is a simulation scientist in the Strategic Energy Analysis Center at the National 
Renewable Energy Laboratory (NREL) and a member of NREL’s Science Advisory Committee. 
He has led and collaborated on numerous multi-domain energy-infrastructure modeling, 
simulation, and analysis projects. For eight years he led NREL’s Biomass Scenario Model 
project, a system-dynamics simulation of the cellulosic biomass-to-biofuels supply chain, and its 
Scenario Evaluation & Regional Analysis project, an optimization tool for regional vehicle-
fueling infrastructure. For more than seventeen years prior to his arrival at NREL, he was a 
technical staff member in the Energy & Infrastructure Analysis Group at Los Alamos National 
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Laboratory. His work on TRANSIMS (the Transportation Analysis Simulation System) from 
1994 to 2000 there focused on leading research on software architecture, the representation of 
road networks, microsimulation output collection, and data compression. More recently, he also 
developed computer simulations for complex phenomena such as interacting critical 
infrastructures and supercomputer hardware architectures. He formerly directed the 
Interdependent Energy Infrastructure Simulation System (IEISS) and Critical Infrastructure 
Protection Decision Support System (CIPDSS) projects and held the position of Thrust Area 
Leader for the U.S. Dept. of Homeland Security’s Critical Infrastructure Protection Portfolio in 
its Science & Technology Directorate. He was a member of LANL’s Patent Committee and its 
Institutional Computing Technical Committee. As a visiting scientist at the National Center for 
Atmospheric Research, he initiated efforts to connect simulations of weather and climate to 
impact models for energy and infrastructure networks. He holds a Ph.D. in Physics from Yale 
University, where he was a National Science Foundation Graduate Fellow, and a B.S. in Physics 
from the California Institute of Technology. 

Leon Clarke 
Dr. Leon Clarke is an expert in energy and environmental issues, with a focus on climate change, 
climate change mitigation strategies, energy technology options, and integrated assessment 
modeling. He is currently the Research Director at the Center for Global Sustainability and a 
Research Professor in the School of Public Policy at the University of Maryland. He formerly led 
the Integrated Human Earth System Science Group and directed a range of integrated assessment 
modeling activities at the Joint Global Change Research Institute, a collaboration between the 
Pacific Northwest National Laboratory and the University of Maryland. Dr. Clarke has served as 
an author and coordinating lead author for the Intergovernmental Panel on Climate Change 
(IPCC), the National Climate Assessment, and the National Research Council. He has also led a 
number of multi-institution studies on climate mitigation. Dr. Clarke’s professional experience 
includes his current position, positions in two U.S. national laboratories, in energy consulting, 
and at an electric and gas utility. Dr. Clarke has a Ph.D. in Management Science and Engineering 
from Stanford University and Master’s degree in Mechanical Engineering from the University of 
California at Berkeley. 

Steve Gabriel 
Dr. Steven A. Gabriel is a Full Professor in the Department of Mechanical Engineering, as well 
as in the Applied Mathematics & Statistics, and Scientific Computation Program at the 
University of Maryland-College Park (UMCP). He has also been a Co-Director then Director of 
the Master of Engineering and Public Policy Program. In addition, he is a Research Professor at 
DIW (German Institute for Economic Research) in Berlin and an Adjunct Professor at the 
Norwegian University of Science and Technology (NTNU) in Trondheim in the Department of 
Industrial Economics and Technology Management, as well as a part of the Energy Transition 
Programme NTNU.  

His focus at University of Maryland has been on the modeling and algorithm design for 
engineering-economic systems combining game theory (one and two-level equilibrium 
problems), optimization, simulation, and other operations research/decision sciences areas. 
Application areas have included energy (power and natural gas), environment, transportation, 
project management, and telecommunications. Selected honors include: being the Gilbert White 
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Fellow for 2007-2008 at Resources for the Future, analyzing/developing energy equilibrium 
models, Washington, DC.; the 2014-2015 Professeur Invité Trottier at the Institut de l'Énergie 
Trottier at Polytechnique Montréal focusing on energy-economic modeling and policy questions, 
and a Humboldt Fellow from the German Alexander von Humboldt Foundation in cooperation 
with DIW (2015-2016) in energy market equilibrium modeling. Dr. Gabriel has an M.S. in 
Operations Research from Stanford University (1984), and an M.A. (1989) and Ph.D. (1992) in 
Mathematical Sciences from the Johns Hopkins University. 

Rebecca Hanes 
Rebecca Hanes has been a Modeling and Analysis Engineer in the Strategic Energy Analysis 
Center at NREL for the past four years. She specializes in supply chain modeling, life cycle 
assessment, optimization and system dynamics modeling of bioenergy, bioproduct and other 
renewable energy systems. 

Max Henrion 
Max Henrion is CEO and Founder of Lumina Decision Systems, in Los Gatos, California. He 
has 30 years’ experience as a professor, decision analyst, software designer, and entrepreneur. 
He originated Analytica, Lumina’s flagship software product about which PC Week said, 
“Everything that’s wrong with the common spreadsheet is fixed in Analytica”. Max has led 
decision analysis and created decision support tools for many clients in the private and public 
sector, including GE Energy, PG&E, Chevron, California Energy Commission, NREL, US 
Department of Energy, and the World Bank. He was formerly a Professor at Carnegie Mellon, 
Department of Engineering and Public Policy, where he continues as Adjunct Professor. He has a 
BA in Physics from Cambridge University, M. Design from the Royal College of Art in London, 
and Ph.D. from Carnegie Mellon. He has published three books including Uncertainty: A Guide 
to Dealing with Uncertainty in Policy and Risk Analysis (Cambridge University Press, 1990), 
and over 70 articles in decision and risk analysis, energy and environment, and artificial 
intelligence. He led a project on decommissioning oil platforms that won the 2014 Decision 
Analysis Practice Award from the Society for Decision Professionals. He was awarded the 2018 
Frank Ramsey Medal, the highest honor of the Society for Decision Analysis. 

Caroline Hughes 
Caroline joined NREL’s Strategic Energy Analysis Center in April 2019 after completing her 
M.S. in Nuclear Engineering at UC Berkeley in 2018. Her research interests include 
computational modeling, numerical analysis, and research-informed policy. Her current work 
focuses on R&D portfolio pathway analysis, decision-making under uncertainty, quantum 
computing, and nuclear innovation with the NICE Future initiative. Caroline earned her B.S. in 
Engineering Physics with a minor in Applied Math (scientific computing emphasis) from CU 
Boulder in 2015. 

Magdalena Klemun 
Magdalena Klemun is a PhD candidate at the Institute for Data, Systems, and Society (IDSS) at 
MIT. Her research interests are in understanding how the economic and environmental 
performance of technologies evolves in response to different innovation efforts, with an 
emphasis on the cost evolution of photovoltaic systems and nuclear power plants, and on the 
environmental performance evolution of natural gas technologies. Magdalena received her M.S. 



 

17 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

in Earth Resources Engineering from Columbia University, where she studied as a Fulbright 
Scholar, and her B.S. in Electrical Engineering and Information Technology from Vienna 
University of Technology. In between her studies, she worked as an Analyst for GTM Research, 
a clean energy market research and consulting company. 

Giacomo Marangoni 
Giacomo Marangoni is a researcher in the Department of Management, Economics and 
Industrial Engineering at the Polytechnic University of Milan, Italy. He completed his PhD in 
2017 in the same department, developing models for supporting investment decisions in the 
energy supply and demand sectors under uncertain technical change and sustainability concerns. 
For his Post-Doc, he moved to Penn State University, USA, to broaden his interests within the 
field of climate change risk management. There he focused on how to design robust climate 
policies optimizing conflicting environmental and economic objectives under deep uncertainty. 
Now he continues this research within Polytechnic of Milan and the RFF-CMCC European 
Institute on Economics and the Environment. 

Margaret Mann 
Margaret Mann joined NREL in 1993 and currently leads the transportation infrastructure 
analysis team in NREL's Transportation and Hydrogen Systems Center, working to develop and 
coordinate integrated R&D on infrastructure tools, analysis, data, and demonstration projects 
spanning multiple technology areas such as light- and heavy-duty vehicle electrification, 
hydrogen fuel cells, and electric vehicle grid integration. Previously she served as technical 
director for NREL's Clean Energy Manufacturing Analysis Center and as manager for the 
technology systems and sustainability analysis group in NREL's Strategic Energy Analysis 
Center. 

During her tenure at NREL, she has contributed to the development of systematic methods for 
credible and objective technology analysis. She has conducted technoeconomic analyses of over 
fifty energy technologies, including power generation from renewables, distributed generation, 
battery storage, and transportation. Additionally, she has performed numerous environmental life 
cycle assessments and supply chain analyses to determine the big-picture impacts of renewable 
and energy-efficient systems and has developed resource use characterization methodologies for 
analyzing the various and competing uses of limited resources such as water, land, materials, and 
installed infrastructure. 

Gregory Nemet 
Gregory Nemet is a Professor at the University of Wisconsin–Madison in the La Follette School 
of Public Affairs. He teaches courses in energy systems analysis, policy analysis, and 
international environmental policy. Nemet’s research focuses on understanding the process of 
technological change and the ways in which public policy can affect it. He received his doctorate 
in energy and resources from the University of California, Berkeley. His A.B. is in geography 
and economics from Dartmouth College. He received an Andrew Carnegie Fellowship in 2017 
and used it to write a book on how solar PV provides a model for low carbon innovation: “How 
Solar Energy Became Cheap” Routledge 2019. 
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Emily Newes 
Emily is the Resources and Sustainability Group Manager in the Strategic Energy Analysis 
Center at NREL and specializes in system dynamics modeling. She has 15+ years of experience 
in energy modeling, analysis, and data. Emily received a BA in Mathematical Economics from 
Colgate University and an MS in Mineral Economics with a focus in Operations Research at the 
Colorado School of Mines. Prior to joining NREL, Emily was the primary research manager at 
Platts. 

Alexandra Newman 
Alexandra Newman is a professor in the Mechanical Engineering Department at the Colorado 
School of Mines (CSM). Prior to joining CSM, she was a research assistant professor at the 
Naval Postgraduate School in the Operations Research Department. She obtained her BS in 
applied mathematics at the University of Chicago and her PhD in industrial engineering and 
operations research at the University of California at Berkeley. She specializes in deterministic 
optimization modeling, especially as it applies to energy and mining systems, and to logistics, 
transportation, and routing. She received a Fulbright Fellowship to work with industrial 
engineers on mining problems at the University of Chile in 2010 and was awarded the Institute 
for Operations Research and the Management Sciences (INFORMS) Prize for the Teaching of 
Operations Research and Management Science Practice in 2013. 

Mark Paich 
Mark Paich has a doctorate degree in System Dynamics from MIT, a master’s degree in 
Economics from the University of Colorado, a BA in Economics from Colorado College, 30+ 
years of teaching experience at Colorado College and MIT, and is widely recognized as one of 
the premier practitioners of the System Dynamics approach and leading proponent of its 
associated simulation tools over the last four decades. Mark has been published in Management 
Science, Interfaces, and the Sloan Management Review, and his work has been featured 
prominently in Business Dynamics:  Systems Thinking and Modeling for a Complex World 
(Sterman, McGraw-Hill/Irwin, 2000), The Fifth Discipline Field Book (Senge, Currency Press, 
1994), and Surviving Transformation:  Lessons from GM’s Surprising Turnaround (Barabba, 
Oxford University Press, 2004).  

Mark has been honored by the System Dynamics Society with both the Applications Award (for 
his work at General Motors in launching the OnStar project, which also placed 2nd in the 
Edelman Competition for the best work in operations research and management science) and the 
Forrester Award (for his authorship of Pharmaceutical Product Branding Strategies: Simulating 
Patient Flow and Portfolio Dynamics” published by Informa Healthcare; 2nd edition March 
2009).    

In the late 1990s Mark helped build a successful modeling practice as a Senior Specialist at 
McKinsey & Company, and his leadership at his current position at PWC has resulted in the 
dramatic expansion of their Analytics and Simulation function to address complex, dynamic 
issues of strategic interest to PWC clients. In addition, Mark has co-founded two successful 
boutique System Dynamics consulting firms, and has taught/mentored an inordinate number of 
practitioners currently utilizing the methodology and leveraging the power of modern simulation 
approaches. 
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Steven Popper 
Steven W. Popper (PhD, Economics, U. of California, Berkeley) is a RAND Senior Economist 
and Professor of Science and Technology Policy in the Pardee RAND Graduate School. His 
work on micro level economic transition focuses on the area of technological change. From 1996 
to 2001 he was the Associate Director of RAND’s Science and Technology Policy Institute 
(S&TPI) which provided research and analytic support to the White House Office of Science and 
Technology Policy and other agencies of the executive branch. His S&TPI work included 
principal authorship of the Fourth U.S. National Critical Technologies Review, advice on federal 
R&D portfolio decision-making for the National Science Board, and authorship of Presidential 
transition documents on S&T issues of national importance. He is a AAAS Fellow and served as 
the chair of its section on industrial science and technology. Dr. Popper’s work on strategy 
development and foresight has focused on the problem of planning under conditions of deep 
uncertainty He is co-developer of Robust Decision Making, a methodological framework for 
analytical decision support under deep uncertainty. He also led the team which developed the 
Systematic Technology Reconnaissance, Evaluation and Adoption Methodology (STREAM) for 
the Transportation Research Board of the National Research Council to provide support to local 
public agencies in making informed, mission-specific adoption decisions over innovative 
technologies. Among his current projects, he is assisting the US Air Force on systematic methods 
for identifying potential “game changing” technologies. Dr. Popper is currently the chair for 
education and training of the international Society for Decision Making under Deep Uncertainty. 

Rupert Way 

Rupert is a postdoctoral researcher at the Institute for New Economic Thinking at the University 
of Oxford. He has a background in mathematics, is interested in sustainability, technological 
change and society, and now works on energy system modelling, technology forecasting and 
decision-making under uncertainty. His recent work has focused on applying portfolio theory to 
groups of technologies undergoing progress subject to uncertainty, in order to understand how 
historical progress trends, technology characteristics and risk aversion affect optimal resource 
allocation among competing technologies. The methodology developed gives quantitative insight 
in to the question of when resources should be concentrated in a smaller number of projects 
rather than spread more thinly over a larger number. He is currently working on applying these 
tools in the context of the global energy system, investigating how energy technology costs and 
total system costs are likely to evolve in different scenarios, and exploring the implications 
regarding which technologies to bet on now to give the best chance of a low cost energy 
transition. 

  



 

20 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Workshop Presentations 
Selected presentations made at the workshop are available online at <https://bit.ly/3jUj94D>. 

