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Machine Learning-Based Prediction of Distribution
Network Voltage and Sensor Allocation

Alvaro Furlani Bastos and Surya Santoso, The University of Texas at Austin, Austin, TX, USA,
Venkat Krishnan and Yingchen Zhang, National Renewable Energy Laboratory, Golden, CO, USA

Abstract—Increasing penetration levels of fast-varying energy
resources might negatively affect power system operation. At the
same time, sensor deployment throughout distribution networks
improves system awareness and enables the development of new
and advanced voltage control solutions. Such control techniques
rely on accurate prediction in anticipation of voltage violation
scenarios. This paper analyzes various approaches to voltage pre-
diction in a distribution system, and it is shown that combining
multiple techniques into a single regressor improves its predictive
power. Moreover, a two-step regressor is proposed in which initial
predictions based on a global regressor are refined by local
regressors; in this case, prediction errors decrease significantly.
Additionally, a clustering approach is employed to perform sensor
allocation so that only the most influential buses are selected for
monitoring without diminishing prediction accuracy.

Index Terms—distributed generation, ensemble regressor, ma-
chine learning, sensor allocation, voltage prediction

I. INTRODUCTION

Increasing penetration levels of distributed energy resources
(DERs) have led to significant changes in power system
behavior, especially because of the widespread deployment
of photovoltaics in distribution networks [1]. This makes
power systems more dynamic because consumers are now
able to act as active users rather than only passive buyers
[2]. Consequently, distribution voltage regulation has become
more challenging because of the fast fluctuations in DER
outputs, which commonly result in voltage violations (either
less than 0.95 pu or greater than 1.05 pu) [3], [4]. In scenarios
of such fast generation variability, traditional voltage control
techniques result in suboptimal performance.

Mitigating voltage violations in a modern electric power
grid requires distribution system operators to adopt an active
management role [2]. Use of historical data and load/DER
forecasts would enable them to predict the near-future behavior
of the grid, so that preemptive control actions could be planned
in advance to prioritize and better coordinate efforts against
voltage violations [4], [5]. Multiple factors contribute to the
uncertainty in this voltage prediction process, such as load
size, DER generation, tap setting of step-voltage regulators,
switched capacitor banks, and network topology changes.

This work was authored in part by the National Renewable Energy
Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the
U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308.
Funding provided by the U.S. Department of Energy Office of Electricity (DE-
OE0000876). The views expressed in the article do not necessarily represent
the views of the DOE or the U.S. Government. The U.S. Government and the
publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this work, or allow others to
do so, for U.S. Government purposes.
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Large-scale deployment of smart meters in distribution
networks presents new opportunities for voltage prediction
and regulation under high DER penetration levels. Therefore,
this paper presents a data-driven approach to predict voltage
behavior in distribution systems. Multiple machine learning
techniques and power/voltage measurements at distribution
buses are used for learning a mapping function between
load sizes and voltage magnitudes without full knowledge of
the circuit topology. These prediction techniques have been
analyzed both individually and as an ensemble model in which
multiple techniques are combined into a single predictor to
exploit their strengths. Also, a two-step prediction approach
is proposed to enhance voltage prediction accuracy for con-
ditions near ANSI voltage limit violations. Their prediction
performance is assessed through traditional metrics as well
as an improved metric that assigns increased importance to
the scenarios where a voltage violation occurs. Additionally,
strategic buses for monitoring are identified such that high pre-
diction accuracy is achieved. Section II presents the problem
formulation, including a description of required inputs and data
set generation. Section III presents the results for a case study
where multiple strategies for voltage prediction are compared.

II. PROBLEM FORMULATION

This study analyzes a 69-bus, single-phase network derived
from a portion of a Pacific Gas and Electric Company distribu-
tion system; it is a radial system with nine lateral branches [6].
The variables of interest are net load sizes (features) and bus
voltage magnitudes (targets), where net load size is defined
as the difference between power consumption and distributed
generation at the corresponding bus.

