

GeoVision Analysis Supporting Task Force Report: Electric Sector Potential to Penetration

Chad Augustine, Jonathan Ho, & Nate Blair National Renewable Energy Laboratory Presenter: Greg Rhodes 2019 Geothermal Resources Council Annual Meeting Palm Springs, California - 15-18 September 2019

Geothermal Electric Sector

- The US has about 3.8 GWe of Geothermal installed capacity.
 - Capacity has been growing at a rate of ~2%/yr.
- 15,920 GWh, representing about 0.4% of the nation's total electricity generation.
 - 6% of generation in CA, and 8% of generation in Nevada.
 - California has more installed geothermal capacity than any country in the world.
- Fundamental question: assuming a variety of improvements to technical and non-technical barriers, what level of geothermal deployment could be achieved through 2050?

- Scenarios Modeled
- Methodology
 - \circ Geothermal Resource Potential
 - Geothermal Electricity Technology Evaluation Model (GETEM)
 - Regional Energy Deployment System (ReEDS)
- Results
- Sensitivity Runs
- Conclusions

Three Electric Sector Scenarios

- 1. Business As Usual (**BAU**) Anticipated future if industry continues on the same path as 2016 conditions. <u>This scenario does</u> not include any technical or non-technical improvements.
- 2. Improved Regulatory Timeline (IRT) Considered pathways and potential combinations of approaches to streamline and reduce project development timelines. <u>This scenario does not include any technology improvements.</u>
- 3. Technology Improvement (TI) –

Evaluated aggressive	Scenario	Business-as-Usual	Improved Regulatory Timeline ⁷²	Technology Improvement	
technology advances and cost reductions.	Description	Reflects current industry trends	Streamlined permitting increases the amount of exploration, decreases project timelines, increases resource discovery rate	IRT scenario + access and technology improvements: Advances in drilling, exploration, and EGS reservoir development reduce costs and risks	
	Capital + O&M Costs	BAU	BAU	Hydrothermal: some reductions EGS: large reductions	
	Construction Time (years) ⁷³	Hydrothermal: 8 EGS: 10	Hydrothermal: 4 EGS: 5	Hydrothermal: 4 EGS: 5	
	Financing ⁷⁴	BAU	BAU	ReEDS Standard WACC (8%)	
	Hydrothermal Discovery Rate ⁷⁵	1% of undiscovered resource/year	3% of undiscovered resource/year	3% of undiscovered resource/year	

GeoVision Workflow for Modeling Electricity Generation

Geothermal Resource Potential

- Estimates from 2008 USGS Resource Assessment (Williams et al.) and updated Augustine 2010, 2011, & 2016.
- Four resource classes:
 - Identified hydrothermal
 - Undiscovered hydrothermal
 - Near-field EGS
 - Deep EGS (3-7km)
- Exclusions:
 - Sites <110°C
 - Existing installed capacity
 - Alaska & Hawaii

Identified hydrothermal resources

<i>GeoVision</i> Scenario	ldentified Hydrothermal MW _e	Undiscovered Hydrothermal MW _e	Near-Field EGS MW _e	Deep EGS MW _e	
BAU and IRT	5,078	18,830	1,382	3,375,275	
TI	5,128	23,038	1,443	4,248,879	

Table 3-2. Geothermal Resources Available for Developmentfor Electricity Generation (in megawatts-electric, MWe) in theRegional Energy Deployment System Model (ReEDS) under theGeoVision Analysis Scenarios

				Deep-EGS E	lectricity-Gei	neration Pote	ntial (MW _e)			
		Resource Temperature (°C)								
		150-175	175-200	200-225	225-250	250-275	275-300	300-325	325-350	>350
Depth (km)	3-4	74,217	2,592	100	-	-	-	-	-	-
	4-5	740,466	233,228	11,886	325	84	32	-	<u></u>	1000
	5-6	517,601	724,689	373,680	57,281	4,654	195	128	-	-
	6-7	635,384	491,641	700,330	453,610	120,677	12,116	1,883	5 <u>-</u> 7	157

Table C-1. Updated Deep Enhanced Geothermal Systems Electricity-Generation Potential (MWe) for the Contiguous United States, Binned by Temperature and Depth Intervals (Augustine 2016)

GETEM – Geothermal Electricity Technology Evaluation Model

- GETEM estimates the Levelized Cost of Energy (LCOE) and overnight capital costs for a user defined geothermal resource type, temperature, and depth.
- Up to 109 default inputs.

		Revised Scenario	GETEM Default	
Estimated LCOE	¢/kW-hr	10.01	10.01	
Power Sales	kW	30,000	30,000	
Power Plant Output	kW	35,088	35,088	
If you wish to change any of the parameters for the evaluated scenario, enter the va	alue in the	cell with yellow back	ground. If the default	
is acceptable, leave the cell blank. If not blank, GETEM will use the value in the cell,	even if 0 o	or negative.		
	<u>.</u>	Revised Value	GETEM Default	
RESERVOIR PERFORMANCE	F	Revised Value	GETEM Default	
Well Flow Rate	<u></u>		8	
Production Well Flow Rate	gpm		1,953.9	
Hydraulic Drawdown	100 A			
Productivity Index	lb/hr-psi		2,500.000	
Injectivity Index	lb/hr-psi		2,500.000	This value for wells drilled specifically as injection wells
Thermal Drawdown	-			If the temperature decline exceeds the maximum indicated, the mo
Annual Rate of Decline	%/yr		0.5%	the well field (is sufficient potential was found and does not occur
Maximum Temperature Decline Allowed	С		24.6	of project life).
Makeup Water				EGS always has makeup for subsurface and surface water losses (si
			1	Default will be no when Binary plants used. Provides option to ma
Is water loss for Flash plant cooling system to be made-up?			No	with Hydrothermal Flash systems.
EGS: Subsurface Water loss as % of injected flow (\geq 0)			0.0%	Any input given for water loss or makeup cost is ignored for hydro
GETEM - Read Me Start Here Scenario Definition Results Error	-Warnings	Schedule EERE C	OE DCF-COE OUT	FC (+) : ()