• Experiences to Date and Practical Realities—Sam Baldwin 
• Retrospective: Conclusions from 2010 Workshop on RD&D Planning—Leon Clarke 
• Observations on R&D Investment from Empirical Work on Technological Change—

Greg Nemet 
• Robust Portfolio Decision Analysis—Erin Baker 
• RAND Methods for R&D Portfolio Selection—Steven Popper 
• Real Options and Stochastic Dynamic Programming for Energy R&D Projects—Steve 

Gabriel 
• How accurate were past expert elicitations on energy technologies? How can we do 

better?—Max Henrion 
• Uncertain Clean Energy R&D in Integrated Assessment Models: Expert Elicitation and 

Approximate Dynamic Programming to the Rescue—Giacomo Marangoni 
• Experience Curve Forecast Distributions and Applications—Rupert Way 
• Technology Cost Evolution Modeling: Lessons Learned from Photovoltaics and 

Nuclear—Magdalena Klemun 
• Stochastic Energy Deployment System (SEDS)—Emily Newes 
• Stochastic Optimization for Biorefinery R&D and Process Design—Rebecca Hanes 
• Monte Carlo Modeling for Optimization of R&D Investment—Caroline Hughes 
• Real Options Applied to a Polysilicon PV Cell Model—Brian Bush 
• Summary of Lessons Learned and Puzzles—Brian Bush 

Fact Sheets 
(See following pages.) 
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R&D Pathway and Portfolio Analysis and Evaluation: Overview 
Risk and uncertainty comprise core characteristics of R&D programs. Attempting to do what no one 
has done before will sometimes end in failure, just as it will sometimes lead to extraordinary 
success. The challenge is to identify an optimal mix of R&D investments in pathways that provide 
the highest return while reducing the costs of failure. 

The goal of the R&D Pathway and Portfolio Analysis and Evaluation project is to develop systematic, 
scalable pathway and portfolio analysis and evaluation methodologies and tools that provide high 
value to the U.S. Department of Energy (DOE) and its Office of Energy Efficiency & Renewable 
Energy (EERE) by identifying and evaluating, quantifying and monitoring, managing, documenting, 
and communicating energy technology R&D pathway and portfolio risks and benefits, thus assisting 
decision-making across projects and portfolios. The project-level risks typically considered are 
technology cost and performance (e.g., efficiency, environmental impact, etc.), while the portfolio 
level risks generally include market factors (e.g., competitiveness, consumer preference). Key 
questions include: 

• Where should the next dollar of R&D be invested to increase returns at the project and 
portfolio levels? 

o How impactful will specific investments be in advancing a particular technology? 
o What is the likelihood that particular R&D pathways will achieve their goals?  
o When should R&D investment be cut or alternative pathways explored?  
o What are the opportunity costs of not investing in a research pathway?  
o When is it better to support fewer projects with more resources or a wider range of 

projects with fewer resources? 
• How should the portfolio be balanced over risk, return, time, technologies, and markets?  
• How can scoring of risk be made more consistent across projects, portfolios, markets, 

experts, and time? 
• How can the results of these analyses be assessed and validated? Are the results statistically 

repeatable and do they hold up to auditing by decision-makers and external experts? 
• What are the most effective mechanisms for communicating these evaluations? 

Addressing these and related questions could provide significant value by improving the targeting 
of R&D opportunities, thereby accelerating R&D efforts. They may also help external stakeholders 
to better understand and assist EERE and DOE R&D decisions and activities. 

Background  
EERE currently invests almost $1.8 billion annually in R&D. Evaluation of R&D pathways begins 
with extensive outreach to the broad energy science and technology community—national labs, 
industry, universities, nonprofits, and others—through workshops and technology roadmapping 
efforts to gather their inputs on R&D opportunities and challenges. Links to this expert input 
diminish as decisions progressively move through the EERE and Administration budget-decision 
process and then Congressional budget appropriations. Developing ways to better link and 
communicate this genealogy would be useful for decision-making. Following appropriations, EERE 
widely uses competitive solicitations to select specific proposals for funding. Methods are needed to 
more effectively evaluate and communicate R&D pathways and portfolios, and to streamline, 
structure, and better target these processes and to track outcomes over time.  
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Projects. EERE work on energy R&D pathway and portfolio analysis and evaluation was first done 
more than a decade ago.1 Over several years an approach at the R&D project level was developed 
and tested that: (a) built technoeconomic models of technologies of interest down to the subsystem 
level and below; (b) elicited expert estimates of the potential impacts of R&D; and (c) conducted 
Monte Carlo simulation on these models to generate probability distributions of the cost and 
performance of the technology over time as well as tornado diagrams that indicated which R&D 
investments could have the most substantial impacts.2 Toy model examples of such outputs are 
shown in Figure 1 below. This approach was tested on 36 technologies and involved 167 experts 
who estimated risk distributions across some 1300 factors. The expert elicitation process faced a 
variety of challenges—ranging from training, to motivational biases, to social factors. Other 
complicating factors included: proprietary concerns; handling correlations across subsystems; and 
parsing costs—such as projections, learning curve impacts, commodity price changes, etc. Results 
were mixed, with some teams generating key insights and others lesser so. Overall, however, this 
first experiment showed promise, but highlighted a need to address these and other challenges and 
to reduce the expense of conducting these expert elicitations and associated activities. 

Figure 1. (a) Probability distribution (y-axis) for the cost 
($/kWh; x-axis) of a power generation technology using 
Monte Carlo simulation on a toy model. (b) Tornado 
diagram showing the R&D investments with the largest 
impact across module efficiencies (%) and costs, Balance 
of System (BOS) costs, Inverter costs and efficiencies, etc. 

Portfolios. The work at the project level was 
followed by the development of a portfolio analysis 
tool to evaluate technologies across programs. The 
tool developed is the Stochastic Energy Deployment 
System (SEDS),3 which is an energy market model 
that explicitly incorporates risk and uncertainty in 
its input characterizations of energy technologies, 
fuel prices, energy policies, and other factors, and then outputs corresponding probability 
distributions of the market performance of various technologies with R&D. The SEDS tool is 
discussed in a separate Fact Sheet. 

Challenges. A variety of challenges were identified by this work, including: addressing proprietary 
and competitiveness concerns; establishing consistent protocols across risk analysts and external 
experts; assessing and addressing correlations and dependencies within and between technologies; 
avoiding biases such as overconfidence, confirmation, and motivation; parsing projected costs due 
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to R&D, learning, commodity price changes, etc.; optimizing multiple, sometimes conflicting, criteria 
such as economic cost, environmental pollution, greenhouse gas emissions, materials use, 
reliability, resiliency, and others. Further, these analyses were and must be done in the context of 
deep uncertainty about many of the resources, technologies, markets, competitors, and numerous 
other factors. How risks might be perceived were also of concern: for example, if one R&D 
investment had only a 10% chance of success and another had 70%, how would decision makers 
respond? If key benefits of a technology are not captured in high level portfolio evaluations—for 
instance, if the evaluation considered only cost and not broader metrics such as temporal and 
spatial availability, or consumer preferences—this could substantially misrepresent the value of 
particular R&D investments.  

Changes. This work concluded approximately ten years ago as EERE budgets substantially shifted 
from EERE-wide analyses to more program-specific analyses. With this change in focus, work on 
R&D Pathway and Portfolio Analysis at the EERE-wide level also ended. Presently, EERE and DOE 
programs have a variety of approaches for R&D pathway analysis, with few relying on quantitative 
risk analysis,4 and a similarly reduced emphasis on systematic risk-informed portfolio analysis. 

Current Study 
Over the past decade much further work has been done by the broad science and technology (S&T) 
community on R&D analysis and evaluation tools.5 In addition to Monte Carlo methods, studies 
have used Real Options, Stochastic Optimization, Bayesian Statistics, Expert Elicitation, Decision 
Theory, Complex Systems, Deep Uncertainty, Technology Modeling, and other approaches. A key 
issue for the current study is which of these methodologies or which of their hybrids can best help 
guide R&D investments for EERE, a public R&D organization. To explore that issue, this study has 
begun experimenting with a variety of analytical methodologies in highly simplified “toy” models. 
These explorations aim to efficiently and pragmatically investigate the multiple dimensions 
involved with modeling and decision-support for investment in R&D portfolios and to identify the 
particular capabilities, strengths, weaknesses, and insights that each of these different 
methodologies can contribute. 

It is important to distinguish here between R&D Pathways and R&D Portfolios. As used here, R&D 
Pathways refers to the evaluation of individual technologies, such as solar PV or onshore wind, and 
their subsystems and components, in order to better target R&D investments to improve that 
technology as much as possible. For solar PV, this might include consideration of improving module 
efficiencies (which, drilling down further, might include changing device structures, materials, 
electrical contacts, etc.), inverter lifetimes, Balance-of-System (BOS) costs, and others. 

It is insufficient to simply evaluate the impact of R&D on individual technologies, however; it is also 
necessary to determine whether the resulting improvement will make a significant difference in 
meeting national goals and needs. This is the intent of R&D Portfolio evaluation: to evaluate and 
compare technologies in the overall energy system in order to determine whether R&D investments 
can help a technology have a significant impact at the regional, national, and/or global scale. In the 
power sector, for example, this could include evaluating natural gas combined cycle plants, nuclear 
power, solar PV, onshore wind, and others to determine the impacts of R&D on each to help meet 
national goals. Across energy sectors, this could include comparing the impact of R&D on high 
efficiency lighting in buildings, improved batteries for electric vehicles, and more efficient solar PV 
modules. Conversely, if R&D investments can improve a technology’s cost and performance but not 
sufficiently to ever be able to compete in the market and provide significant benefits, such 
improvements become moot. SEDS was developed to provide a general energy-economic model for 
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conducting such R&D portfolio evaluations. Ways to improve it or to identify other approaches for 
evaluating R&D portfolios is a key question which will be explored in detail in a subsequent review. 

Summary of Fact Sheets 
Stochastic Energy Deployment System (SEDS): SEDS is an economy-wide energy model of the 
U.S. that focuses on explicitly simulating uncertainties in energy technology, markets, and policy 
using a non-equilibrium stochastic methodology. The fact sheet describes the model and provides 
example analysis and uncertainty-visualization results. SEDS is a publicly available example of an 
uncertainty-aware, energy-system decision-support model. 

Polysilicon PV Cost Cell Model: This is a Python reimplementation of a typical, detailed, bottom-
up manufacturing model of the sort occasionally developed in support of analysis within EERE 
technology programs. To avoid issues with proprietary data, the inputs to the model have been 
“anonymized” through randomization. The fact sheet describes the manufacturing stages embodied 
in the model, presents cost results, and discusses challenges. This model is used in the analysis of 
real options (below). 

Biorefinery R&D Investment: This is a traditional two-stage stochastic optimization, implemented 
in Python and using standard optimization software packages (Pyomo, PySP, and IPOPT), applied to 
R&D investments in biorefinery technologies. The technical model represents the essential 
influences on technology cost and performance, but taking a “top down” approach (as opposed to 
the “bottom up” technology approach taken for the aforementioned polysilicon cell model). The fact 
sheet formulates and solves non-linear and linear optimizations for R&D investment in the face of 
uncertainties and discusses issues related to discretization, a priori probabilities, linearization, and 
data inputs. 

Real Options: This adopts the real-options methods (the Black-Scholes model and binomial 
lattices) used in financial engineering to the problem of R&D investment in uncertain technologies, 
comparing closed-form and numerical solutions for R&D investments in polysilicon cells. Results 
compare investment options and value options such as abandoning (e.g., an American Put option) a 
line of R&D investment. The fact sheet also discusses limitations and extensions of the method and 
that it might be combined with other methods. 

Monte Carlo Model of Systems/Components: This fact sheet distinguishes the interaction of 
programs, platforms, systems, and subsystems in R&D investment decisions, particularly exploring 
the sharing of multiple subsystems and components within different systems and the role of 
experts with differing types and quality of expertise in estimating the impact of future R&D. The 
model using a multi-stage optimization where expert opinion is combined and evaluated using 
Monte Carlo simulations of future outcomes, which are then scored in order to make investment 
decisions annually. The model interfaces with a standard, annually updated, database of renewable-
energy technology cost and performance. Its stochastic simulation results are presented as tornado 
diagrams showing impacts and uncertainties of investments. 

Bayesian Combination of Expert Assessments: This model leverages the subsystem simulation 
within the Monte Carlo Model in order to grade the performance of subject-matter experts in their 
predictions of the likely success and subsequent impact of future R&D investments. The grades are 
translated into weighting factors that evolve over time as more information about the quality of the 
experts’ predictions emerges. Results show conditions under which the effective pool of expertise 
evolves towards either mixtures of experts or reliance on a single expert. 
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Petri Nets: Petri nets, which are discrete state-transition models, are used to model two alternative 
R&D investments in dual-junction photovoltaic cells: either increasing the reuse of parent epi-
substrate or replacing chemical-mechanical re-polishing with web-bench surface preparation. Petri 
nets emphasize discrete transitions between qualitatively different technological states of affairs 
and allow the modeling of situations where some types of technology advancement may preclude 
particular future R&D or moot previously undertaken R&D. 

Technology Readiness and Performance Levels (TRL/TPL) Model: This stochastic model 
examines the tradeoffs between R&D investments aimed at moving a technology towards higher 
readiness for deployment at scale (commercial readiness) versus investments aimed towards more 
competitiveness in the marketplace (commercial viability). 

Autoregressive Models: Our experiments with autoregressive models attempt an empirically 
driven, statistical approach to complement detailed, bottom-up technology modeling. The fact sheet 
discusses the formulation and challenges of utilizing empirical/historical data in R&D investment. 

Expert Elicitation: This fact sheet summarizes issues and challenges around employing expert 
elicitation in modeling and decision-support for R&D investment. 

Issues and Puzzles 
The goal of this work is to provide R&D pathway and portfolio analysis methodologies and tools 
that are usable and useful to EERE and DOE staff, team leaders, program directors, and Portfolio 
Managers in systematically identifying, quantifying, evaluating, managing, monitoring, 
documenting, and communicating technology development risks and benefits, and in assisting 
project, program, and portfolio decision-making that aligns and balances the portfolio with national 
goals. There are many challenges in achieving this. In addition to the issues noted above, consider 
the following: 

R&D Pathway Analysis Tools 

The choice of methodology, level of detail represented, and embodiment in tools poses many 
considerations for R&D portfolio analysis: 

• It is presumably preferable to have analyses linked as closely as possible to the underlying 
science and engineering of the technology being evaluated, but this can require substantial 
modeling efforts and may still not answer the core question of how much improvement in 
cost and performance there can be with a particular level of R&D investment. Experts may 
be able to estimate these potential technology improvements from R&D investments, but 
eliciting these estimates can require substantial time and effort. Where is a useful balance 
between these activities—simulating the physics and eliciting expert estimates—that 
provides the best possible data at the lowest possible overheads? 

• How can these analytical tools best be designed so that they are able to drill down deeply 
into one technology and shallowly into a second, yet provide useful comparative data across 
technologies, so that a technology is not represented too favorably or unfavorably as a 
result of the level of detail of its analytic representation? 

• Which methods best handle evaluation of multi-scale, multi-stage analyses? 
• What hybrids of Monte Carlo simulation, Real Options, Stochastic Optimization, Bayesian 

Statistics, Expert Elicitation, Decision Theory, Complex Systems, Deep Uncertainty, 
Technology Modeling, or other approaches can provide the best combination of capabilities 
to meet the goals of this work? 
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Expert Elicitation 
Expert elicitation is an essential part of R&D Pathway and Portfolio analysis and is briefly described 
in a separate fact sheet.  