The input data set contains 20,000 distinct scenarios created
in OpenDSS by modifying the load size in each bus. For
each scenario, load sizes are updated to P’ k1P and
Q' = k2Q, where P and () are the nominal active and
reactive load sizes, respectively. The multiplicative factors k;
and ky are independently drawn from a uniform distribution
between -1 and 2; this range of values allows us to represent
distributed generation growth above the power consumption
(i.e., reverse power flow situations), load variations, or a
combination thereof. Note that load power factor assumes a
different value in each simulation scenario. Moreover, load
sizes are modified independently from other buses in the
network to also include extreme low-probability cases that are
typically not found within historical load archives.

Data analysis is implemented in Python, including prepro-
cessing steps such as features standardization. The input data
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set is randomly split into training and test sets containing 75%
and 25% of the number of scenarios, respectively. These sub-
sets are fixed throughout this study to ensure a fair comparison
among various voltage prediction techniques.

Various performance metrics are analyzed for each predic-
tion technique; they are based on prediction residuals, i.e.,
the difference between observed and predicted voltage values.
Traditional metrics include mean absolute error (MAE), root
mean square error (RMSE), and maximum absolute error
(MaxAE) [7]. In these metrics, the importance assigned to
each residual depends on only its own magnitude, so that the
cost of predictions is uniform across the domain of the target
variable [8]. However, even though scenarios with extreme
voltage values (less than 0.95 pu and greater than 1.05 pu) are
infrequent, their prediction accuracy is more important than
the scenarios with voltage around 1.0 pu because extreme
cases are the ones where voltage control will need to be
deployed. Therefore, performance metrics that incorporate
such differentiated importance must also be used for model
evaluation, where a higher cost of prediction is associated with
rarity [9]. One such metric is the weighted mean absolute error
(WMAE), defined as [10]:

$(yi) = (1 +exp[—s(Ay; —))) " ()
wAE =[S o] Y el @

where y; and y; are the i-th observed and predicted voltage
values, respectively; the sigmoid ¢(y;) is the relevance func-
tion (s and c control its shape and center, respectively); and
Ay; = |y; — 1.0]. The sigmoid tuning parameters are set to
s =100 and ¢ = 0.05, so that ¢(0.95) = ¢(1.05) = 0.5 and
¢(y;) is nearly O for y; close to 1.0 pu.

III. RESULTS
A. Single Regressors

Bus voltages are initially predicted through a multiple-input,
multiple-output linear regression (LR), where predictors are
the net load sizes in all 69 buses. The presence of strong mul-
ticollinearity between these predictors is assessed through the
variance inflation factor (VIF). The maximum value obtained
for this factor is 2.86; thus, there is no need to remove any of
the predictors (predictor removal is recommended only if its
VIF is greater than 5 [11]).

LR is straightforward (no tuning of hyper-parameters) and
easily interpretable (the importance of each feature is directly
related to the magnitude of its coefficient). Fig. 1 depicts
the range of absolute residuals for each bus. Note that this
simple approach does not perform well for all buses, where
residuals larger than 0.01 pu are observed; however, it provides
a baseline accuracy for comparison with other prediction
methods. The worst performance accuracy is observed for
buses b61 through b65; thus, for simplicity, only bus 565 (the
worst-case scenario) is analyzed in this paper.

Subsequently, various linear and nonlinear regressors are an-
alyzed: AdaBoost (AB), bagging (BG), Bayesian ridge (BR),
ElasticNet (EN), extra-trees (ET), gradient boosting (GB),
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Fig. 1. Range of absolute residuals for voltage magnitudes at each bus

obtained through linear regression for all scenarios in the test set.

