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Abstract. Increasing wind turbine size can have substantial economic benefits.
However, increasing wind turbine turbine size requires the use of models that
accurately capture the aerodynamic response to large deflections and nonstraight
blade geometries. Additionally, the installation of offshore floating turbines requires
turbine models that can handle large rotor motion. Free vortex wake (FVW)
methods are capable of modeling this type of complex physics while remaining
computationally tractable to perform the many simulations necessary for turbine
design. In this work, a FVW model is added to the National Renewable Energy
Laboratory engineering tool OpenFAST to allow for the aerodynamic modeling of
highly flexible turbines along with the aero-hydro-servo-elastic response capabilities
of OpenFAST. Code implementation is not complete and thus no results are
presented. However, areas of potential modeling improvement are discussed, such
as modifications to the circulation calculation and the need for different FVW input
model specifications when high-thrust cases are being modeled.

1. Introduction

Over the past few decades, substantial reductions in the cost of wind energy have come from
large increases in rotor size. Larger rotors capture substantially more energy through greater
swept area, yielding a reduced specific power while increasing turbine capacity factor. Research
has shown that low specific power rotors, with correspondingly higher capacity factors, can
lead to higher economic value [28]. One important consideration for such large turbines,
however, is increased blade flexibility and the use of multielement airfoils (e.g., the use of
flaps). In particular, large blade deflections may lead to a swept area that deviates significantly
from the rotor plane. Such deviations violate assumptions used by common aerodynamic
models, such as the blade element momentum (BEM) method, which rely on actuator-disk
assumptions that are only valid for axisymmetric rotor loads contained in a plane. Large
blade deflections may also cause the turbine near wake to diverge from a uniform helical
shape. Further, interactions between turbine blades and the local near wake may increase, thus
violating assumptions of models that do not account for the position and dynamics of the near
wake. Additionally, highly flexible blades will likely cause increased unsteadiness and three-
dimensionality of the aerodynamic effects, increasing the importance of accurate and robust
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dynamic stall models. There are many other complex wind turbine situations that violate
simple engineering assumptions. Such situations include obtaining accurate aerodynamic loads
for nonstraight blade geometries (e.g., built-in curvature or sweep); skewed flow caused by yawed
inflow or turbine tilt; and large rotor motion as a result of placing the turbine atop a compliant
floating platform offshore.

Higher-fidelity aerodynamic models are necessary to account for the increased complexity
of flexible rotors. Although computational fluid dynamic (CFD) methods are able to capture
such features, the computational cost limits the number of simulations that can be practically
performed, which is an important consideration in load analysis for turbine design. Free
vortex wake (FVW) methods are capable of modeling the complex physics, while remaining
less computationally expensive than CFD methods. Numerous vorticity-based tools have been
implemented, ranging from the early treatments by Rosenhead [19], the formulation of vortex
particle methods by Winckelmans and Leonard [27], to the recent mixed Eulerian-Lagrangian
compressible formulations of Papadakis [16]. Examples of long-standing codes that have been
applied in the field of wind energy include GENUVP [25], using vortex particles methods,
and AWSM [23], using vortex filament methods. Both tools have successively been coupled
to structural solvers. The method was extended by Branlard et al. [6] to consistently use vortex
methods to perform aero-elastic simulations of wind turbines in sheared and turbulent inflow.
Most formulations rely on a lifting-line representation of the blades, but recently, a viscous-
inviscid representation was also used in combination with a structural solver [21].

In this work, a FVW model is added to the National Renewable Energy Laboratory
physics-based engineering tool OpenFAST, which solves the aero-hydro-servo-elastic dynamics
of individual wind turbines. Incorporating the FVW model within OpenFAST allows for the
modeling of highly flexible turbines along with the aero-hydro-servo-elastic response capabilities
of OpenFAST. Code integration and modification are ongoing. Therefore, this work is considered
a preliminary study to identify potential areas of improvement for the OpenFAST-FVW code.

2. Approach and Methods
This section details the FVW method and provides an overview of the computational method,
followed by a brief explanation of its integration with OpenFAST.