• How can expert elicitation be improved to manage the various difficulties that arise—such 
as biases of overconfidence, confirmation, or motivation—particularly for this type of 
technology evaluation? 

• How can the costs of expert elicitation be reduced while maintaining the highest possible 
quality? How well have on-line elicitations worked, and what have been the lessons 
learned? 

• What have been effective approaches for pre-screening experts to select higher performers 
to participate in elicitations? 

• What can be done to evaluate the performance of experts in post-elicitation reviews? 
• How might historical data and non-traditional methods (e.g., gamification, online surveys, 

patent analysis, publication metrics, etc., to sample a larger pool of experts) complement 
expert elicitation? 

• Might adaptive methodologies for expert elicitation streamline and optimize its process and 
impact? 

• How could experts be assessed to assign weights to predictions so that more accurate 
experts are given higher importance when averaging predictions? 

R&D Portfolios 
The EERE and DOE R&D portfolios include a wide variety of technologies across every sector of the 
energy economy and across every stage of development, from early basic research to commercial 
deployment. These different technologies provide different services with different benefits to end-
users. (SEDS, an energy-economy simulation tool, was under development previously—see 
separate fact sheet—to provide the ability to compare technologies across the R&D portfolio and 
further work and a separate engagement will examine it and portfolio tools more broadly.) 

• How can portfolio analysis tools fairly characterize and compare technologies across the 
many diverse services they provide, and still be practicable and cost-effective? What 
approaches should be considered? 

• How can potential variations in the objectives of decision-makers at different organizational 
levels be harmonized into systematic, risk-aware portfolio decisions? 

Tracking Data 
As R&D Pathway and Portfolio Analysis proceeds, it is essential to analyze and document risks in a 
manner that is objective, credible, fair, transparent, and auditable with all important assumptions 
and uncertainties clearly identified. This requires the development of methods to track, monitor, 
update, and document all appropriate data and analysis, including the ability to track key inputs 
through the methodology.  

• What have been the lessons learned in other such studies for how to do such tracking 
sufficiently to provide all necessary information without overwhelming the analyst in the 
process? 

• What is the minimum and optimal resolution for tracking data on R&D investment and 
impact? 

• How can the potentially long delays in assessing R&D impact be figured into tracking 
databases in an actionable and traceable manner? 
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Communications 
Translating the results of the R&D Pathway and Portfolio Analysis into forms useful for many 
different users and audiences—from program staff to high-level decision-makers, and to diverse 
external audiences from researchers to stakeholders to the public—raises challenges of 
communicating complex issues of risk and uncertainty. 

• The EERE and DOE decision-making processes currently provide little genealogy on the 
underlying analysis that led to particular recommendations. How can such genealogy best 
be communicated? 

• What communication tools and approaches, particularly visualization tools, have 
demonstrated high performance in conveying complex risk issues to various users and 
audiences with different levels of experience in considering risk issues? 

• To assist decision-makers in their efforts to build consensus, characterize technology 
tradeoffs, and determine potential complementary actions, it may be useful to evaluate 
multiple metrics across these different technologies and the services they provide. What is 
the experience with and lessons learned about such efforts and how to communicate the 
results? 

Metrics 
Throughout the R&D Pathway and Portfolio Analysis process, it is important to develop and track 
metrics that can fairly and efficiently evaluate and compare performance at the technology, system, 
and portfolio levels. 

• What has been the experience and lessons learned in determining appropriate metrics, 
tracking them, and evaluating their effectiveness? 

• How can the cost of implementing such metrics be best managed for the issues identified 
above: staff overhead and training; the cost of modeling and expert elicitation; tracking 
data; communications; and others? 

Tracking 
The development of energy technology R&D pathway and portfolio analysis and evaluation 
methodologies and tools has the potential to significantly support policy maker decision-making 
and accelerate the realization of national energy-related goals for the economy, environment, and 
national security. Advancing these capabilities faces substantial methodological and operational 
challenges, and will strongly depend on capturing the experience and knowledge of the broad 
science and technology community to be successful; this workshop is a first key step in that 
process.  

1 See, for example, presentations by Baldwin, Friley, Henrion, and Short at: Joint Global Change Research 
Institute, “R&D Portfolio Analysis Tools and Methodologies”, December 02, 2010, College Park, MD 20740, 
http://www.globalchange.umd.edu/events/rd-portfolio-analysis-tools-and-methodologies/  
2 See, for example: J. McVeigh, J. Cohen, M. Vorum, G. Porro, G. Nix, “Preliminary Technical Risk Analysis for 
the Geothermal Technologies Program” Princeton Energy Resources International and National Renewable 
Energy Laboratory, Technical Report NREL/TP-640-41156, March 2007, 
https://www.energy.gov/sites/prod/files/2014/02/f7/41156.pdf 
3 See https://openei.org/wiki/Stochastic_Energy_Deployment_System_(SEDS). 
4 As an example of a quantitative tool to examine R&D opportunities, see the Building Technologies Office 
Scout Tool: https://www.energy.gov/eere/buildings/scout  
5 See bibliography at https://www.zotero.org/groups/2174314. 
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Purpose
SEDS is an economy-wide energy model of the United States; it was developed in part in response to a 
recommendation by the National Research Council of the National Academies to the Department of Energy to 
address risk and uncertainty in the DOE’s evaluation of technologies and their benefits (National Research 
Council, 2007). It is a tool to evaluate R&D portfolios, taking the technology-specific risk and uncertainty 
distributions of the impact of R&D on technology cost and performance and competing them in the SEDS 
energy-economic model to understand how R&D could impact the market penetration of different 
technologies and the resulting dynamics between supply, demand, and pricing of the major energy types 
consumed and produced within the United States. 

Methods
SEDS differs from other economy-wide energy models in that it explicitly accounts for uncertainty in 
technology, markets, and policy.  The intent of the model was to be fully open and transparent, well 
documented, user-friendly, and very fast to enable desktop use and provide real-time response to decision-
maker queries. These considerations substantially drove key aspects of model specification, particularly that it 
is a simulation model rather than an optimization model that solves for equilibrium in order to achieve the 
necessary speed and ease of use. SEDS focuses on the major drivers within the energy economy and evaluates 
the impact of uncertainty around those drivers. SEDS uses a Monte Carlo sampling approach to make random 
draws from the distributions of each input assumption, and then it uses those draws to simulate the evolution 
of the energy sector to 2050. The end result is a collection of different system evolution pathways from which 
the likelihood or probability of each pathway can be statistically determined. It is built in Analytica (http://
www.lumina.com).

Technology
In particular, SEDS was developed to have much technology representation in the energy conversion and end-
use sectors. By modeling a significant number of technology pathways in these sectors, it is possible to 
simulate the economics-based deployment of new technologies and observe their impacts on the energy and 
CO2 intensities of the various sectors. Because new technologies are notoriously shrouded in cost and 
performance uncertainty, SEDS is uniquely able to explore the deployment and impact of these technologies 
while specifically addressing the high level of uncertainty surrounding their characterizations. 

Stochastic Energy Deployment System (SEDS)
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Figure 1 illustrates the impact of various uncertainties on the deployment of a nascent energy technology 
(NET) by the year 2030. Each chart in Figure 1 adds one more uncertainty to the previous chart. 

Chart (A) compares NET capacity from a deterministic business-as-usual (BAU) scenario and a scenario 
where technology uncertainty is applied. The BAU scenario uses the most-likely value from each input 
distribution and performs a single simulation over the time horizon using those most-likely values. This 
results in a deterministic projection of NET capacity, which in this case is the single-point estimate of 
roughly 1 GW of capacity in 2030. The “Tech” scenario made one hundred random draws (this number was 
arbitrarily chosen for this example) from every probability distribution defining the cost and performance of 
various technologies within the SEDS model. Based on those random draws, one hundred unique 
simulations over the time horizon were performed and the results from each of those simulations were 
statistically analyzed to produce a distribution that is representative of the underlying one hundred 
simulations. From chart (A) we see that the inclusion of technology uncertainty gives a range of possible 
capacity values for NET. This range extends from about 0.2 to 2.1 GW, with the most-likely value being 
roughly 0.35 GW. Compared to the BAU case, technology uncertainty produces a lower bound of roughly – 
75% and an upper bound of nearly 110% relative to the 1 GW of capacity projected by the deterministic 
BAU case.

Chart (B) uses the same draws from the technology cost and performance distributions as was simulated in 
the “Tech” scenario and adds additional uncertainty by randomly drawing from distributions related to fuel 
price drivers (“Tech, Fuel” scenario). The “Tech, Fuel” scenario exhibits a wider distribution and the mode 
or peak of the distribution has shifted somewhat to the left. The relatively small change in the distribution 
attributable to fuel price uncertainty is due the fact that NET is still high-cost relative to its competitors even 
when fuel prices are disadvantageous to those competitors.

Chart (C) adds to chart (B) by allowing macroeconomic uncertainty. Macroeconomic uncertainty represents 
uncertainty in the growth of GDP, manufacturing, population, interest rates, and disposable personal 
income. Again, for this particular model output, macroeconomic uncertainty does not substantially change 
the range and mode of the distribution around NET capacity in 2030 because the assumptions used in these 
simulations project NET to be fairly costly.

In chart (D), we see the distribution widen roughly two-fold and the mode shifts leftward as a result of 
including R&D uncertainty. Certain draws from the distributions related to improvements in NET costs and 
performance lead to simulations where NET becomes increasingly more economic and this leads to 
increased deployment. Given the additional R&D uncertainty, the most-likely outcome is approximately 4 
GW of NET capacity compared to the 1 GW that was projected in the “BAU” case.

In chart (E), the R&D uncertainty has been removed and policy uncertainty has been enabled. Here policy 
uncertainty corresponds to uncertainty around carbon cap regulation, a national renewable electricity 
standard, and extensions of production and investment tax credits to renewable, electricity-generating 
technologies. Relative to the “Tech, Fuel, Macro” scenario, the policy scenario has widened significantly 
although not much mass is skewed towards the higher NET capacity levels. This suggests that only a 
handful of policy scenarios might lead to increased NET capacity.
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Figure 1: Examples of how various uncertainties might affect the deployment of NET by 2030

Chart (F) shows the impact of including all uncertainties by adding R&D uncertainty to the “Tech, Fuel, 
Macro, Policy” scenario. The combination of policy and R&D uncertainty leads to a much wider 
distribution. The NET capacity outcomes under this final scenario range from 0 to 14 GW with the most-
likely value being close to 5 GW. Although 5 GW is not significantly more than the 4 GW projected in the 
‘Tech, Fuel, Macro, R&D” scenario, there is much more mass centered around the 5 GW capacity level in 
this final scenario, which suggests that the outcome of 5 GW is much more probable than in the scenario 
that does not consider policy uncertainty.

NET
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Lessons Learned and Puzzles
An external review of the initial development of the SEDS model was held on May 7-8, 2009.  Overall, the 
review team felt that development of SEDS had been worthwhile and that after refinement and testing the 
model was likely to be a useful tool for R&D planning. The reviewers documented a wealth of valuable 
comments on needed improvements to the model. The following list is a sample taken directly from the report.
Key Criticisms
• The failure to solve for equilibrium in each period is a serious problem. The non-convergence creates

more difficulties in interpretation when the stochastic version is used.
• The model is a single region model with average characterization for everything (technologies, prices,

etc). Such a regional characterization is poorly positioned to do policy analysis or technology
assessments.

• SEDS needs a much better market share/market diffusion formulation/technology choice formulation;
important non-price factors and consumer preferences are not represented in most, if not all, of the
current choice functions.

• The model should ensure that more subtle aspects of technology costs are properly accommodated, such
as the relative non-dispatchability of some RE sources.

• Ensure that expert input considers how Federal R&D funding and policies could impact private R&D
investment, and also the impacts of non-U.S. groups doing technology R&D.

• The distributions and parameters chosen to represent stochastic variables are themselves uncertain and
will influence the model results...the selection of the distributions and their parameters could imply the
model contains more information than it really has.

• Needs better underlying data on technology and supply chain cost info.
• Scope of modeled technologies needs to be more comprehensive.

SEDS Team Response, Selected
• We agree that the impact of the absence of equilibrium needs to be measured and, if found to be

significant, resolved. We believe it may be possible to construct a special version of the model that iterates
within each one-year time step until equilibrium is reached. To quantify the impacts of equilibrium, we
will compare the results from this version with results from the existing non-equilibrium version

• While regional detail is critical to some aspects of a national energy model, it may be of marginal benefit
elsewhere, and added detail always comes at some cost. In addition, data limitations often dictate the level
of model detail or impose inconsistent levels among its various parts.

• Private and foreign R&D affect benefits from federal R&D in both directions, and the end result may be a
“wash”.
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Toy Biorefinery Model Fact Sheet 
 

Purpose 
• Build and solve non-linear two-stage stochastic 

optimization problems for R&D pathway and portfolio 
analysis using Pyomo, PySP and IPOPT. 

• Explore the impact of linearization on optimal 
solutions to a non-linear model. 

• Compete this toy model with others in a Monte Carlo 
simulation, to explore whether a less detailed model or 
its results behave differently than a more detailed 
model when simulating pathway development. 

Methods 
• Pyomo: Model building and data 

management 
• PySP: Multi-stage stochastic 

optimization 
• IPOPT: Non-linear solver 
• First-order Taylor series expansion: 

Linearization 
 

Technology 
• Two-stage stochastic optimization problem representing R&D on and operation of a biorefinery with 

two feedstock options, four processing steps, and one product. The biorefinery technology is partially 
mature but still improvable via targeted R&D on the processing steps. Decision variables are optimized 
to maximize the biorefinery annual profit. All cost and other equations are reflective of real model 
behavior but do not contain actual data or input from real-life experts. 

• The cost of each processing step is dependent on one process variable 𝑥𝑥𝑖𝑖 (analogous to yield) and one 
cost variable 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(𝑣𝑣𝑖𝑖). Costs of different processing steps are independent of each other. The cost 
variable is a function of the funding received for R&D on that processing step, 𝑣𝑣𝑖𝑖, and the stochastically 
selected R&D progress scenario. 

• R&D progress scenarios control the extent to which the funded R&D is successful. “Successful” R&D 
reduces the cost of a processing step. 

o R&D progress scenarios are Failure (no cost reduction), Advance (moderate cost reduction), and 
Innovation (substantial cost reduction). 