TABLE I. PERFORMANCE METRICS FOR EACH SINGLE REGRESSOR

Regressor Bias MAE wMAE RMSE MaxAE Qpes (%)
EN 0.034 1.560 2.178 1.984 10.83 8.38
BR 0.034 1.563 2.180 1.986 10.66 7.22
LR 0.034 1.563 2.180 1.986 10.65 8.78
LL 0.063 1.661 2.290 2.161 13.53 22.44
GB 0.103 1.788 1.909 2.246 11.43 26.94
ET 0.151 3.711 3.903 4.662 20.83 8.48
BG 0.169 4.057 4.264 5.089 20.99 5.58
RF 0.171 4.082 4.298 5.131 21.12 5.82
AB -0.639 5.526 6.213 6.933 31.42 6.36

Note: units for the performance metrics are 10~ pu.

Lasso-Lars (LL), and random forest (RF). These regressors
have hyper-parameters that must be properly set to achieve
near-optimal prediction accuracy. Their proper values are ob-
tained through fivefold cross-validation and an exhaustive grid
search over user-specified parameter values for each regressor.

Once the hyper-parameters values are obtained, each re-
gressor is fitted on the training data set. Prediction accuracy
measures for the test data set are presented in Table I, where
Qpest corresponds to the percentage of test samples where
each regressor yields the lowest absolute residual among all
nine regressors. Note that although some regressors are rather
accurate on the average sense, all of them produce residuals
larger than 0.01 pu for at least one test scenario. On the other
hand, even regressors with a poor overall performance provide
the best prediction accuracy for at least a few test samples.

A comparison of prediction residuals for a pair of regressors
is presented in Fig. 2. This plot depicts the absolute residuals
for all 5,000 test samples obtained through LR and GB. In this
pairwise comparison, LR provides a lower absolute prediction
residual for 53.34% samples, whereas GB is more accurate
for the remaining 46.66% test samples.

B. Ensemble Regressor

As observed in Table I, each regressor provides the best
voltage prediction for at least a few test samples; however,
it is not possible to determine a priori which regressor would
result in the lowest residual for a given unseen input sample. A
solution would be to find an optimal combination of regressors
that performs well for most cases on average; such an approach
is called ensemble prediction.

In ensemble learning, the outputs of multiple learners are
combined to create a final output; each single learner, referred
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Fig. 2. Comparison of absolute residuals obtained through linear regression
and gradient boosting regressor.

to as a base learner, is trained on the same input data set.
The goal is to achieve a higher generalization performance
such that the composite model is more accurate than any
of the base learners [12]. The usually lower prediction error
of ensemble methods is a result of the expansion of the
hypothesis space as well as reduction of the base learners’
bias and overfitting through averaging [13]. Such an approach
allows us to obtain strong learners (high accuracy) from a
collection of weak learners, which are more easily obtained in
practice. Although increased computational complexity could
be presented as a drawback of ensemble methods, note that
the base learners can be run independently from each other,
and parallel computation in a distributed framework alleviates
this limitation.

Highly accurate ensemble predictors require a diverse set
of base learners, where they exhibit complementary strengths
and their weaknesses are offset by the strengths of other base
learners. An approach to obtaining such model diversity con-
sists of generating m base learners through various machine
learning algorithms, resulting in an ensemble method known
as stacking [14]. Then, the ensemble prediction ¥ is computed
as a weighted average, as shown in (3):

m
7= . Gl (3)
where @, and ¥, are the weight and prediction related to the
k-th base learner, respectively. The weights can be interpreted
as the importance of each base learner in the final prediction;
they also represent a trade-off between model accuracy and the
base learners’ correlation (the goal is to assign large weights
to a subset of base learners that are simultaneously accurate
and uncorrelated to each other).

The stacking procedure is illustrated in Fig. 3. The training
data set is split into two subsets: the first (D;) is used for
training the m base learners, whereas D- and the base learners’
predictions are inputs to a meta-regressor that determines
the optimal weights. Such a split prevents overfitting of the
ensemble regressor, which would be biased toward overfitted
base learners if the weights were determined through D;.
These weights are obtained through nonnegative least-squares
optimization, as proposed in [15] and shown in (4):
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Fig. 3. Concept of ensemble learning and prediction for regression models.
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Fig. 4. Heat map depicting the correlation coefficients between predicted
voltages for each pair of regressors. The number in each cell represents the
largest MAE for the corresponding pair of regressors.

where A = [§1,Y2,"** ,Ym| are the predictions for each base
learner using D7 and o = [aq, 9, -, ;). The nonneg-
ativity constraint is needed to achieve good generalization
performance. Moreover, it allows us to interpret the ensemble
model as an interpolating predictor (i.e., between minimum
and maximum base learners predictions), and it leads to a
tractable quadratic programming problem [11].

