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NREL Mission, Long-Term
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Evolution of the Power

System

Current Power System

Future Power Systems \

* Large central,
synchronous
generation

 Central control

* More VRE
* More info.

* Increasing levels of power electronics-based variable
renewable energy (VRE)—wind and solar

* More use of communications, controls, data, and information (e.g., smart
grids)—interoperability and cybersecurity issues

* Other new technologies: electric vehicles, distributed storage, flexible
loads

* Becoming highly distributed—more complex to operate. NREL | 3




Generation

The grid is changing,

largely at the edge

Water Heater i Battery

Transmission/
Distribution & Storage Loads & Storage

The cost of electricity generation is declining and

new sectors are electrifying at an unprecedented
pace, most notably transportation.

MREL | 3



U.S. Wind Power Capacity
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Source: AWEA Second Quarter 2019 U.S. Wind Industry Market Report



Vision

Wind energy could supply 20% of the
U.S. electrical demand by 2030.

U.S. DOE Wind Vision Study scenarios
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U.S. Wind Power Installed Capacity by State

- Texas continues to lead the nation in installed capacity, surpassing 25 GW of wind
AK power in the second quarter.

« 19 states have over 1,000 MW of installed capacity.
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U.S. Utility-Scale PV Pipeline

U.S. Utility Capacity (MWdc)
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New U.S. Electricity Capacity Additions
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Grid Integration Challenges
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Western Wind and Solar Integration Study

The primary objectives of Phase 3 of the Western Wind and Solar Integration Study
(WWSIS-3) were tp examine the large-scale transient stability and frequency response of the
Weatern Interconmection with high wind and solar penetration. WWSIS-3 evaluated a variety
of system conditions, disturbunces, locations, and renewable penetration levels to help draw
broader conclusions. Key finding was that with goed system planning, sound engineering
practices, and commercially available technologies, the Western Interconmection can
withstand the crucial first minute after grid disturbances with high penetrations of wind

and solar.
] 140.0%
]
> - 120.0%
g I 5
] =
g B S &
i : 100.0%
I
I
]
o BO.0%
0.80 1.00 1.20 1.40
Secands from Start
LAR.RIVR (Base Case) — LAR.RIVR (High Renewables) ~— SERRANO
— MONROE
Impact

Western Interconnect can survive a
major contingency outage with 30%
variable generation (inverter-based)

http://www.nrel.gov/docs/fy160sti/64822.pdf
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Eastern Renewable Grid Integration Study (ERGIS)

* Goals Operational Areas of Interest
o Operational impact of 30% o Reserves
wind and solar penetration — Types
on the Eastern — Quantities
Interconnection at a 5-minute — Sharing
resolution. o Commitment and Dispatch
o Efficacy of mitigation options — Day-ahead
in managing variability and — 4-hour-ahead
uncertainty in the system. — Real-time
o Inter-regional Transactions
Eastern Renewable Gene gration Study (RTx30)
L — 1-hour
— 15-minute
— 5-minute
Impact

Demonstrated that very large

power systems can operate at a
5-min dispatch with 30% VRE

Eastern Renewable Energy Integration
Study (ERGIS) (2016)

http://www.nrel.gov/grid/ergis.html NREL | 12




U.S. DOE Grid Modernization Intiative

In 2016, DOE announced the first Grid Modernization Initiative—a comprehensive, $220 million,
3-year plan to mobilize 87 projects across the country, bringing together DOE and the national
laboratories with more than 100 companies, utilities, research organizations, state regulators, and
regional grid operators to pursue critical research and development in advanced storage systems,
clean energy integration, standards and test procedures, and a number of other key grid
modernization areas.

In 2019, the second Grid Modernization Laboratory Consortium initiative was issued, focused on 5
major research areas:

— Resilience

— Energy Storage and System Flexibility :\:\

— Advanced Sensors and Data Analytics "-—;\ ‘ G R
— Institutional Support and Analysis // 77/ //4

— Cyber-Physical Security
— Generation. \\\\

— MODERNIZATION INITIATIVE
— U5, Department of Energy
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NREL Software Tools for Grid Integration Studies
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NREL in-house modeling tools:

* REEDS: Regional Energy Deployment System model X Lo
*  RPM: Resource Planning Model tool Gap with the existing

* REPRA: Rengwable Energy Prob.abilistic Resource As;essmgnt tool . commercial software

*  FESTIV: Flexible Energy Scheduling Tool for Integrating Variable Generation

*  MAFRIT: Multi-Area Frequency Response Integration Tool tools NREL | 14



Services by Battery Energy Storage Systems
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Testing 300-MW PV Plant in CAISO Service Territory
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Testing 300-MW PV Plant in California

Example of 3% droop test (underfrequency)

300-MW PV plant participating in AGC

30 MW headroom
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Reactive Power Capabilities of Inverter-Coupled

Resources

Comparison of reactive power capabilities
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Grid-Forming: Essential for Stable Operation

Today
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Black-Start Stages

The black-start process can be divided into three stages:
* Preparation stage

* Network reconfiguring

* Load restoration.

A typical restoration plan for the bulk power system includes the following

essential steps:

Conventional top down approach

Conventional i m‘ i | i
centralized m‘
black-start

units to start
the network

o System status identification: blackout boundaries and location in 4 - E:‘;T(g;:agrt
respect to critical loads, status of circuit breakers, capacity of available \\éradigm
black-start units, etc.

e  Starting at least one black-start unit to supply critical loads, such as Microgrids
nuclear or large thermal power plants ras;we i : “.

oads, { “®- .

° Progressive restoration: step-by-step supply of other loads, avoiding waiting to be \ ,’\ ’ﬁ i

over- and undervoltage conditions. energized N

The restoration strategies:

*  Serial: simpler strategy, slower but more stable

*  Parallel: quicker but more complex.

Bottom-up

Source: NREL approach
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PV-BESS Black-Starting a Gas Turbine Generator

PV Plant

lo3Eo—

BESS

L
T

Power Plant Aux Loads

T2

H H]

T1
= 3€ o
3¢
480V 13.2kV

Main challenge:

* Energizing transformers and feeders
* Midsize gas turbines employ starting motors

o 3fo

13.2 kv/asov

Conventional power Plant

Source: NREL

* Black-start inverters need to be sized to provide necessary inrush current.

Possible solutions:

e Qversized inverters for inrush current

* Equip all plant motor loads with soft starters of variable-frequency drives
* Partial solution: energize transformers with tap positions at highest number of turns.
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Conclusion

Modern inverter-coupled variable generation and energy storage systems are capable of providing all types of reliability
services to the grid.

Adequate market designs are essential for unleashing such capabilities as an important tool in achieving the broader
objective of a resilient, reliable, low-carbon grid.

Exploring economic and/or contractual incentives to maximize production and not hold back production to provide
reliability services

Markets should incentivize faster and more
accurate resources that provide such services. -

Emﬁ Grid-friendly PV Powesplant
Grid forming is important for stability and - irses arrs

.. . R :
resilience of future grids. © V ; z © e —

PV Collector Bus - 34.5 kv

34.5 /230 kV

Power
Grid

What are the optimum ratios between grid- by P1 mearedmro
forming and grid-following resources?

1. Frequency droop settings
2.Up-Ramp rate control settings

Do we need grid-following resources at all? T radanc measurements  S——— | e QI r—
- - i —

3. AGC power set point

What are the stability impacts of grid-forming T & 1y ——

int

5. Voltage droop settings for PV inverters.

operation and how do we identify and mitigate them pans gzt > Il
(small-signal and transient stability, control
interactions, subsynchronous oscillations, harmonic resonances, etc.)?
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