  
 Sets and 

Parameters 
Stochastic 
Variables 

Decision 
Variables Key Equations 

Stage 
One 

𝑖𝑖 ∈ {𝑝𝑝,𝑓𝑓, 𝑐𝑐, 𝑠𝑠}

= �

preprocessing,
 fermentation,
 conversion,
 separation

� 

 
𝑗𝑗 ∈ �

stover,
switchgrass� 

 
𝐶𝐶𝑖𝑖: Pre-R&D cost 
parameter 
 
𝑝𝑝: Product selling 
price per short ton 
 
𝑑𝑑𝑗𝑗: Feedstock price 
per dry short ton 

Funding 
Impact 

𝑚𝑚 

Funding 
Amounts 

𝑣𝑣𝑖𝑖 

Processing Cost Parameter 
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(𝑣𝑣𝑖𝑖,𝑚𝑚) = 𝐶𝐶𝑖𝑖�1 −𝑚𝑚𝑣𝑣𝑖𝑖0.25� 

    

Stage 
Two 

 

Process 
Variables 

𝑥𝑥𝑖𝑖 
 

Feedstock 
Amount 

𝑠𝑠𝑗𝑗 

Processing Cost 

��𝑐𝑐𝑖𝑖 �𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(𝑣𝑣𝑖𝑖,𝑚𝑚)��
𝑖𝑖

�� 𝑠𝑠𝑗𝑗
𝑗𝑗

� 

 
Overall Product Yield 

𝑦𝑦 = 𝑥𝑥𝑝𝑝2𝑥𝑥𝑓𝑓𝑥𝑥𝑐𝑐0.5𝑥𝑥𝑠𝑠0.25 
 

Profit 
𝑦𝑦𝑦𝑦� 𝑠𝑠𝑗𝑗

𝑗𝑗
−� 𝑑𝑑𝑗𝑗𝑠𝑠𝑗𝑗

𝑗𝑗

−��𝑐𝑐𝑖𝑖 �𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(𝑣𝑣𝑖𝑖,𝑚𝑚)��
𝑖𝑖

�� 𝑠𝑠𝑗𝑗
𝑗𝑗

� 
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Results and Discussion 

Optimal Results - Original Model 
R&D 

Progress 
Scenario 

Stochastic 
Variables 

Decision Variables Objective 
Function 

Value 
Preprocessing Fermentation Conversion Separation 
𝑣𝑣𝑝𝑝 𝑥𝑥𝑝𝑝 𝑣𝑣𝑓𝑓 𝑥𝑥𝑓𝑓 𝑣𝑣𝑐𝑐 𝑥𝑥𝑐𝑐 𝑣𝑣𝑠𝑠 𝑥𝑥𝑠𝑠 

Failure 𝑚𝑚 = 0.0 
$9.3M 

1.0 
$18.1M 

1.0 
$55.8M 

0.47 
$16.8M 

0.47 $163,500 
Advance 𝑚𝑚 = 0.05 1.0 1.0 0.53 0.50 $252,100 

Innovation 𝑚𝑚 = 0.10 1.0 1.0 0.59 0.53 $351,800 

• For all processing steps, a higher value of 𝑥𝑥𝑖𝑖 equates to higher processing costs and higher 
processing step yield, although the relationship between 𝑥𝑥𝑖𝑖, processing cost and yield is different for 
each processing step. 

o The increase in 𝑥𝑥𝑐𝑐 and 𝑥𝑥𝑠𝑠 under the Advance and Innovation scenarios is due to the increased 
impact of the R&D funding, which decreased the overall processing costs and enabled higher 
yields in those processing steps. 

o The preprocessing and fermentation steps were sufficiently low cost that R&D funding had 
no impact on the optimal process variable values. 

• All four processing steps received R&D funding, and the conversion steps received the highest 
amount by far. 

• Annual biorefinery profits (the objective function) increased as the impact of R&D funding 
increased because the same amount of funding resulted in higher processing cost reductions. 

Optimal Results - Linearized Model (see Impact of Linearization for procedure) 
R&D 

Progress 
Scenario 

Stochastic 
Variables 

Decision Variables Objective 
Function 

Value 
Preprocessing Fermentation Conversion Separation 
𝑣𝑣𝑝𝑝 𝑥𝑥𝑝𝑝 𝑣𝑣𝑓𝑓 𝑥𝑥𝑓𝑓 𝑣𝑣𝑐𝑐 𝑥𝑥𝑐𝑐 𝑣𝑣𝑠𝑠 𝑥𝑥𝑠𝑠 

Failure 𝑚𝑚 = 0.0 
$0 

1.0 
$100M 

1.0 
$0 

0.08 
$0 

0 $255,100 
Advance 𝑚𝑚 = 0.05 1.0 1.0 0.09 0 $252,500 

Innovation 𝑚𝑚 = 0.10 1.0 1.0 0.10 0 $254,500 

• Under the linearized model, every processing step had a linear relationship between 𝑥𝑥𝑖𝑖, processing 
cost and yield, albeit with different slopes and 𝑦𝑦-intercepts. See page 4 for the linearization 
procedure. 

• Only the conversion process variable changed under R&D progress scenarios, with the magnitude of 
the change being much less than in the original model. 

• The process variable for the separation step remained at zero under all progress scenarios, indicating 
that under the linearized model it was optimal to sell an unrefined product. This behavior is 
unrealistic and in future versions of the model could be corrected by linking product selling price to 
process variables. 

• The fermentation step received all available R&D funding. 
• Annual biorefinery profits did not increase monotonically with the R&D progress scenario, and the 

Failure scenario had the highest annual profits. 
• Overall the linearized model behavior and optimum are not in good agreement with the original, 

non-linear model, indicating that for this particular model the reduced model complexity from 
linearization may not be worth the decrease in modeling accuracy. 
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Lesson Learned: Optimization with Pyomo and PySP 
Discretization. Stochasticity is incorporated into the 
program by defining a finite number of potential 
scenarios and assigning each scenario a probability of 
occurring. In real applications, these probabilities could 
be determined from expert elicitation or from historical 
data. The sum of the probabilities over all scenarios 
defined must be equal to one. Uncertain parameters take 
on different values in different scenarios, and the 
probability of the scenario occurring is thus also the 
probability of the uncertain parameter taking on the 
value defined in that scenario. The alternative to this 
discretization is to use continuous probability 
distributions to capture parameter uncertainty. The 
stochastic parameter in this problem, 𝑚𝑚, determined the 
impact of funded R&D on the biorefinery cost 
equations: 

Progress Scenario 𝑚𝑚 Probability of Occurring 
Failure 

no cost reduction 0.0 0.4 

Advance 
some cost reduction 0.05 0.4 

Innovation 
significant cost reduction 0.10 0.2 

The cost parameter 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 as well as the overall cost 𝑐𝑐𝑖𝑖 in each processing step is dependent on 𝑚𝑚 as 
well as on the amount of funding 𝑣𝑣𝑖𝑖 assigned to the processing step. The figure above shows how 𝑐𝑐𝑖𝑖 changes 
with the amount of funding and the progress scenario for the fermentation processing step. 

A Priori Probabilities. Probabilities assigned to second-stage scenarios are required to be specified before the 
problem is solved, and as such must be independent of first-stage decision variables. There is a class of 
stochastic programs in which scenario probabilities can be dependent on prior stage decision variables as 
discussed in Jonsbråten et al. (1998) and in Hellemo et al. (2018). In this model, the probability of a particular 
investment (funding decision) being successful may reasonably be dependent on the amount of funding 
provided – low or insufficient levels of funding would plausibly lead to Failure more often than high levels of 
funding.  

Model and Scenario Data. Under Pyomo, models can be created as concrete models, in which data is hard 
coded into the model and cannot easily be varied, or abstract models, in which the model structure and data is 
specified separately. The biorefinery model was created as an abstract model to allow different sets of model 
data to be specified under each progress scenario. This required the creation of three scenario data files which 
were largely identical save for the parameter that varied according to the progress scenario. Maintaining and 
updating these data files would quickly become cumbersome and potentially prohibitive for a large-scale model.  
 Pyomo also utilizes Expressions, symbolic mathematical statements unique to Pyomo models. While 
Expressions somewhat simplifies model creation, for instance by allowing the definition of a quantity that can 
be used multiple times in a model, it is relatively easy to define Expressions that cannot be parsed by Pyomo 
and the solvers used to find optima. There is a small but significant learning curve involved in using 
Expressions correctly, which presents a barrier for modelers new to Pyomo. 
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Lesson Learned: Impact of Linearization 

First-order Taylor series expansions around the midpoint 
of the respective variable ranges were used to linearize 
model equations. 
Cost equations. The agreement between the original and 
linearized equations depended heavily on the curvature of 
the original equations. For instance, the linear and non-
linear fermentation cost equations are in reasonably good 
agreement, as shown in the upper figure at left. The 
linearized fermentation cost equation performs most 
poorly for 𝑥𝑥𝑓𝑓 ≤ 0.2. On the other hand, the separation 
cost equation has an asymptote at 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1, and 
therefore the agreement between the original and 
linearized cost equations is poor outside the range 0.4 ≤
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 0.6. This can be seen in the lower figure at left. 
Overall model behavior. In the figure below, the subplot 
on the left shows biorefinery annual profits plotted 
against overall process yield for the original, fully 
nonlinear model. On the right are the same values plotted 
for the linearized model. These results are for the 
Advance scenario and are a representative sample from 
the entire solution space. Linearizing the model severely 
restricts the overall yield values that can be achieved and 
as a result also constricts the solution space for the 
biorefinery. Approximately the same range of annual 
profit values are achieved, and indeed the linearized 
model appears to have a higher proportion of solutions in 
the region where annual profits are greater than zero. This 
is likely due to the linearized cost equations not capturing 

the exponential growth and asymptotic behavior in the conversion and separation steps, making it so the 
marginal gains in process variable were the same cost regardless of the process variable value. This leads to 
heavy cost reductions in those steps and higher profit values, even with lower overall yields. 
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Polysilicon Cell Cost Model Fact Sheet

PurposeA detailed, bottom-up polysilicon cell manufacturing cost model was translated from one of the NREL’s established Excel manufacturing cost models into a Pythonic version (Woodhouse, 2019). This detailed cost model was developed for two reasons: to test decision making methodologies (e.g., stochastic optimization vs Monte Carlo) and to test different levels of detail in cost models (e.g., simple, new cost model vs a well-established, detailed cost model). Both of these situations are usually present for R&D portfolio managers and the impact of both the decision methodology and the underlying cost model are important to understand when evaluating portfolio allocation approaches. 
MethodsThis bottom-up cost model evaluates each stage in the manufacturing process sequentially. For this model, the following manufacturing steps are modelled: 
• Harvest Chunk – costs associated with harvesting the chunk of polysilicon
• Siemens CVD – costs to obtain the high-grade polycrystalline silicon
• Etch Filaments – cost of process etching the filaments
• Machine Filaments – costs to machine the filaments
• Saw Ingots – costs of sawing process
• Crop Ingots – costs of cropping process
• Anneal Ingots – costs of annealing process
• Grow Ingots – costs of growing the ingots
• TCS – costs of trichlorosilane processThe outputs of the model are a table of levelized cost per kg of polysilicon chunk. 
TechnologyThis is a detailed, bottom-up cost model for the well-established polysilicon cell manufacturing process. As NREL’s models contain proprietary costs associated with each process, this analysis has been “anonymized” by using random values that aim to be on the same order of magnitude as the true process, but are not anticipated to be accurate. Additionally, this model reflects a relatively older manufacturing process technology which has been improved upon since the development of the original Excel model.  Importantly, this technology is well-established and has a high degree of certainty around the process design and costs associated with it. The model follows a direct cost calculation based on the input materials, capital expenditures, operating expenses, and labor expenses. Indirect costs are estimated based on the direct costs. The capital costs are then amortized over the life of the asset.  
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Results
Inputs: The model allows the user to select the region for analysis, since the labor costs, financial conditions (e.g. capital recovery), commodity prices, and indirect costs (e.g. installation costs) vary from region to region. For this initial demonstration, the U.S. was selected as the region of analysis. The model sequentially steps through each of the manufacturing steps. The inputs to each step include information such as specific commodity price, process yield, expected downtime, tooling life and cost, capital cost, process efficiency, etc. From the perspective of the R&D Portfolio manager, each of these inputs could be uncertain and the manager must understand which input parameters are most influential on the resulting cost. 
Outputs: Each manufacturing step has two primary outputs: a financial summary of that step (a Python DataFrame object) and the cumulative material rejection rate (waste). Some steps output additional parameters for future steps to use (e.g., Total Mass of Si per Rod). The final cost summary is the total of all the individual manufacturing step financial summary tables. This model was validated against the original Excel model and matched with machine precision. The financial results from the model validation are shown below. 

Discussion: A few key elements are very apparent from simply developing this model for future use in other, decision-oriented models. Some of them include: 
• Non-linear interactions – some of the manufacturing steps are non-linear.
• Input data quantity and uncertainty – there are on the order of hundreds of inputparameters and each could have varying levels of uncertainty associated with them. Asensitivity analysis should be completed to understand which ones are the key costdrivers of the process (e.g., tornado diagrams).
• Upstream process improvements may have a considerable impact due to the effect ofcompounding at each step in the process (e.g., reducing waste in the Harvest Chunkprocess percolates through the rest of the model).

Cost Component $/kg Poly Si Chunk $M/year %
Material Cost 16.37 85.14$          52%
Direct Labor Cost 1.93 10.01$          6%
Utility Cost 4.04 21.01$          13%
Equipment Cost 3.31 17.23$          11%
Tooling Cost 0.01 0.06$        0%
Building Cost 0.16 0.81$        0%
Maintenance Cost 1.09 5.67$        3%
Overhead Labor Cost 0.62 3.24$        2%
Cost of Capital 3.74 19.45$          12%
Total 31.27 162.62$        100%
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Results, continued
Connection to EERE Portfolio Allocation:Cost models such as this one are used widely across EERE to understand the series of improvements that enable a particular office to meet its technology performance and cost targets. For example, the Solar Energy Technology Office (SETO) sets LCOE targets and tracks progress towards meeting those targets over time, as seen in Figure 1 (Ran, 2018). 

    Figure 1. NREL PV LCOE benchmark summary (inflation adjusted), 2010–2018A techno-economic analysis can then be completed using these manufacturing cost models to develop roadmaps to achieve EERE cost and performance targets, as seen in Figure 2 (Woodhouse, 2019). 

     Figure 2. Modeled costs and MSPs for past, present, and projected c-Si modules
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Lessons Learned and Puzzles
Lessons Learned:
• Bottom-up, detailed cost models are likely only available for well-establishedtechnologies.
• Non-linearities are likely present in detailed cost-models.
• Detailed cost models have significantly more input parameters than simpler costmodels and each could have a source of uncertainty.
Puzzles:
• How will two cost models of differing levels of detail / analytical rigor compete fairlyfor the same R&D dollar?
• Will the additional parameters associated with the detailed cost models increase ordecrease the level of certainty of future cost projections?
• If all input parameters have uncertainty associated with them, what is the bestprocess for selecting which ones to focus on? Or should they all be evaluated?
• Are there specific decision making methods that are better for situations with highnumbers of uncertain parameters (e.g. Monte Carlo)? Will other methods breakdownwith too many uncertain parameters?
• What is the impact of linearizing a cost model? How much information is lost versushow much computational efficiency is gained? Are there specific applications forlinear methods (local machine computations) and non-linear methods (highperformance computing)?
Conclusions: A detailed cost model was developed to compare different decision making methodologies and assess the relative importance of the cost-model itself. Developing this model has surfaced a number of puzzles that a real-life R&D program manager must determine how to best approach/solve including non-linearities, number of uncertain parameters, and fair competition across varying detail of cost models. 
BibliographyWoodhouse, Michael. Brittany Smith, Ashwin Ramdas, and Robert Margolis. 2019.Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing:1H 2018 Benchmark and Cost Reduction Roadmap. Golden, CO: National RenewableEnergy Laboratory. https://www.nrel.gov/docs/fy19osti/72134.pdf.Fu, Ran, David Feldman, and Robert Margolis. 2018. U.S. Solar Photovoltaic SystemCost Benchmark: Q1 2018. Golden, CO: National Renewable Energy Laboratory.NREL/TP-6A20-72399. https://www.nrel.gov/docs/fy19osti/72399.pdf.
Link to online data/modelSee <https://nrel.github.io/portfolio/> for further information.