The regressors presented in Table I are adopted as base
learners for a voltage ensemble regressor. As before, 25%
of the input data set is reserved for testing; moreover, D;
and Ds correspond to 75% and 25% of the training data
set, respectively. The weights obtained for each regressor are
as follows: 0.5519 for linear regression, 0.4481 for gradient
boosting regressor, and zero for all other regressors.

Simultaneously analyzing the base learners’ accuracy and
their pairwise correlation helps explain why some of them are
not part of the ensemble regressor (i.e., their weight is zero).
In Fig. 4, each cell’s color represents the correlation coefficient
between absolute residuals, whereas the annotated number is
the maximum MAE between the corresponding pair of base
learners. Large weights should be assigned to a subset of
base learners that are accurate (low MAE values) and weakly
correlated to each other (light green cells). Note that the pair
LR/GB satisfies both of these conditions. Moreover, although
LR, BR, EN, and LL have the lowest MAE values, only LR is
selected for the ensemble regressor; this is because these four
regressors are strongly correlated to each other (dark green
cells), thus including two or more of them does not provide
additional predictive information to the ensemble regressor.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Further, a nonzero weight for GB shows that it might be useful
to include some less accurate base learners in the ensemble
regressor as long as their strengths are complementary to the
other selected base learners (i.e., the correlation coefficient
between their residuals should be low). As shown in Fig. 2,
LR and GB result in low residuals for distinct subsets of the
test samples.

Compared to the ElasticNet regression, which is the base
learner with the lowest prediction error, the performance
metrics for the ensemble regressor improved as follows: MAE,
wMAE, and RMSE decreased by 25.9%, 30.4%, and 22.5%,
respectively. However, the maximum absolute residual is still
larger than 0.01 pu (more specifically, MaxAE = 0.011 pu).

C. Exploring Prediction Errors

The behavior of the voltage residuals is analyzed in Fig.
5, where the absolute residuals are plotted against the target
voltage for linear regression and the ensemble model. In both
cases, the absolute residuals increase as the target voltage
values deviate from 1.0 pu, indicating a systematic bias in
these prediction models.

There are two possible causes for the occurrence of this
strong prediction bias. First, the input data set is not uniformly
distributed across the full range of target voltages (from 0.88
pu to 1.12 pu), thus very low and very high voltage values
are underrepresented. Such an imbalance could affect the
prediction performance because training of prediction models
will be more influenced by the most frequent target values
[16]. Further, a global model might not be able to capture the
voltage behavior for the entire range of target values.

D. Improved Voltage Predictor: Two-Step Regressor

Given the observations from the previous section, an im-
proved voltage predictor is proposed in this paper. The range
of target values is split into three subranges: less than (1.0—7)
pu, from (1.0 —n) to (1.0 +n) pu, and greater than (1.0 +n)
pu, where 7 is a user-defined parameter. A separate model is
fitted for each subrange such that each subrange of extreme
voltage values is covered by a different model, and this set of
local models is more likely to accurately capture the voltage
behavior than a single global model.

Then, voltage prediction is performed in a two-step process:

1) Predict voltage using a global regressor (single model).
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2) Based on the initial prediction, select the corresponding
local regressor and perform the voltage prediction again.
Because of its simplicity and fast computation, linear regres-
sion has been chosen as both the global and local regressor.
The parameter 7 is determined through cross-validation, with
test values varying from 0.0025 pu to 0.05 pu in steps of
0.0025 pu; its optimal value is n* = 0.025 pu.