2.1. Free Vortex Wake Model

This work employs a FVW method that solves for the turbine wake in a time-accurate manner,
which allows the vortices to convect, stretch, and diffuse. The FVW model is based on a
Lagrangian approach, in which the turbine wake is discretized into Lagrangian markers. The
position of the Lagrangian markers is defined in terms of wake age, {, and azimuthal blade
location, . There are many methods of representing the wake with Lagrangian markers [5]. In
this work, a hybrid lattice/filament method is used, as depicted in Figure 1. A lattice method
is used in the near wake of the blade. The near wake spans over a user-specified angle. Though
past research has indicated that a near-wake region of 30° is sufficient [14, 2], it was found in this
work that a larger near wake is required for high thrust and other challenging conditions. After
this period, the wake is assumed to instantaneously roll up into a tip vortex, which is assumed
to be the most dominant feature for the remainder of the wake [15]. Each Lagrangian marker is
connected to adjacent markers by straight-line vortex filaments, approximated to second-order
accuracy [8]. The wake is initially assumed to be a helical wake and discretized (di) based on
turbine rotor speed (€2) and a specified time step (dt), such that dy) = dt x Q. After this initial
helical discretization, the wake is allowed to move and distort, thus changing the wake structure
as the markers are convected downstream. To limit computational expense, the tip vortex is
truncated after a specified number of rotor diameters (D) downstream of the turbine, which
results in N wake revolutions. Because induced velocity information is a necessary boundary
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Figure 1. Evolution of near-wake lattice, blade tip vortex, and Lagrangian markers.

condition for wake truncation, an additional rotation (N+1) is defined at the end of the wake and
set to be identical to the previous N revolution. In this way, truncation error is minimized [15].
The governing equation of motion for a vortex filament is given by:
(), ¢)
t

—a = Vw01 (1)

Using the chain rule, Equation 1 is rewritten as:

01, Q) | I7,Q) _ VI, 1 -
oY ae Q
where dy/dt = Q and dip = d¢ [15]. Here, 7(1), () is the position vector of a Lagrangian marker,
and V[7(¢, ()] is the velocity.
At present, a predictor-corrector scheme is used to numerically solve the left-hand side of
Equation 2 for the vortex filament location. It was developed to accommodate variable rotor

speed, as shown by the stencil in Figure 2 [22]. The difference operators afgé”o and aFng’O are

found by means of a Taylor series expansion about the point ({ + A(/2, ¥ + Av/2). %ﬁ@ is

computed using a two steps backward method and % by central differencing. This results
in a scheme that is second-order accurate in ¢ and third-order accurate in 1. The resulting
equations are given as follows:

ac 9AC (3)
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Figure 2. Variable rotor speed stencil used in time-marching predictor-corrector scheme.

o1, ¢)
dp

{2377(%& + A, ¢+ AQ) + 237 + Avy, () — 217(¢, ¢ + AQ) — 217(2), C)
=37 — A1, + AQ) — 37 (Y — Arhi 1, Q) + 7 — Api—1 — Avpi—2, ¢ + AQ)
—1
+ (Y — Ahi_1 — Ao, C)}{%A%‘ +4AvY; 1 — 2A¢i—2} 4)

with variables as defined in Figure 2. The right-hand side of Equation 2 is computed by averaging
the velocities surrounding the point (¢ + A(/2, 1 + Av/2). The marker location is then found
by substituting the difference operators and velocity averaging into Equation 2 and rearranging
to obtain:

(Y 4+ Ay, (+ AQ) =
Vv 1 23 1 21
{Q_<_2A< ) (¢+A¢m§)—<m >%(¢aC+AO

¢ o
—1
— 2 — Ay — Atia, €+ AQ) — (0 — Aot — A m)}{mlc ; %j} )
where
+ Vina (71 (9, ¢+ AQ)) +de( <w+Aw ¢+ AQ) (6)
¢ = 46Ath; + 401 — 2A;_o (7)

Equation 5 is the general form of the predictor and corrector equations, indicated by the
superscript m. It is first used in the predictive step to compute the predicted wake position
for all Lagrangian markers using initial guess values for the wake positions () and velocity
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values at wake positions from the previous time step (#~'). The resulting wake positions
are then used as the m time step in the corrector equation to compute the corrected wake
position at the current time step (7™*1). This process iterates until converged wake locations
are reached. Wake location is assumed to be converged when the difference in wake position
between iterations reaches a value of less than 0.001 m Root Mean Square (RMS) [13]. This is
typically achieved in two to three iterations.