39
This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



Real Options Toy Model 
Purpose 
Real options analysis builds upon the conventional discounted cash flow valuation analysis to 
incorporate aspects of both the ability for management to make decisions while a project is 
developing as well as uncertainty with respect to the cash flows associated with it. These two 
aspects make real options analysis a useful tool for decision making under uncertainty.  

Two real options models were developed: the classic Black-Scholes model and a binomial lattice 
model. The Black-Scholes model is a closed-form mathematical model that is capable of valuing 
European Options (only exercise the option at the end of the holding period, as opposed to 
American options for which you can exercise them at any time in the holding period). Next, the 
binomial lattice model is effectively a discretization of the continuous stochastic process 
underlying the Black-Scholes model and are widely used due to their flexibility and relative ease 
of implementation. Both models were applied to two scenarios of an organization investing in 
R&D to reduce the levelized cost of manufacturing a Si PV cell.  

By evaluated both a closed-form model and a more flexible binomial lattice model, various 
insights can be evaluated such as the tradeoff of computation time with accuracy and the power 
of flexibility in decision making under uncertainty. Additionally, two scenarios were evaluated to 
show how a R&D Project Manager might decide on how to select input parameters to invest in.  

Methods 
Black-Scholes 
The Black-Scholes model is a closed-form mathematical model that was derived be using 
stochastic calculus to value European Call or Put options. Mathematically, the Black-Scholes 
closed-form solution for a European Call is [1, 2] 

𝑉𝑉𝐶𝐶(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆 ⋅ Φ(𝑑𝑑1) − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) ⋅ Φ(𝑑𝑑2) 
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where 

• 𝑉𝑉𝐶𝐶 - Call option value 
• S - Current asset value (typically a simple DCF valuation calculation without considering 

the option value) 
• K - Strike price of the option. For real options, can be the implementation cost to execute 

the strategic option 
• r - risk-free interest rate (US Treasury note with duration same as the project timeline)  
• 𝜎𝜎 - volatility of the natural logarithm of the project's free cash flows 
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• T - time at which option expires 
• t - current time 
• Φ - is the cumulative distribution function of the standard normal distribution.  

 
The value of the European Put based on the Put-Call parity is [1] 
 

𝑉𝑉𝑃𝑃(𝑆𝑆, 𝑡𝑡) = Φ(−𝑑𝑑2) ⋅ 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) −Φ(−𝑑𝑑1) ⋅ 𝑆𝑆 
 
Additionally, closed-form solutions for more complex option valuations have been completed. 
Below are some of the closed-form approximations that exist [2]: 

• Bjerksund Closed-Form Approximation for American Call and Put Options with 
Dividends 

• Barone-Adesi-Whaley Closed-Form Approximation - American Call and Put Options 
with Dividends 

 
Binomial Lattice 
The binomial options model equations are based on the discrete simulation step size as well as an 
assumption around risk-neutral probability. Mathematically, the formulas are [2, 3, 4] 

𝑢𝑢 = 𝑒𝑒σ√δ𝑡𝑡 

𝑑𝑑 = 𝑒𝑒−σ√δ𝑡𝑡 =
1
𝑢𝑢

 

𝑝𝑝 =
𝑒𝑒𝑟𝑟(δ𝑡𝑡) − 𝑑𝑑
𝑢𝑢 − 𝑑𝑑

 
where: 

• u - magnitude of up movement (increase in asset value) 
• d - magnitude of down movement (decrease in asset value); usually assumed to be 

proportional to up movement (recombining tree = reduced nodes in lattice) 
• p - risk-neutral probability (discounts probability, or equivalently, cash flows) by risk 

level to bring back to present value 
• 𝜎𝜎 - volatility of the natural logarithm of the project's free cash flows 
• r - risk-free interest rate 
• 𝛿𝛿 - discretized time step 

The u and d parameters reflect the simulation step up and down, respectively. The p parameter 
reflects the risk-neutral probability (adjusted probability rather than adjusting the discount rate). 
The binomial models typically converge with ~1,000 iterations within each period [2]. As the 
number of periods increases, the computation expense will increase. Using these formulas, one 
can calculate the option tree.  

Once completed, backwards induction is used to convert these values back to present option 
values at the time when the value is being considered. Mathematically, this is [3] 

• European Call or Put:   𝑉𝑉𝑛𝑛 = 𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑉𝑉𝑢𝑢 + (1 − 𝑝𝑝)𝑉𝑉𝑑𝑑) 
• American Put:   𝑉𝑉𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐾𝐾 − 𝑆𝑆𝑛𝑛, 𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑉𝑉𝑢𝑢 + (1 − 𝑝𝑝)𝑉𝑉𝑑𝑑)� 
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• American Call:   𝑉𝑉𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆𝑛𝑛 − 𝐾𝐾, 𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑉𝑉𝑢𝑢 + (1 − 𝑝𝑝)𝑉𝑉𝑑𝑑)� 

where: 

• 𝑉𝑉𝑛𝑛- is the value of the option at time-step n 
• 𝑆𝑆𝑛𝑛- is the value of the asset at time-step n 
• 𝑉𝑉𝑢𝑢- is the value of the option from the upper node at n+1 
• 𝑉𝑉𝑑𝑑- is the value of the option from the lower node at n+1 

The binomial model provides greater flexibility than the closed-form solutions. For example, the 
binomial model can be readily updated to account for various option valuations 
(abandon/deploy/continue/expand/contract), multiple options simultaneously, changing volatility 
values (bushy lattice), and compound options [2]. This increased flexibility can be very useful 
for real-world projects which exhibit these aspects that cannot be easily included in a closed-
form solution such as the Black-Scholes model. 

Technology 
Real option analysis models can be applied to any investment decision with an expected value 
and some uncertainty around various future values that affect that expected value.  

For this example, a detailed cost model for Si PV cell manufacturing was used as the base model 
and two R&D investment scenarios were evaluated: investing to improve Metallurgical Grade 
(MG) Silicon Usage in the trichlorosilane (TCS) formation process or investing in R&D to 
reduce the MG Silicon waste in the (TCS) formation process. An abandonment option value was 
estimated assuming that the R&D investment could be reduced at any point in time during the 
investment time horizon. The total value of each R&D project scenario (asset value 
[deterministic net present value of the R&D project] plus the abandonment option value) was 
estimated and compared to determine which is more financially attractive and should receive the 
R&D investments.  

Abandonment Option Valuation Steps/Assumptions 
The abandonment option value was estimated via the following steps (summarized in Figure 1):  

1. Assume the cash inflows generated by the R&D investment manifested themselves in 
lower PV cell costs as opposed to no investment (assumed no improvement without R&D 
investment). 

2. The R&D expenditures (cash outflows) were kept constant over the time horizon 
analyzed. Free cash flows are assumed to be the net difference between lower PV cell 
costs and R&D expenditures normalized on a $/kg poly Si chunk level. 

3. Compute a deterministic improvement over time based on a linear rate of improvement. 
4. Compute a stochastic improvement over time based on:  

a. Geometric Brownian Motion (for the R&D investment in MG Usage Rate). 
b. Triangular distribution of improvement over time (for MG Waste Rate)1. 

1 A triangular distribution was used for illustrative purposes since it is (1) a different distribution than GBM and (2) 
since that is typically what expert elicitation data results in. 
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5. Compute 1,000 runs of stochastic progress over time (Monte Carlo) to evaluate the 
uncertainty in Si PV Cost (resulting values are compared to the deterministic case to 
determine the uncertainty in free cash flows). 

6. Determine the NPV of the deterministic improvement case (base-case). 
7. Determine the volatility of the natural log of the returns for the stochastic runs. 
8. Compute the salvage value of exercising the option to abandon the R&D investment 

(NPV of future R&D Expenditures). 
9. Input the NPV of the deterministic case (S), salvage value (X), volatility of the stochastic 

run returns (𝜎𝜎), and other parameters (r, T, t) into the binomial lattice model. 
10. Compute the value of the abandon put option. 

 

Figure 1. Option value computation flow 

Results 
Figure 1 shows the results of both R&D investment scenarios. For each scenario, there is a No 
R&D Case (static Si PV cell cost), Deterministic Case (constant linear improvement over time), 
and Stochastic Case (Geometric Brownian Motion improvement over time for the MG Usage 
Improvement scenario, triangular distribution improvement for the MG Waste Reduction 
scenario). By comparing a world with no R&D investment with that of a constant, deterministic 
improvement over time, a typical discounted cash flow analysis can be completed to determine 
the value of the R&D without considering the abandonment option. Similarly, the free cash flows 
for each stochastic run were computed. Next, the natural log of the returns for each stochastic run 
were computed and the volatility of the resulting scenarios was determined to be input into the 
binomial lattice model.  

 

Figure 2. Cost evolution over time (each time step is one quarter of each year) for the three 
scenarios evaluated. 95% confidence intervals shown in green around the Stochastic Case 
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Table 1 summarizes the resulting values obtained from the Si PV cost model analysis. The R&D 
investment required for the MG Si Waste Reduction scenario was assumed to be half that of the 
MG Si Usage Improvement scenario due to the lower sensitivity on cell cost2. Inputting the 
calculated parameters in Table 1 into the binomial lattice model allows the value of the 
abandonment put option to be evaluated. Additionally, the inputs were entered into the Black-
Scholes model for comparison (although the Black-Scholes model only evaluates a European put 
option whereas this scenario is an American put option).  

Table 1. Binomial lattice model input parameters based on Si PV cell manufacturing cost model 

Parameter 
MG Si Usage  

Improvement Scenario 
MG Si Waste  

Reduction Scenario 
Deterministic NPV ($/kg-Si) 18.61 3.13 
Salvage Value ($/kg-Si) 26.17 13.09 
Volatility 0.285 0.14 
Risk Free Rate (%) 0.05 0.05 
Time (steps) 20 20 

 
The option valuation results are summarized in Table 2 below. The results highlight that the 
closed-form solution is highly preferable for computation time, however, cannot directly be 
applied to this example as the option here is an American put.  

Table 2. Comparison of R&D investment scenario option values and model computation times 

Model Description 
MG Si Usage 
Option Value 

($/kg-Si) 

MG Si Waste 
Option Value 

($/kg-Si) 

Computation 
Time  

(s) 
Black-Scholes European Put 4.40 N/A <0.001 
Binomial Lattice American Put, 10 steps 7.82 9.95 <0.001 
Binomial Lattice American Put, 100 steps 7.80 9.95 0.03-0.04 
Binomial Lattice American Put, 1000 steps 7.80 9.95 3.51-3.69 

To compare R&D investment scenarios against each other, the total value of each R&D project 
scenario (asset value [deterministic net present value of the R&D Project] plus the abandonment 
option value) must be computed. These results are summarized in Table 3 which show the MG 
Si Improvement R&D Project has the superior financial outcome and should be invested in. 
Interestingly, the R&D Project investing in MG Si Waste Reduction has a very high option price 
since this is an American Put which means that if the option is exercised, the R&D Project 
Manager recovers the underlying value of the asset which is likely negative (and thus the option 
would almost always be exercised).  

2 As mentioned in the Lessons Learned and Puzzles, a generic framework to complete a sensitivity analysis on the 
combined input parameter and R&D investment should be a first step in determining which aspects of the project 
could be potential focus areas for R&D investment. 
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Table 3. Comparison of R&D Projects based on total project value 

Scenario Deterministic NPV 
($/kg-Si) 

Abandonment Option 
Value ($/kg-Si) 

Total Value 
($/kg-Si) Invest? 

Invest in MG Si 
Usage Improvement 18.61 7.80 26.41 Yes 

Invest in MG Si 
Waste Reduction 3.13 9.95 13.09 No 

Lessons Learned and Puzzles 
Flexibility versus Computation Time / Resources 
• Closed-form partial differential models are much more computationally efficient but are 

limited in their applicability across various option valuations. 

• Binomial lattices are more flexible and can be tailored to handle multiple types of options 
(abandon/deploy/continue/expand/contract, multiple options simultaneously, changing 
volatility values, and compound options), but at the cost of computation time (additional 
examples could be set up for these scenarios). 

• Can multiple types of real option analysis techniques (lattice, PDE, Monte Carlo) be 
combined to flexibly answer questions quickly in a fit-for-purpose manner?  

• What happens when there are tens or hundreds of variables that are uncertain? Or multiple 
real options available at the same time (compound)?  

Volatility Estimation 
• How should the volatility parameter in the real options valuation (ROV) models be 

characterized given different forms of volatility in the technology improvement model? E.g. 
if GBM is used versus a triangular distribution for technology improvement, should the 
volatility of project returns be estimated differently before being input into the ROV model?  

• What is the best way to estimate volatility across different model inputs? Literature seems to 
be divided on Geometric Brownian Motion and Mean Reversion while expert elicitation 
results usually result in triangular probability distributions. 

• What sources of uncertainty are the most important? Which should be included in the 
analysis and which ones should not?  

What Options to Evaluate  
• The real options present (investment timing, to invest, to abandon, technology choice, to 

switch, to expand, etc.) could be very large. How does one know a priori which options (and 
how many) are the best to value? Why does most literature only analyze ~1-3 options [5]? 

• A standard framework is needed to complete a sensitivity analysis to understand which 
parameters may have the largest impact on system cost before using a real options analysis 
per dollar of R&D invested. 
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• How to incorporate non-financial returns into these models such as the value of added 
services or R&D improvement impacting other Projects?   

Conclusions 
• Real options analysis presents a powerful tool for evaluating the value of certain options in 

an uncertain world. 

• Real options analysis could be combined with other techniques such as stochastic 
optimization and Monte Carlo analysis to expand its utility. For example, Monte Carlo is 
typically needed for volatility analysis which is then input into the real options model while 
stochastic optimization can take in real options results and be used to select between multiple 
projects under budget constraints [3]. 