Also compared to the ElasticNet regression, the perfor-
mance metrics for this two-step regressor improved as follows:
MAE, wMAE, and RMSE decreased by 69.6%, 79.4%, and
69.6%, respectively; and the maximum absolute residual is
only 0.0034 pu (a 68.6% reduction). The absolute prediction
errors are shown in Fig. 5. Note that these improvements are
significantly better than the ones achieved with the ensemble
regressor. Fig. 6 depicts the change in absolute residuals
between global and two-step regressors for each test sample
(green and red dots portray a decrease and increase in the pre-
diction error, respectively). The two-step regressor improved
voltage prediction for 81.72% of the test samples, notably for
the scenarios with voltage magnitude far from 1.0 pu.

E. Sensor Allocation

The voltage prediction procedures in the previous sections
assume that all buses in the distribution network are continu-
ously monitored; however, deploying measurement devices to
only a smaller subset of buses is more realistic. Such a sensor
allocation approach represents a trade-off between network
observability and fewer measurements at strategic locations.

As a result of the power grid structure, electrically neighbor-
ing buses are likely to present very similar voltage behavior;
hence, only a few of them would need to be monitored to
achieve a high level of network observability.

In this study, similarity between buses is assessed through
complete linkage hierarchical clustering. Each bus is initialized
as an individual cluster, and the closest pair of clusters is
merged at each iteration until only one cluster remains (which
contains all buses) [17]. In this iterative process, the distance
between clusters is given by the longest distance between two
samples in each cluster, such that clusters are merged together
only if all samples within both clusters are close to each other.
Moreover, the distance between samples is measured in terms
of the correlation coefficient of their voltage profiles.

The number of clusters plays a central role in data cluster-
ing. Two approaches are considered to determine the optimal

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Fig. 7. Clustering of buses based on their voltage profiles. Each combination
of color and marker style represents a distinct cluster.

number of clusters for the voltage data set in this study. First,
the silhouette score measures the similarity of an object to its
own cluster (cohesion) compared to other clusters (separation)
[18]. Another approach is gap statistics, which compares the
clustered data set to an appropriate reference null distribution,
which contains no discernible clusters [19]. Both methods
suggest splitting this distribution network into six clusters, as
shown in Fig. 7. As expected, neighboring buses belong to the
same cluster even though information about their geographic
location is not used by the clustering algorithm.

After clustering, buses are ranked according to their im-
portance to the predictor through backward stepwise feature
selection. This iterative process is initiated with the full set of
buses. At each iteration, the least important bus is removed
and the predictor is refitted on the smaller set of buses,
where bus importance is given by the absolute value of the
corresponding linear regression coefficient [11]. Then, the
following procedure is used to select buses for monitoring:

1) Select the most important bus from each cluster for
monitoring.

2) Add more buses (in descending order of importance) to
the predictor until the desired accuracy is achieved or
there is no further improvement in the prediction error.

Fig. 8 illustrates the MAE variation as the number of
monitored buses changes (other performance metrics exhibit a
similar behavior). In addition to the proposed sensor allocation
procedure, this figure shows the performance metrics for an
alternative approach: buses are selected in descending order
of nominal load size. For both procedures, the combination of
multiple local regressors outperforms the global regressor ap-
proach. Moreover, note that prediction errors do not decrease
significantly until at least one bus from each cluster has been
selected. Finally, although sensor allocation based on load size
only is simpler, more buses would need to be monitored to
achieve high prediction accuracy.

IV. CONCLUSION

This paper demonstrated the prospect of accurately pre-
dicting voltage magnitudes throughout a distribution net-
work. It was also shown that selecting a few strategic buses
for monitoring yields high network observability. This data-
driven prediction approach can be used proactively for oper-
ational purposes by supporting enhanced voltage regulation.
In such online applications, voltage predictions are updated as
near-real-time data from sensor streaming become available.
Also, prediction models can be updated periodically (such as
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weekly) with the most recent sensor data, which are likely
to better represent the current system’s behavior. Additionally,
variability in the input data sets can be enriched by including
uncertainty factors, such as topology changes, and discrete
controller and switch settings.
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