The velocity term on the right-hand side of Equation 2 is a nonlinear function of the vortex
position, representing a combination of the freestream and induced velocities [9]. The induced
velocities at point k, caused by each straight-line filament, are computed using the Biot-Savart
law, which considers the locations of the Lagrangian markers and the intensity of the vortex
elements [15]:

I'dlx7r
4 |73 (8)

Here, I' is the circulation strength of the filament, [is the vector connecting the filament endpoint
locations, and 7 is the perpendicular distance between [ and point k. The factor F, is introduced
because of the singularity that occurs in Equation 8 at the filament location [24]. Viscous effects
prevent this singularity from occurring and diffuse the vortex strength with time. The circular
zone where the velocity drops to zero around the vortex is referred to as the vortex core. An
increase of length of the vortex segment will result in a decrease of the vortex core radius, and
conversely for a decrease of length. Diffusion, on the other hand, continually spreads the vortex
radially. To account for these effects, a viscous-core correction, Fj,, is needed. Several viscous-
core models have been developed [17, 20, 24]. At present, this work uses the Vatistas model [24],
defined in Equation 9.
lis

o= s i ©

Here, n is the distance from a vortex segment to an arbitrary point [1] and 7. is the viscous core
radius of a vortex filament. Research from rotorcraft applications suggests a value of n = 2,
which is used in this work [3].

At present, the circulation along the blade span is computed using a Weissinger-L [26]-based
representation of the lifting surface [7, 4, 18] and is coupled to the wake through dependence
on the induced velocities. Other methods of circulation computation, such as the one from van
Garrel [23], will be considered in the future. In lifting line theory, bound circulation, T, is
placed on the blade at 1/4-chord and collocation points at 3/4-chord, at which a flow tangency
condition is enforced. The blade is discretized into a finite number of segments, and a horseshoe
vortex is used at each segment to compute the bound and trailed circulation. Note that the
Weissinger-L approach is valid only for near-wake calculations. Once the circulation on the blade
is determined, the circulation of the tip vortices currently being emitted is set to the maximum
bound circulation. In future versions of the code, the tip vortex circulation may be set as the
integral of the trailed vorticity, preserving the 0 and 1% moment of vorticity. At the end of
a time step, the circulation of each vortex element is propagated downstream so that vortex
elements with a new intensity can be emitted from the blade at the next time step.

dVi, = F,

2.2. Integration with OpenFAST

The FVW code has been integrated into the latest version of OpenFAST. Considering ease of
implementation, the FVW code has been temporarily integrated with the older aerodynamic
module of OpenFAST, AeroDynl1j. The data workflow between the different modules and
submodules of OpenFAST is illustrated in Figure 3. The symbols are defined as follows:

® Telast i — vector representing the position (7;), orientation (Ay), translational velocity (7?”),
and rotational velocity () of the different nodes of the lifting lines
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Figure 3. OpenFAST-FVW code integration workflow

e ¥;;; — induced velocity at the lifting line nodes, as returned by either the vortex code or the
BEM code

° ﬁl — loads at the lifting-line nodes; main output from the AeroDyn

e 7, — positions where the velocity is requested (typically the end points of the vortex
filaments).

This integration required a restructuring of the AeroDynl5 module to isolate the parts of the
code related to tower shadow modeling, induction computation, lifting-line forces computations,
and dynamic stall. The dynamic stall model will be adapted when used in conjunction with
the vortex code to ensure the effect of shed vorticity is not accounted for twice. The points
requested by AeroDynl15 to the inflow module InflowWind to obtain the undisturbed velocity
at given locations of the domain will be accommodated to potentially include the additionally
requested points 7. from the vortex code, in addition to the lifting line points ;. With this
implementation, structural degrees of freedom will be available, allowing for analysis of highly
flexible turbine blades.

3. Modeling Cases
Comparison of the developing FVW capability of OpenFAST is performed using the Big
Adaptive Rotor (BAR) turbine. Note that this was developed to be a highly flexible turbine, but
the current implementation of the code requires the turbine to be modeled rigidly. This newly
developed three-bladed turbine model was designed as a baseline turbine for the BAR project,
a U.S. Department of Energy-funded project intended to ease the design of the next generation
of onshore wind turbines [10]. Some characteristics of the turbine are found in Table 1.
Simulations were performed at a range of freestream velocity with steady, no-shear inflow for
both studies. Quantities of interest include axial and tangential induction distributions along
the blade, as well as rotor power, though none are specifically presented here.