• The trade-off between model flexibility and computation time need to be evaluated carefully 
when selecting the purpose for the model. 
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See <https://nrel.github.io/portfolio/> for further information on the Black-Scholes Model, the 
Binomial Lattice Model, and the Si PV Manufacturing Cost Model. 
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Monte Carlo Toy Model 

Purpose 
Monte Carlo (MC) simulation can be used in R&D Pathway and Portfolio analysis in two key ways.  
First, it can be used to generate probability distributions of the cost and performance of a 
technology system using expert estimates of the potential improvements due to R&D investment in 
the technology’s components or subsystems.  From this, the relative impact of different R&D 
investments can also be determined.  Second, it can be used to then compete these probability 
distributions of cost and performance for individual technology systems in an overall market model 
(see the SEDS Factsheet).  This enables one to determine, bottom-up, what difference an R&D 
investment can make.  The focus here is on a toy model of an individual technology. This highlights 
particular advantages of MC simulation for exploratory modeling—that it is flexible, adaptable to 
use at many different levels from components to markets (with appropriate model design), and can 
be run given a variety of input data (Bankes 1993). Future versions of this model will consider the 
hierarchy, listed with examples, from the bottom up: 

Technology System 
Level 

1. Components: photovoltaic (PV) poly-silicon (PolySi) wafer, 
concentrating solar power (CSP) heliostat; inverter electrolytic 
capacitors 

2. Subsystems: PV modules, balance-of-systems, inverters 
3. Technology System: PV System, CSP System 

Cross-Technology 
Systems 

4. Programs: Solar Energy Technologies Office, Vehicle Technologies 
Office, Wind Energy Technologies Office 

Market-Competition 
Models 

5. Portfolio: Electric Power Systems, Transportation Systems, 
Buildings, … DOE Office of Energy Efficiency and Renewable 
Energy (EERE)-wide 

Research foci within these levels may include improving efficiency and cost. The investment levels 
can inform funding distributions at the laboratory level when allocating funds within a research 
area, at the system level, at an EERE program level, or at an EERE-wide level. 

Methods 

Prediction 
This toy model is focused on the technology system, bullets (1) to (3), as listed above.  Several 
scenarios are defined at the component level. Experts are elicited for the probability that a 
technological advancement can be made at each investment level and how large the particular 
advancement might be, as modeled by a triangular distribution  In addition, the experts are asked 
the number of times successful R&D on the component can yield improvement; this is used here as 
a simple way to indicate technical limits in potential advances in a particular area of research, 
generating declining returns on R&D investment. Experts are also asked for the low, middle, and 
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high impact of an advancement on any parameter that might be affected, such as capital cost or 
levelized cost of energy or electricity (LCOE).  These could also represent the 10th, maximum, and 
90th points on a triangular distribution, and the distribution might be modified to adjust weights, as 
described in the Bayesian Fact Sheet. 

Figure 1 shows the overall process that the Monte Carlo model follows. Expert predictions are 
aggregated by taking averages, either on all requested information before the simulation, or on the 
results of the Monte Carlo simulations after all expert predictions have been sampled individually; 
these averages can be weighted if there is a well-developed basis for doing so. Numerous other 
schemes for combining expert opinion are also possible but are not explored here (Baker and 
Olaleye 2012). It is useful to consider tracking expert performance individually, as weights 
indicating level of expertise can be updated using the technique described in the Bayesian fact 
sheet; however, developing such weightings is challenging. The model allows for experts to make 
predictions on one or multiple subsystems, assigning different weights (chosen arbitrarily for the 
purposes of this model exercise) to their assessment, depending on their familiarity with the 
subsystems. Monte Carlo sampling is performed for each investment scenario individually. 
However, when making an investment, decision makers will need to consider bundles of 
investments: decision makers must consider all permutations of investment options, rather than 
each investment individually, to suggest a complete investment portfolio. Each bundle has its own 
combined impact on the considered research foci. These combined impacts are used to determine 
the score of each investment bundle, which are ranked in a score matrix. This can be ranked based 
on the impacted parameters, and controlled based on user input to enable multi-objective 
optimization (Wang et al. 2009).  Bundles selected here are based on cost, but other performance 
characteristics can also be important and could be similarly selected for.  The cost and performance 
distributions for the technologies resulting from the highest-ranking investment bundles can then 
be used in cross-technology comparisons (bullet (4) above) or used in a market allocation model 
(bullet (5) above), such as SEDS (see the SEDS factsheet). 

Monte Carlo simulation  
Thus, an inner MC simulation is used by the decision maker to identify and select the top-ranking 
R&D investment bundles, and an outer MC is used to generate the probability distributions of the 
cost and performance for these top-ranking bundles to show the results of the decision process 
being simulated, and this information can be subsequently used in the steps shown above, bullets 
(4) and (5).   

Figure 1. Monte Carlo model flow chart. This is a multistage approach whereby the Monte Carlo 
sampling Figure 2 is repeated twice. First, every possible permutation of investment scenarios is 
sampled. These are ranked by a user-determined objective to determine which investment 
scenario bundle is the best. Next, the Monte Carlo sampling is repeated for the best option, and 
the results are saved to track the impact of making that investment. This process is repeated to 
select and make an investment at each timestep. 
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Monte Carlo Sampling 
Figure 2 depicts the sampling process for one combination of subsystem and investment scenario. 
For each subsystem, the method first samples to determine whether an advancement has been 
made. If an advancement is possible—the model will first sample to determine whether an 
investment is made, and then to determine the impact of this investment on improvable 
parameters, such as LCOE. A maximum number of possible advancements is meant to simulate a 
theoretical limit on potential research advancements. If an advancement is not possible, no 
improvement will be observed, affecting the ranking of this investment, deprioritizing it when 
selecting an optimal investment. 

Technology 

Data 
The Monte Carlo toy model was developed and assessed using hypothetical data. This was informed 
by two models: 

1. The Stochastic Energy Deployment System (SEDS) model informed the improvable 
parameters considered when applying the Monte Carlo method (see SEDS fact sheet). No 
SEDS simulations were performed when making this model, but the SEDS input data was 
used as a reference when constructing the hypothetical data. 

2. NREL’s Annual Technology Baseline (ATB) database summarizes current power plant 
financial information, as well as predicted values annually from 2018 until 2050. ATB data 
was used to approximate the impact of research at the subsystem level at the plant and 
program levels. 

Calculations 
A variety of financial, environmental, and social parameters can be considered when making an 
investment. Here, the LCOE was used to measure the impact; environmental and other factors were 
not considered. Other factors that were not included in this first toy model – including greenhouse 
gas emissions, jobs created, and air pollution – will be considered in future iterations of the model. 

Levelized Cost of Energy (LCOE). The ATB data is used to assess how the LCOE will be impacted 
by each investment decision and aid in leveraging subsystem-level simulations to make technology-
level and program-level decisions. LCOE (with units of $/MWh) is calculated as follows: 

Figure 2. These plots show the Monte Carlo sampling process for the impact of a target investment in 
balance-of-system cost. First, the advancement pdf is sampled. The probability density function of this 
discrete event is shown on the interval [0, 1], so that the probability of any event occurring is 100%.  If 
an advancement is made, the triangular distribution is sampled using the Python built-in function. 
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LCOE =
FCR ⋅ CAPEX + FOM

CF ⋅ 8760 hr/yr
+ VOM + Fuel 

where 

• FCR is the fixed charge rate (%), 
• CAPEX is capital expenditure ($/kW), 
• CF is capacity factor (%), 
• FOM is fixed operations and management ($/kW yr), and 
• VOM is variable operations and management ($/MWh). 

Not all parameters apply to all technologies: the PV portfolio studied here, for instance, does not 
have an associated fuel cost. 

Score. A metric must be defined to rank the investment scenario options and determine which are 
the best as determined by the desired optimization objective(s). In this instance, the score was 
calculated as the percent improvement in LCOE per investment dollars spent. Other, more 
comprehensive, measures, including multi-objective ones, could be incorporated into this 
framework. 

Results 
The toy model was applied to potential research on cadmium telluride (CdTe) and poly-silicon 
(PolySi) subsystems of the PV platform. Balance-of-system cost and inverter lifetime efficiency 
were components relevant to both subsystems. Each subsystem also had uniquely relevant 
efficiency parameters that could be improved through R&D. Figure 3 shows how these subsystems 
and components fit into the overall investment portfolio. 

A total of nine experts provided estimates for LCOE improvements. Figure 4 shows the input 
triangular distributions for each component. The model allows for multiple experts to provide 
estimates on one or more components, with their estimates weighted by their level of expertise on 
that specific component. 

Figure 3. Map of subsystem components to relevant systems included in the toy data to select an 
investment scenario bundle. 
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Figure 4. All triangle probability distributions (scaled vertically to have a total probability of 1) for the subsystem 
components considered by the Monte Carlo model, grouped by expert ID and investment scenario. 

 
Figure 5. Tornado plots of investment impact on LCOE on the CdTe and PolySi subsystems grouped by expert. 

 

Figure 6. The above plots show the annual investment expenditure by component, as well as the cumulative 
number of advancements and amount of LCOE improvement made. 

Figure 5 shows tornado diagrams separating the contribution to the percent improvement in LCOE 
by research focus and expert ID. This is meant to serve as a visual aide to decision makers when 
selecting an investment bundle at each timestep. These plots show that the most beneficial R&D 
investments in both cases are those that improving the balance-of-system cost. Figure 6 
summarizes the results of the entire Monte Carlo simulation. It follows that investments are first 
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made where they will make the most impact: balance-of-system cost, as suggested by the tornado 
plots in Figure 5. After research has been completed in this focus area, other research foci compete 
for funding. 

Lessons Learned and Puzzles 

Lessons Learned 
Nested Monte Carlo Models. The Monte Carlo model relies on expert predictions made at various 
levels of the hierarchy and these can propagate upwards with possibly further nested Monte Carlo 
simulations to make predictions at higher levels, e.g. the technology system level, based on 
predictions made at lower levels, e.g. component and subsystem levels. 

Runtime. The Monte Carlo method is notoriously slow, requiring a compromise between model 
fidelity and run time: 500 samples when making predictions were found to produce consistent 
investment selections in seconds for this small toy model.  Scaling it to a much larger, more realistic 
model may pose a challenge. High performance computers can run the model with little concern 
over runtime, but we anticipate practical limitations when running in laptop- or desktop-computing 
environments that may preclude useful application by decision makers.  

Close calls. It is possible for there to be several top-ranked investment options whose scores fall 
within one another’s statistical uncertainty, meaning that the selected investment scenario is 
subject to change between runs. For this reason, it is helpful to display information, such as the 
tornado plots in Figure 5 to aid decision makers in making more fully informed decisions, including 
the sensitivities and uncertainties indicated by a broader set of figures. 

Puzzles 
Correlation. Considering the correlation between components or subsystems may indicate 
whether an advance in one might lead to a setback or advance in another. For example, significant 
advancements in heat exchanger efficiency might enable a significant reduction in flow rates and in 
fan/motor size.  At the manufacturing level, a novel manufacturing technique might make another 
technique obsolete and require the construction of new fabrication centers. 

Experience. Technology prices decrease as cumulative production increases, typically with a 
(Trancik and Zweibel 2006; Kavlak, McNerney, and Trancik 2018). Experts may or may not factor 
this into their estimations, so adjustments will need to consider this in making adjustments to the 
model and incorporating consideration of such learning curves in recommendations. 

Signaling. How might high government investment inspire private investment or increased 
interest, which could in turn speed up research progress? 
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Modeling Technology Readiness and Performance Levels 

Purpose 
Technology performance levels (TPLs) complement the commonly used technology readiness levels 
(TRLs) by distinguishing the economic viability and competitiveness of a technology from its 
operational scale and commercial maturity [Weber, Costello, and Ringwood, 2013]. Varied 
definitions and practices for TRLs exist in different industries, with varying levels of precision and 
rigor, but for the purposes of this example we consider TRLs as a measure of how ready a 
technology is for commercial deployment, irrespective of its viability in the marketplace [Figueroa, 
2011]1. The TPL, in contrast, assesses how well the technology performs in terms of its economic 
viability. Both TRLs and TPLs are graded on a 1 to 9 scale. This stochastic model examines the 
tradeoffs between R&D investments aimed at moving a technology towards a higher TRL for 
deployment at scale (commercial readiness) versus investments aimed towards higher TPL 
competitiveness in the marketplace (commercial viability). The model uses purely notional input 
data and does not represent actual TRL and TPL assessments for real technologies; we have highly 
idealized TRL and TPL, so the example provided here is purely illustrative. The Appendices to this 
fact sheet define TRL and TPL levels. 

Methods 
We begin with a generic description of a technology’s cost structure [Connelly, 2019], summarized 
as its net cost per unit production, 𝑁𝑁/𝑥𝑥, where variables are defined in Table 1 and where 

𝑁𝑁 = 𝐶𝐶/𝜏𝜏 + 𝐹𝐹 + 𝑉𝑉 ⋅ 𝑥𝑥 + ∑  𝑖𝑖∈𝕀𝕀 (𝑝𝑝𝑖𝑖 + ∑  𝑘𝑘∈𝕌𝕌  𝑝𝑝𝑘𝑘 ⋅ 𝑈𝑈𝑖𝑖,𝑘𝑘) ⋅ 𝐼𝐼𝑖𝑖 ⋅ 𝑥𝑥 − ∑  𝑗𝑗∈𝕆𝕆  𝑝𝑝𝑗𝑗 ⋅ 𝑂𝑂𝑗𝑗 ⋅ 𝑥𝑥 . 

The variables 𝐶𝐶, 𝐹𝐹, 𝑉𝑉, 𝐼𝐼, 𝑂𝑂, and 𝑈𝑈, defined in Table 1, depend on the design of the system, which in 
turn depends upon the history of R&D. The variable 𝐶𝐶 further depends on some commodity prices, 
labor rates, permitting fees, etc. One might assume that an infinite amount of R&D investment 
would lead from the present conditions 𝐶𝐶0, 𝐹𝐹0, 𝑉𝑉0, 𝐼𝐼0, and 𝑂𝑂0 to an optimal design where these attain 
the values 𝐶𝐶∞, 𝐹𝐹∞, 𝑉𝑉∞, 𝐼𝐼∞, and 𝑂𝑂∞. 

In principle, the parameters 𝐶𝐶, 𝐹𝐹, 𝑉𝑉, 𝐼𝐼, 𝑂𝑂, and 𝑈𝑈 depend on both the TRL and TPL levels, though 
generally not equally. For purposes of the very simple analysis presented here, we model 𝑁𝑁/𝑥𝑥 as 
the simple function 𝑁𝑁 = 𝑁𝑁/𝑥𝑥 = 𝑓𝑓(𝐿𝐿TRL,𝐿𝐿TPL) of the two technology levels and arbitrarily (for 
illustrative purposes) choose the following functional form: 

𝑁𝑁 = 𝑓𝑓(𝐿𝐿TRL,𝐿𝐿TPL) = −� 5

1+𝑒𝑒−2(𝐿𝐿TPL−4)�𝐿𝐿TPL/10 + 1� �𝐿𝐿TPL + 1
2
� . 

