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Staged Multi-Scale Evaluation Improves Research Efficiency

Microscale Reactor

Schematic of reaction system (MBMS horizontal reactor)
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Laboratory Scale Fluid/
Fixed Bed Reactor
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Biomass: 25 mg/run
Uses/Purpose:
* Rapid catalyst screening
* Preliminary product analysis
(no condensed oil)
* Batch experiments
* Mechanistic insight

0.5 kg/h

* Catalyst evaluation with
continuous biomass feed

* Assess operating conditions

* Full product/yield analysis

* Extended time on stream

* Fixed/Fluidized bed (not
representative of riser)

3 kg/h

* Process evaluation /
integration with industrially-
relevant riser

* Assess operating conditions
compared to lab-scale

» Co-processing of biomass and
petroleum feeds (lig. and gas

20 kg/h

* Evaluation of process
operability / uptime
* |dentification & assessment of
scale-up challenges & impacts
* Generate significant product
guantities

Process and catalyst evaluation at multiple scales:

* Improves research efficiency, thus reducing cost
* Provides data that is directly transferrable to industry partners
e Allows for a tiered catalyst and process development approach
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TCPDU Process Flow Diagram
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Challenges / Creative
Problem Solving

;
Design Constraints
Measuring & controlling catalyst flow rate
Pressure & level control

Plugging in exit lines

Air regeneration — complete coke combustion for
catalyst efficiency
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Design Constraints

 Must have built-in flexibility
* Ceiling height limit

— Must account for
thermal expansion

* Floor loading limit
(Techlok flanges)

e BPVC: limited to 6-in.
diameter pipe

* Highly fluidizable catalyst =
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smaller face2face (assembly length)

(typically 40% shorter)
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R3 Process Flow Diagram
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R3 Process Flow Diagram
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How to Measure Catalyst

Mass Flow

12:30 13:00 13:30 14:00
Time

* Loaded 5 kg shots of catalyst
 1kg=0.64 kPa at 60 kPa
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pOATHVIEENVLNGEICWSE . | oaded 5 kg shots of catalyst

Mass Flow
1 kg =0.64 kPa at 60 kPa
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Catalyst mass flow

required for kinetics

 Timed the transfer of catalyst
from one FBR to other

* Simulated high/mid/low
process gas flows with N,
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. N
Controlling catalyst flow — a0 158
via slide valves e o S
F’D|W4|2 TIC709B
s PV 511 M|
* First generation: temperature at Riser OP 64.0 %Open
exit (TE709B) controlled catalyst flow
}.—J By
— Difficult due to thermal mass of PDIT740C 1.37
riser & external heaters Fﬁu 54 68 %0pen
(thermocouple not sensitive to P?Elgglz PDICT00)  |A
: PV 0676
catalyst flow) S

 Next generation: keeps catalyst
flowrate constant, as measured by DP
across riser (PDIT700)

14:00:00
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Pressure Control in Fluidized Beds (Regen/Stripper)
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Fluidized Bed

Level Control &

DP across cyclone

inverts

Maximum Level in FBRs
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Hot Gas Filtration

e (Catalyst + water = Mud = o

Plugged Sidearms = Catalyst out
* Hot Catalyst + water vapor = ok “'ﬁ
 Required on ALL exit streams ' \\ 3
CRITICAL TO SUCCESS OF OPERATION
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SAMPLE PORT 720
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Insufficient Regen Air

Initial Design: Coke loading estimated
from preliminary results on

Bench-scale FBR

No O, measured on regen exit
Limited by reactor geometry:
— Exit line too small diameter

— Too much carryover (elutriation) at
higher air flow

10

—CO0 —CO02 —02

|

——Air flow into reactor

A . [

Early experiments,
max air 50 slm

50 100 150
Time (min)
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Elutriation of Catalyst at

Increased Air Flow
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Add Cyclone Return into

Regenerator

Increased air flow carries over
MUCH more catalyst

Effectively increased Regen.
diameter

Installed cyclone to return
catalyst into reactor

Tricky design: must keep
horizontal section of return
pipe fluidized
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Air Regeneration Results

Insufficient | C let
Coke on Catalyst (%C by wt) | " == | =OTP =
egen Regen
Post-stripper, after ~2 hours 0.94% 0.58%
Post-regen, after ~2 hours 0.66% 0.01%
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Insufficient
Regen

Complete
Regen
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Lessons Learned

Catalyst mass flow rate, which is critical for VPU kinetics,

— can be empirically determined by change in level in fluidized
bed reactors,

— then correlated to differential pressure across Riser,
— as long as gas flow rate stays constant
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Lessons Learned

Pressure in top of fluidized beds varies linearly with level of
catalyst in bed

D Pressure across Regen. cyclone must be positive

- Flowrate out sidearm must be greater than flow in, or

pressure flips and catalyst empties
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Lessons Learned
DON’T PLUG SIDEARMS
- Don’t overflow fluidized beds
- Filter catalyst particles out while hot

(mud plugs lines & is difficult to clean out)
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Lessons Learned

Fresit ZSM-5 CokED AFTER REGEN

NEED PLENTY OF O, FOR REGENERATION

High-risk to scale up using bench-scale data from dissimilar reactor system
We mitigated catalyst elutriation out of Regen. by adding a cyclone

ldeally, disengagement zone (freeboard) keeps catalyst in reactor

Pure oxygen is dangerous & expensive, but plausible
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www.nrel.gov
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