4. Results
This section discusses preliminary results for the baseline simulation cases of the reference BAR
turbine. These results serve as an initial demonstration of the OpenFAST-FVW code, though

further model integration and improvements are currently underway. Preliminary comparisons
of the OpenFAST-FVW code with OpenFAST-BEM results show both promising comparisons
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Table 1. Main parameters of the BAR baseline wind turbine.

Parameter Value
Rated Electrical Power 5 MW
Rotor Diameter (D) 206.4 m
Number of Blades 3

Rotor Blade Pitch Variable (Rated: 6.3 rpm)
Rotor Speed Variable (Rated: 8 m/s)
Tower Height 140.0 m
Max. Chord 5.3 m

as well as clear areas of improvement. Results are nearly identical above the rated wind speed of
8 m/s, as expected. At below-rated wind speeds, the OpenFAST-FVW method predicts higher
average rotor power than the OpenFAST-BEM method. For a steady, unyawed turbine, these
differences are expected to be much smaller than currently observed. Such differences could be
because of insufficient modeling parameters for high-thrust, high-induction cases, as previously
noted, or errors in code implementation. Both options are actively being investigated.

It is important to note that the accuracy of the FVW method is dependent on proper
wake discretization and the extent of the near-wake region. Specifically, when the turbine is
operating with a high thrust coefficient, there is rapid wake expansion. To accurately capture
this expansion, a much finer wake resolution with a more extensive near-wake area is needed.
Future work will include establishing simulation guidelines for these parameters in challenging
conditions.

Blade span axial and tangential induction factors along the blade span, both key output
variables for analyzing aerodynamic response, were studies for several freestream velocities. There
was strong agreement between OpenFAST-FVW and OpenFAST-BEM results for both axial
and tangential induction at higher wind speeds, though OpenFAST-FVW results showed higher
induction at the blade root for all cases. At a wind speed of 6 m/s, OpenFAST-FVW method
produces lower axial induction at the blade tip. These large differences in induction are likely
the cause of the discrepancies in rotor power for this wind speed. The reason for such differences
is currently being investigated.

5. Conclusions and Discussion

A FVW method has been integrated into the aerodynamic module, AeroDyn1/, within
OpenFAST. Preliminary OpenFAST-FVW results using the baseline BAR turbines have been
compared to OpenFAST-BEM solutions for constant inflow as an initial code comparison.
Comparisons were made for turbine rotor power, as well as blade span distributions, of axial
and tangential induction. These initial comparisons have led to the identifications of a few
areas that need improvement, specifically the calculation of blade circulation and establishment
of modeling guidelines for high-thrust cases. Additional planned code improvements include
integration into the newer module, AeroDyn15. In this version, the vortex code will comply
with the modularization framework of OpenFAST [11, 12].

Once the code has been sufficiently developed, code verification and validation will
be carried out with detailed comparisons to LES results, NREL UAE Phase IV turbine
experimental measurements, and experimental blade load measurements for highly flexible
rotors. Additionally, several cases known to be challenging for BEM models will be simulated
for the BAR turbine and compared to the FVW results. These conditions include:

e Large cone angle (15°)

e High yaw angle (30°)
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e High inflow shear (0.4)
e High turbulence, low wind speed (TI=18 %, Usx, = 5 m/s)
e Highly flexible blades

The first phase of this work focuses on code implementation for single-turbine capabilities,
fulfilling the basic requirements for the design of large and novel rotor concepts, such as the ones
considered within the BAR project. Future development work includes enabling multiturbine
simulations on medium- to large-scale computational clusters. Reduction of the computational
time will also be of focus. This may be achieved using tree techniques such as the fast-
multipole method. Further algorithmic options, such as vortex amalgamation in the wake,
will be considered. Grid-free or grid-based vortex particle formulations, compatible with the
framework presented here, will also be considered in the future. Applications to cases known
to be challenging for the BEM algorithm will also be investigated (e.g., highly flexible rotors,
offshore floating turbines, small-scale wind farms, multiple-rotor turbines, or kites).
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