We model the evolution of TRL and TPL as Itô or Stratonovich processes, which are stochastic 
diffusion processes involving integrals both with respect to time and with respect to Brownian 
motion. Now consider an R&D investment 𝑑𝑑𝑑𝑑, made over a time period 𝑑𝑑𝑑𝑑, which results in a shift in 

1 Though some DOE programs let marketplace and economic considerations creep into their TRL. 
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technology readiness or performance level 𝑑𝑑𝐿𝐿𝑘𝑘 = 1𝐿𝐿𝑘𝑘≤𝐿𝐿𝑘𝑘,∞ ∙ (𝐿𝐿𝑘𝑘,∞ − 𝐿𝐿𝑘𝑘) ∙ (α𝑘𝑘 𝑑𝑑𝑑𝑑 + β𝑘𝑘 𝑑𝑑𝑟𝑟𝑘𝑘), where 
𝑑𝑑𝑟𝑟𝑘𝑘 is a Gaussian random variable. The α𝑘𝑘 represents the drift in TRL and TPL over time due to 
changing external conditions such as general technological progress, information technology, 
management expertise, labor rates, raw material prices, etc. The β𝑘𝑘 represents the TRL/TPL return 
on the R&D investment. In the case where we have a detailed technology design model and 
understand the design’s response to R&D investment, these random variables can be expressed 
more fundamentally in terms of the actual technological process and design. For R&D investment in 
an individual technology, the policy problem is to select the two β𝑘𝑘 as a function of time. 

Table 1. Variables in generic cost computation. 

Variable Description Example Units 
𝐶𝐶 capital cost USD 
𝜏𝜏−1 capital recovery factor 1/yr 
𝐹𝐹 fixed operating USD/yr 
𝑉𝑉 variable operating costs, excluding feedstock and other commodities USD/unit 
𝐼𝐼𝑖𝑖  quantity of inputs (e.g., feedstock, energy, water) 𝑖𝑖 per unit production kg/unit 
𝑖𝑖 ∈ 𝕀𝕀 set of inputs 𝑖𝑖 - 
𝑂𝑂𝑗𝑗  quantity of output byproduct/coproduct (e.g., wastewater, GHGs) 𝑗𝑗 per unit 

production 
kg/unit 

𝑗𝑗 ∈ 𝕆𝕆 set of outputs 𝑗𝑗 - 
𝑈𝑈𝑖𝑖,𝑘𝑘 upstream impact 𝑘𝑘 of production of input 𝑖𝑖 kg/kg 
𝑘𝑘 ∈ 𝕌𝕌 set of upstream inputs 𝑘𝑘 - 
𝑝𝑝𝑖𝑖  price of input 𝑖𝑖, which may be negative in the cases of credits (e.g., RINs, 

RECs) 
USD/kg 

For this illustrative model, we choose 𝐿𝐿TRL,0 = 𝐿𝐿TPL,0 = 1 𝐿𝐿TRL,∞ = 𝐿𝐿TRL,∞ = 9, αTRL = αTPL = 0.02, 
βTRL = 0.4𝜆𝜆, and βTPL = 0.2(1− 𝜆𝜆), where 𝜆𝜆 is the fraction of R&D investment in improving TRL 
and (1 − 𝜆𝜆) is the fraction invested in improving TPL. Thus, TRL has greater responsiveness to 
investment than does TPL. This reflects the different levels of difficulty in achieving an operational 
technology at scale versus an economically competitive technology at scale. 

We consider the R&D investment optimization problem of adjusting 𝜆𝜆 on an annual basis in order to 
minimize 𝑁𝑁. We use the following recipe for multi-stage stochastic optimization to estimate 𝜆𝜆(𝑡𝑡): 

1. For each year, create an ensemble of potential investments 𝜆𝜆 and an ensemble of 𝐿𝐿𝑘𝑘 
trajectories by integrating the stochastic differential equations using the Python package 
SDEINT assuming the investment level 𝜆𝜆. 

2. Select the 𝜆𝜆 that minimizes the 𝑁𝑁 in the final year. 
3. Simulate one trajectory to determine 𝐿𝐿𝑘𝑘 for the next year. 
4. Repeat the above for that next year. 

Note that a more sophisticated optimization would consider all 𝜆𝜆(𝑡𝑡) in step #1, not just considering 
𝜆𝜆  to be a constant from that year onward. 
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Results 
Figure 1 displays an ensemble of TRL/TPL trajectories, each the result of a multi-stage stochastic 
optimization. These show a general bias towards following the minimum of the function 
𝑓𝑓(𝐿𝐿TRL,𝐿𝐿TPL), which has a modestly strong gradient from lower to higher TPL when TRL is in the 
vicinity of 5.5 and which has stronger gradients from lower to higher TRL when TRL is below 5.5. It 
is also apparent that the optimization process corrects for advancement that moves the trajectory 
away from its optimum by emphasizing investment towards that optimum. 

  
Figure 1. Several thirty-year TRL/TPL trajectories resulting from multi-stage stochastic optimization of technology 
cost where the relative investment in TRL- and TPL-oriented R&D is optimized each year. Each colored line 
corresponds to a single ensemble member (i.e., one multi-stage optimization); the thickness of the line reflects the 
intensity of investment in TRL-oriented R&D. The gray contours in the background represent isolines of constant 𝑁𝑁, 
with lighter lines having lower values. The blue, orange, and red trajectories make fast progress in TRL, but then 
struggle to increase TPL, resulting in them not reaching the commercial competitiveness achieved by the teal-
colored trajectory, which makes balanced, early progress in both TRL and TPL before a final improvement in TPL. 
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Lessons Learned and Puzzles 
• Performing a search over the optimal investment allocation 𝜆𝜆(𝑡𝑡) in a highly stochastic 

context requires a large number of trajectory evaluations, each of which involves 
integrating a stochastic differential equation (SDE). The total number of SDE solutions 
needed equals the product of four factors: 

o number of time steps, 
o size of the ensemble used to compute the expectation of the final-year cost, 
o granularity of the search over 𝜆𝜆, and 
o number of optimal trajectories computed.  

Will it be feasible to do this rapidly enough on a laptop computer in order to provide real-
time decision support? 

• Continuous stochastic models such as Itô or Stratonovich processes do not capture the non-
continuous time frames (fiscal quarters and years) over with R&D is bundled, nor do they 
capture discrete improvements such as a major redesign of part of the technology. What 
might be done to incorporate these non-continuous factors? 

• The model presented here assumes that there is never loss of TRL or TPL. How likely are 
circumstances where readiness or performance is lost as time progresses? 

• TRL and TPL may be too abstract and disconnected from detailed technology models to 
connect specific R&D investments to improvement in these levels. However, historical data 
showing the relationship between past R&D investments and changes in TRL/TPL may be 
relatively obtainable; so might it then be possible to calibrate stochastic models of TRL and 
TPL? 
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Appendix: Technology Readiness Levels [cf. Figueroa, 2011] 

TRL 1 
TRL1 is the lowest level of technology readiness. Scientific research begins to be translated into applied R&D. 
Examples might include paper studies of a technology’s basic properties or experimental work that consists mainly 
of observations of the physical world. 

TRL2 
TRL2 moves ideas from basic to applied research. Applications are speculative; there may be no proof or detailed 
analysis to support the assumptions. Most work is analytical or paper studies to understand the science better. 
Experimental work is designed to corroborate the basic scientific observations made during TRL1 work.    

TRL3 
TRL3 moves to experimental R&D to verify concept works. Includes analytical, laboratory-scale, modeling, and 
simulation studies to physically validate analytical predictions of separate technology elements. Components of 
technology are validated, but there is no strong attempt to integrate the components into a complete system.  

TRL4 
TRL4 is first step in determining individual components will work together as a system. Includes integration of ad 
hoc hardware in a laboratory and testing them. Supporting information includes results of integrated experiments 
and estimates of how the experimental components test results differ from system performance goals.   

TRL5 
TRL5 integrates components so that system configuration is similar to final application. Supporting information 
includes statistically relevant results from laboratory testing, and analysis of differences between the laboratory 
and eventual operating system/environment and implications for the eventual operating system/environment.  

TRL6 
TRL6 steps up to true engineering development/testing of the technology as an operational system in a relevant 
environment and determines scaling factors that will enable design/production of final system.  Includes 
statistically relevant results from the engineering scale testing.  The goal of TRL 6 is to reduce engineering risk. 

TRL7 
TRL7 demonstrates an actual system prototype in a relevant environment and associated manufacturing scale-up 
for a relevant time duration. Supporting information includes results from the full-scale testing and manufacturing. 
Final design is virtually complete.   This stage retires engineering and manufacturing risk. 

TRL8 
The technology has been proven to work in its final form and under expected conditions. In almost all cases, this 
TRL represents the end of true system development. Product performance delta to plan needs to be highlighted 
and plans to close the gap will need to be developed. 

TRL9 
The technology is in its final form and operated under the full range of operating conditions.  Emphasis shifts 
toward statistical process control. 

Appendix: Technology Performance Levels [Weber, 2013] 
TPL 1 Majority of key performance characteristics and cost drivers do not satisfy and present a barrier to potential 

economic viability and critical improvements are not regarded as possible within conceptual fundamentals. 

TPL2 Some key performance characteristics and cost drivers do not satisfy potential economic viability and critical 
improvements are not regarded as possible within conceptual fundamentals. 

TPL3 Minority of key performance characteristics and cost drivers do not satisfy potential economic viability and 
critical improvements are not regarded as possible within conceptual fundamentals. 

TPL4 
To achieve economic viability under distinctive and favourable market and operational conditions, a number of 
key technology implementation and fundamental conceptual improvements are required and regarded as 
possible. 

TPL5 To achieve economic viability under distinctive and favourable market and operational conditions, some key 
technology implementation improvements are required and regarded as possible. 

TPL6 Majority of key performance characteristics and cost drivers satisfy potential economic viability under distinctive 
and favourable market and operational conditions. 

TPL7 Competitive with other renewable energy sources given favourable (e.g., high feed- in tariff) support mechanism. 

TPL8 Competitive with other energy sources given sustainable (e.g., low feed-in tariff) support mechanism. 

TPL9 Competitive with other energy sources without any support mechanism. 
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Simple Petri Net Model for Dual-Junction III-V PV 

Purpose 
This simple example illustrates the use of Petri nets (state-transition networks) to model the 
discrete transitions, concurrency, and iteration that can occur in some technology evolution in 
response to R&D investments. Discrete transitions might occur during R&D when research leads to 
the replacement of one material, procedure, or chemical by another. Concurrency occurs when R&D 
occurs in parallel on multiple aspects of a technology.  Iteration occurs when R&D repeatedly 
undertakes to improve the same technological component. Petri nets emphasize discrete 
transitions between qualitatively different technological states of affairs and allow the modeling of 
interacting R&D processes that iteratively address concurrent technological issues. Petri nets can 
also capture situations where some types of technology advancement may preclude specific types 
of future R&D or render moot previously undertaken R&D. 

Methods 
Here we apply Petri-net modeling to two subprocesses in the complex sequence for fabricating a 
dual-junction III-V photovoltaic cell. Figure 1 summarizes the overall process. A key feature of such 
fabrication is that R&D investments might in principle target any of the myriad processes or 
materials involved. The R&D objective is to lower the $/W cost and improve the efficiency (η) of the 
subprocess. The cost of the whole wafer is the sum of the subprocess costs and the product of the 
subprocess efficiencies. When one year’s worth of R&D funds is invested (one “trial”), the impact on 
cost and efficiency can be modeled with random draws from probability distributions. 

This example treats two potential improvements in the first step of Figure 1: 
1. Increased parent epi-substrate reuses: 

Initially, there are 20 reuses of the epi-substrate. Based on published data [Woodhouse 
and Goodrich, 2014], we approximate the cost in $/W of this stage of the process as 
proportional to  𝑒𝑒3.65−0.98(𝑙𝑙𝑙𝑙 𝑅𝑅)−0.020(𝑙𝑙𝑙𝑙 𝑅𝑅)2where 𝑅𝑅 is the number of reuses. Each $500K 
trial has a 90% probability of increasing 𝑅𝑅; the increase is modeled as the exponential of 
a Poisson-distributed random variable whose mean is 1.75. 

2. Replacing chemical-mechanical repolishing with wet-bench surface preparation: 
A wet-bench success replaces chemical-mechanical polishing and has a cost uniformly 
distributed between zero and $0.1/W. Each $1.5M trial to develop a wet-bench surface-
preparation process for the epi-substrate has a 7.5% chance of success. 

As shown in Figure 2, where the bottommost portion (“CMP” and “Epi-Substrate”) of the “Reference 
Case” bar changes from almost $6/W to less than $0.1/W in “Mid-Term”, these two R&D efforts can 
result in dramatic reduction in III-V cell cost and modest improvement in efficiency. These are just 
two of the many potential R&D foci shown in the technology roadmap simulations in Figure 2.  

Figure 3 shows the Petri net embodying the above state, transition, and cost assumptions. The left 
side of the diagram represents the state of the epi-substrate reuse along with the transition  
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Figure 1. Simplified 
process flow for 
fabricating some single-
junction III-V solar cells. 
(Source: Woodhouse 
and Goodrich, 2014.) 

 

 

 

 

 

 

 

Figure 2. Example R&D 
opportunities and cost 
model results for some 
dual-junction III-V solar 
cells, based on 
technology roadmap 
simulations. (Source: 
Woodhouse and 
Goodrich, 2014.) 

 

 

 

 

 

 

Figure 3. States and 
transitions in this Petri-
net model. The left side 
shows iteration of 
research, whereas the 
right side shows 
research that results in 
a design change. 
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associated with performing R&D to increase the number of reuses. The right side of the diagram 
shows how the initial state of the design (chemical-mechanical repolishing) can transition to a new 
design (wet-bench surface preparation) after R&D enables such a transition. We use the SNAKES 
toolkit [Pommereau, 2015], a Python package, for modeling the Petri nets. 

Results 
The plots in Figure 4 and the animation in Figure 5 illustrate the trajectories of $/W cost 
components and the cumulative investment associated with them. Increasing the number of epi-
substrate reuses is a repeated process with varied results on each trial and with diminishing 
returns, whereas transition to wet-bench surface preparation involves repeated attempts and 
failures until the R&D succeeds and further R&D stops. The simulation trajectories in the upper 
graph demonstrate gradual, intermittent, and sudden improvements that represent progress made 
in parallel within a larger system. Note that while the parameters are chosen to mimic the cost 
analysis of Woodhouse and Goodrich [2014], the investment allocations, rates, and durations are 
purely notional. 

Figure 4. One result of the Petri-net simulation of investments in epi-substrate reuse and surface preparation. 
Because the simulation is stochastic, each simulation yields a different mix of improvements and costs. 

Lessons Learned and Puzzles 
1. Petri nets are probably a more general framework than is required for modeling R&D 

on PV subsystems because the subsystem designs do not have complex enough 
correlations and dependencies between one another to necessitate use of Petri nets. 
The overall system can probably be modeled as a cartesian product of state machines 
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Figure 5. Animation of the state of the petri net for a simple experiment. The title in the animation below shows 
the overall system cost ($/W), efficiency (η), and spending on R&D for each year. The corresponding data for each 
subsystem is shown in the ovals. 

because  most of the PV subprocesses can be researched in parallel, even though they 
might have different priorities (in terms of R&D investment) and affect overall cost 
nonlinearly. Might modeling non-PV technologies perhaps benefit from the use of Petri 
nets? 