Scenario Specific GETEM Revisions

GETEM Input		Business-as-Usu	al	Technology Improvement			
GETEM Input		Hydro	EGS	Hydro	EGS		
	Exploration — Pre-Drilling Costs (\$/project)	\$600K-\$1.2M	\$250K	Same as BAU			
RESOURCE	Exploration — Drilling Costs (\$/project)	\$3.3M-\$5.4M	\$1.5M-\$5M	2/3 of BAU			
EXPLORATION	Full-Sized Confirmation Well Costs ¹⁰⁷	Base + 20%	Base + 50%	Ideal + 0% (no premium)			
	Full-Sized Confirmation Well Success Rate	50%	50%	75% (with stimulation)			
	Number of Full-Sized Confirmation Wells Required	3	9	3			
S S I I I I I I	Drilling success rate	75%		90%			
DRILLING	Drilling costs	Base		Ideal			
GEOFLUID GATHER	ING SYSTEM AND PUMPING	No changes					
<u> </u>	Wells stimulated?	No	Yes	Yes			
RESERVOIR	Well flow rate (flow rate per production well)	Binary: 110 kg/s Flash: 80 kg/s	40 kg/s	Binary: 110 kg/s Flash: 80 kg/s			
CREATION	Well productivity	4.6 kg/s/bar 5.8 gpm/psi	0.46 kg/s/bar 0.58 gpm/psi	4.6 kg/s/bar 5.8 gpm/psi	2		
O&M		No changes					
POWER PLANT		No changes					

Geothermal Resource Supply Curves from GETEM

- Costs increase quickly as resource temp drops
- Both NF-EGS & deep EGS resources are likely too expensive to deploy in the BAU scenario
- Undiscovered resource potential > identified

- Deep EGS capital costs are reduced significantly in the TI scenario
- Deep EGS makes up majority of additional available capacity in the TI scenario

Figure 6. Geothermal supply curve for the GeoVision BAU scenario. The net capacity and capital cost axes are truncated for readability.

ReEDS – Regional Energy Deployment System

- A spatially and temporally resolved model of capacity expansion in the U.S. electric sector.
- Designed to explore potential electric-sector growth scenarios in the U.S. out to 2050 under different economic, technology, and policy assumptions.
- For every 2 years, ReEDS finds the regional mix of technologies that meet requirements of the electric sector *at least cost*. Primary requirements include:
 - Regional demands for electricity in each *time-slice*
 - Regional *planning reserve* requirements in each timeslice
 - Regional operating reserve requirements In each timeslice
 - Any policy requirements (e.g. RPS)
 - In addition to these *constraints*, ReEDS includes:
 - Technology-specific regional resource constraints
 - Transmission constraints

•

- Other physical constraints, etc.
- Technologies include conventionals (coal, oil, gas, nuclear), renewables, storage, demand-side tech.

Figure C-5. Map showing the Regional Energy Deployment System regional structure

Figure Note: ReEDS includes three interconnections, 134 model BAAs, and 356 wind and concentrating solar power resource regions.

Results – BAU and IRT Scenarios

IRT assumes

- Geothermal categorical exclusions (CX) for resource confirmation activities
- Centralized coordinated permitting offices
- NEPA streamlining (expanded use of pre-leasing EAs and Programmatic EIS)
- Reduced construction timeline
- Increased resource exploration and rate of discovery
- Scenarios do not include improved technologies (EGS)

Figure 4-1. Improved Regulatory Timeline scenario results and comparison to the Business-as-Usual scenario for conventional hydrothermal resources

Results – TI Scenario

- Deployment could reach 60 GWe with aggressive technology improvements
- Improvements include better exploration, drilling, and well stimulation.
 - Find resources faster and target wells with improved precision and success.
 - Drill faster and more cost-effectively.
 - Stimulate wells more effectively and at lower cost.

Figure 4-3. Technology Improvement scenario results by resource type

Results – Modeled Generation by Year

Figure C-10. Annual electricity generation by year for all technologies in the Regional Energy Deployment System for the Business-as-Usual scenario

Figure C-16. Annual electricity generation by year for all technologies in the Regional Energy Deployment System for the Technology Improvement scenario

Sensitivity Runs

- ReEDS standard scenarios
- Drilling cost curves
- Regional EGS maps

Conclusions

- The BAU scenario in ReEDS projects 5,924 MWe of total installed geothermal capacity by 2050.
- The IRT scenario in ReEDS estimates 12,891 MWe of total installed geothermal capacity by 2050; more than double the installed capacity in the BAU scenario.
- EGS technologies do not deploy in either the BAU or IRT scenario because the technology is not yet advanced enough to be commercially feasible.
- Regulatory reforms alone could greatly increase geothermal deployment.
- Expanded and improved exploration is essential to discovery and deployment of undiscovered hydrothermal resources.

Conclusions

- The TI scenario in ReEDS estimates 60,701 MWe by 2050, mostly from the rapid deployment of EGS resources starting in 2030.
- ReEDS standard scenarios show that geothermal deployment can be robust under numerous future scenarios.
- Detailed regional maps of EGS resources are needed to identify the most favorable EGS sites.
- In order to achieve accelerated geothermal deployment EGS technologies must be advanced through research and development.

Questions?

Thank You

www.nrel.gov

NREL/PR-5500-75134

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Geothermal Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