2. It seems important to be able to represent interdependent R&D processes that have a 
mixture of continuous improvements versus discrete jumps and where some R&D may 
block or unblock future R&D activities or make past ones irrelevant. Can this strength 
of Petri-nets be incorporated in a hybrid model with Monte Carlo simulation, 
Stochastic Optimization, or others? 

3. The Woodhouse & Goodrich publications are nearly sufficient to build simple R&D-
focused models that combine PV subprocesses and identify areas of potential 
improvement, but they do not contain information on how R&D expenditures relate to 
the actual probabilities and magnitude of improvements. To what extent could 
historical R&D investment data help determine this or will this need to be determined 
through expert elicitation? 

4. Although the Petri net could be represented as a series of (linear) matrix operations, 
the investment results are likely nonlinear functions. 

5. Graphical representations of parallel R&D progress on technological subsystems seem 
to be useful for gauging progress. 

6. The SNAKES toolkit has several quirks: (a) it requires the programming of  functions 
with no side effects (e.g., on global state or involving input/output) on the Petri nets; 
(b) it does not report error messages when evaluating which transitions are enabled, 
so an error in computing enablement results in the transition being marked as not 
enabled; and (c) it is awkward to represent probabilistic petri nets. 
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Bayesian Combination of Expert Assessments 

Purpose 
This toy model explores the use of Bayesian updating to adjust the weight given to expert estimates 
of R&D impacts when conducting an analysis of R&D pathways. The aim is to investigate whether a 
Bayesian approach for combining expert assessments can correct for biases in the experts’ opinions 
relative to “real life”, and how rapidly such a correction converges to account for the experts’ biases. 

Methods 
This model leverages the PV balance-of-system cost simulation within the Monte Carlo Model in 
order to grade the performance of subject-matter experts in their predictions of the likely success 
and subsequent impact of future R&D investments. The grades are translated into weighting factors 
that evolve over time as more information about the quality of the experts’ predictions emerges. 
What has been learned about evaluating experts’ estimation ability in practice will be examined in 
subsequent work. 

The Monte Carlo Model (see the fact sheet on that model) assigns weights/grades (called authority 
in this Bayesian model) to each expert when combining their assessments into an overall estimate 
of the impact of particular R&D investments, but those weights are static. The Bayesian approach 
used here simply updates those authorities after each observation of the impact of an investment. 
We consider the hypotheses that “authority 𝑖𝑖” correctly assesses the impact of R&D investment and 
we then update the prior probability for those hypotheses, 𝒫𝒫(authority 𝑖𝑖), to a posterior 
probability, 𝒫𝒫(authority 𝑖𝑖|impact data), which accounts for the observation of the “impact data” 
showing the outcome of an R&D investment: 

𝒫𝒫(authority 𝑖𝑖|impact data) =
𝒫𝒫(impact data | authority 𝑖𝑖) ∙ 𝒫𝒫(authority 𝑖𝑖)

𝒫𝒫(impact data)  

Initially, we give each expert an equal authority. The probability distribution for each expert yields 
the likelihood function, permitting one to compute 𝒫𝒫(impact data | authority 𝑖𝑖) for the observed 
impact of R&D investment. The Bayesian update is applied each time new impact data is observed. 

Results 
Figure 1 shows the triangular distributions for experts a, b, and c in the Monte Carlo Model. In this 
study we vary the “real life” distribution to study different possible biases relative to the experts, 
but start from a “real life” distribution that is approximately unbiased relative to the average of the 
experts. We leave aside for now the fundamental question of how to determine experts’ accuracy or 
measure biases. In these toy model experiments the bias takes two forms: (i) increasing or 
decreasing the probability for no advance in the technology (i.e., the point mass of probability on 
the right side of Figure 1), and (ii) shifting the minimum, apex, and maximum of the triangular 
distribution to the left or right. Figures 2 and 3 illustrate the evolution of authorities for the case 
when the experts are collectively approximately unbiased relative to reality (Fig. 2) or collectively 
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biased (Fig. 3). Overall, the results illustrate that the updating scheme makes authorities responsive 
to the new evidence, taking five or ten updates to fully incorporate it and approximately converge. 
(Engaging an expert sufficiently to achieve so many updates may be impractical.) 

Comparison between bottom panels of Figures 2 and 3 shows that when experts are substantially 
biased relative to the real-life situation, a hypothetical truly unbiased expert (represented by the 
fourth, “real life”, expert) captures the total authority. These results hint at the conditions under 
which the effective pool of expertise evolves towards either mixtures of experts or reliance on a 
single expert: the authority of experts relatively close to “real life” tend to survive the updating 
process whereas experts far from “real life” lose authority and may become excluded from the pool 
of expertise. (This situation raises a concern that an expert with insight into low-probability events 
might become prematurely and erroneously excluded over time as high probability events are 
repeatedly observed.) The re-weighting of authorities has implications for the overall quality of 
predictions: Figure 4 quantifies the extent to which the updating of authorities improves the 
estimate of reductions in balance-of-system costs relative to statically weight the experts (i.e., not 
updating their authority weights). The impact of Bayesian updating is not dramatic here. 

Figure 1. Example triangular probability 
distributions for R&D investment impact for the 
three experts (a, b, c) and the “real life” situation. 
The “multiplier” axis indicates the balance-of-
system cost of the technology relative to that cost 
prior to the investment. The mass of probability at 
the multiplier being equal to one (shown 
approximately in the plot as the rectangle on the 
right side) indicates the chance of an advance not 
occurring. Expert “a” has a relatively pessimistic 
bias. “Real life” is unbiased relative to the average 
of the triplet of experts. 

 
Figure 2. Evolution of authority weights over time as new evidence is received about experts’ performance. As shown 
in Figure 1, the “real life” situation is approximately unbiased relative to the experts. The upper panel shows the 
evolution of authorities when they compete among themselves, whereas the lower panel includes a hypothetical 
fourth expert whose predictions match the real-life situation. 
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Figure 3. Evolution of authority weights over time as new evidence is received about experts’ performance. In 
contrast to Figures 1 and 2, the “real life” situation is biased relative to the experts, having a lower real-life probability 
of improvement and a lesser impact when improvement occurs. The upper panel shows the evolution of authorities 
when they compete among themselves, whereas the lower panel includes a hypothetical fourth expert whose 
predictions match the real-life situation. 

 
Figure 4. Distribution of errors in estimating PV balance-of-system cost reduction due to R&D investments compared 
between static authorities versus the Bayesian updating of authorities, as a function of biases towards improvement 
and towards impact on reducing costs. A one-sided sign test for this 1000-simulation sample accepts the null 
hypothesis that the Bayesian errors are equally likely to be smaller or larger than the static errors. 

Lessons Learned and Puzzles 

Lessons Learned 
• The Monte Carlo Model’s triangular distributions for expert assessments are not generally 

suitable for this Bayesian updating scheme because triangular distributions have compact 
support: For instance, if the observed outcome of an R&D investment falls beyond the 
minimum or maximum of the “triangle”, then the likelihood of that observation is zero, 
resulting in the posterior probability of the expert being zero, too. Thus, a single 
observation outside of the expert’s range of prediction eliminates that expert from having 
further authority—i.e., they are no longer in the pool of expertise. It is conceivable that, over 
time, observations falsifying each expert’s authority will occur: this will result in all experts 
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being eliminated. Thus, it is desirable for the tails of probability distributions for experts to 
extend at least as far as the real-life possibilities for observations. Hence, instead of using a 
triangular distribution, for more robust analysis, one might translate the triangular 
distributions into a split Gaussian distribution whose right-side and left-side variances 
match the corresponding variances of a triangular distribution.  

• In general, there will be a delay between the making of an investment and the revelation of 
the impact of that investment. Thus, the Bayesian updates should lag. 

• Furthermore, measurements of the impact of R&D investments may be uncertain, too, so 
measurement error should be convolved with the likelihood functions when estimating the 
posterior probabilities for the experts. 

• A full sensitivity analysis involving different biases in experts, expert pools of different 
sizes, different investments, and different subsystem/component stacks (i.e., full portfolios, 
platforms, and projects) is warranted. The simple experiments presented here are too 
parochial for generalization. 

• It appears that the predictive advantage of the Bayesian approach is subtle and that large 
amounts of experience may be necessary to prove it superior to static weights. 

Puzzles 
• How does one measure expert performance? How does one distinguish a poorly performing 

expert from one with keen insight regarding outliers or low-probability events? 
• Bayesian updating may tend to gradually eliminate experts that are more biased than the 

other experts in the pool. Although this might be generally desirable, it might prematurely 
reduce the overall diversity of expertise and lead to missing rare events (e.g., 
breakthroughs) that some of the eliminated experts might have better predicted.  How 
should this be managed? 

• Should there be separate weights of expertise for the occurrence of an improvement versus 
the amount of progress once an improvement is made? 

• There is an option to finely grade experts. Each expert might be graded on improvements 
versus amount of advance for each prediction type and scenario for which they make a 
prediction. One really needs to model correlations of biases in the predictions an expert 
makes, or sufficient historical data to tease out whether an expert’s optimism is confined to 
an area or whether it is pervasive.  How can this be done? 

• How does the Bayesian approach compare to a frequentist approach to weighting experts 
based on their past performance? 

• How would Bayesian updating improve if information on an expert’s performance is 
individually feed back to the expert, so they can adjust their future predictions? If experts 
correct themselves, then weighting them might become moot. 
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R&D Pathways and Portfolio Analysis and Evaluation 
Expert Elicitation Issues Fact Sheet 

Context 
Expert elicitation has long been used to explore complex domains beyond the reach of available technology and 
economic models.  In the energy sector, one of the first highly visible efforts was that by Rasmussen et al. on 
nuclear power safety.  Since then, much has been learned about conducting expert elicitations and the 
challenges in doing them well, including: the selection of experts; the design of the elicitation; the facilitation of 
the elicitation; the cognitive biases in responses; the calibration of the individual responses; the methods for 
aggregating responses; and more. 

For this study, the focus is on scientific, engineering, and economic assessments of technology components, 
subsystems, systems, and portfolios, broken out in logical self-contained technology elements and the impacts 
of R&D investments on their cost, performance, and other factors of interest.  There are no planned 
assessments of policy, such as valuations for regulatory decisions, which is outside the scope.  Experts across 
industry, universities, national laboratories, and other domains are expected to be tapped for their insights on 
potential opportunities and impacts of particular research activities on technology advances.   

Work on expert elicitation has not yet begun for this study, but it will be an important focus in subsequent 
activities.  This will include a detailed literature review and assessment, a few representative papers reviewed to 
date are listed below; exploration of issues such as those raised in the next section, possibly including some 
experiments; and application in pilot project analyses and evaluations.  Tapping the experience and expertise of 
the science and technology community for how to best approach these issues is very important. 

Expert 
Selection 

Elicitation 
Design 

Elicitation 
Facilitation 

Bias 
Adjustment 

Response 
Aggregation 

Integrate into 
Model(s) 

Processing 
Data 

Conducting 
Elicitation 

Framing 
Study 
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Representative Issues 
For expert elicitation, the literature review and assessment will evaluate how well issues such as the following can be dealt 
with for the types of cases that this study targets identify where important gaps remain, and possible approaches for 
addressing them.   

Fr
am

in
g 

St
ud

y 

Initiating Conditions:  What conditions make an expert elicitation worthwhile to undertake or not? Are there conditions 
(e.g., out-of-sample) that are fundamentally not amenable to such expert elicitation? 
Alternatives to Experts: In situations where no experts exist, are there data-driven, artificial intelligence, causal 
modeling, or other methods to fill gaps? 
Scope of Assessment: How granular should expert assessment be? Should assessments focus on very specific 
technological concerns (i.e., improving or replacing a component, material, or process)? What might high-level 
assessments contribute (e.g., assessments of improvement in overall performance, cost, or readiness)? 
Time Frames: How far into the future are expert assessments actionable? 
Target of Assessment: Should experts solely assess technological aspects of R&D, or should their assessment include 
other potentially contributing factors? 
Number of Experts: How many experts are necessary and sufficient to evaluate each component or subsystem, before 
diminishing returns are experienced?  
Selection of Experts:  What expertise, experience, or other capabilities should an expert have?  Are generalist (i.e., 
multi-domain) experts useful in specific technological contexts? How can expert self-assessments or other evaluations 
(literature citations, patents, recommendations) be used? 
Design of Elicitation: What factors should the elicitation assess with what types of questions (e.g., numerical, 
percentage)?  What pre-testing should be done (e.g., for length, clarity, coverage)? 
Minimizing Overheads:  How can the cost and time required to produce a high-quality expert elicitation be minimized 
for both the experts engaged and for the program staff conducting the work? 
Cost Effectiveness:  In what situations is the expense and delay due to obtaining expert opinion insufficiently justified 
by the actionability of the expert-informed results? I.e., when are uncertainties so large as to make expert opinion 
irrelevant? 

Co
nd

uc
tin

g 
El

ic
ita

tio
n 

Background Information and Training:  What background information (technical data, past performance, etc.) should 
be given to the experts, and what training should be provided (e.g., how to reduce cognitive biases)? 
Conduct of Elicitation: What is the most effective way to conduct an elicitation, such as in-person or on-line, with or 
without cross-expert discussion, with one-time or iterative engagement, etc.?  Can there be benefits of cross-expert 
interaction without suffering social influences (e.g., peer effects)? 
Other Issues:  How can proprietary concerns, competitiveness concerns, and others be minimized? 

Pr
oc

es
si

ng
 D

at
a 

Addressing Cognitive Biases: How can cognitive biases (e.g., anchoring and adjustment, availability, overconfidence, 
etc.) best be addressed?  How can correlations across experts be managed (e.g., particular areas of R&D may have few 
experts, limited existing literature)? Would it be preferable to create an expert-informed model for making assessments 
instead of having experts make the assessment directly? 
Calibration of Responses: How can responses be calibrated to address cognitive biases or other factors? How can 
appropriate weighting of responses be developed and applied, if any—such as by an expert’s past performance?   
Aggregating Responses:  How can responses to the elicitation best be aggregated and used? Should expertise be pooled 
prior to evaluating R&D decisions or should multiple expert-based R&D assessments be pooled after the evaluation of 
potential R&D decisions?   
Outliers: How can one distinguish an insightful outlying response by an expert from a poor response? What diversity of 
expertise and size of expert pool is needed to ensure that insightful outlying prediction of high-impact actions and 
events are represented? 

Co
m

m
un

i-
ca

tio
ns

 

How can the results of expert-informed analysis be accurately and effectively communicated to decision makers, 
appropriately representing the various risks and uncertainties? 
How might visualizations be made effective use of in communications to decision makers? 
How can the underlying foundational data and analysis be effectively communicated so that the decision maker 
understands their basis without overburdening the decision maker? 
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