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Abstract—The operation of distribution networks is becoming
increasingly volatile, due to fast variations of renewables and,
hence, net-loading conditions. To perform a reliable state estima-
tion under these conditions, this paper considers the case where
measurements from meters, phasor measurement units, and
distributed energy resources are collected and processed in real
time to produce estimates of the state at a fast time scale. Streams
of measurements collected in real time and at heterogenous rates
render the underlying processing asynchronous, and poses severe
strains on workhorse state estimation algorithms. In this work, a
real-time state estimation algorithm is proposed, where data are
processed on the fly. Starting from a regularized least-squares
model, and leveraging appropriate linear models, the proposed
scheme boils down to a linear dynamical system where the state is
updated based on the previous estimate and on the measurement
gathered from a few available sensors. The estimation error is
shown to be always bounded under mild condition. Numerical
simulations are provided to corroborate the analytical findings.

I. INTRODUCTION

The integration of renewables, electric vehicles, and
other power-electronics-interfaced distributed energy resources
(DERs) are leading to net-loading conditions in distribution
network that are less predictable and highly variable [1].
In these conditions, recent efforts are looking at revisiting
Distribution System State Estimation (DSSE) – a fundamental
task for distribution systems operators (DSOs) – to provide
estimates of the state at faster time scales. Examples of DSSE
include the Bayesian linear state estimator [2] and approaches
based on Kalman filtering (suitable for the when a dynamical
model of the network is available) [3], [4]. Current industrial
and utility practices rely on approaches that produce state
estimates at the minute scale (or even every 15 minutes).
However, measurements from meters, phasor measurement
units (PMUs) [5], [6], and distributed energy resources (DERs)
could in principle be processed in real time to produce
estimates at a faster time scale. Towards this end, a challenge is
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related to the fact that measurements provided by these devices
are generally not synchronized and the difference between
measurement times can be significant [7], [8]; moreover, due
to the limited available bandwidth, sensors do not transmit data
to the DSO all at the same time; rather, data are gathered asyn-
chronously. As a consequence, the number of measurements
is smaller than the number of state variables at every time
step, and hence traditional state estimation algorithms cannot
be straightforwardly applied. One possible strategy is to treat
synchronization errors as an additional source of uncertainty
and errors [9]. In [8], the measurement variances are adjusted
based on the idea that measurements become less reliable as
time passes, presuming that load variations can be modeled as
Gaussian random variables. A robust Kalman Filter approach
able to deal with bad data has been proposed in [4], [10].

To handle asynchronous measurements effectively, this pa-
per proposes a real-time algorithm that, by leveraging a
linearized distribution grid model, updates the distribution
grid state estimate iteratively processing measurements as
they come in. In the proposed strategy, the new estimate is
computed as the solution of a strictly convex optimization
problem, aiming at minimizing the sum of a weighted least
square term capturing the new data and a regularizer that
introduces “memory” on the estimate; this momentum term is
critical for our scheme to ensure a consistent estimate even in
the presence of asynchronous measurements. It turns out that
the state estimate follows a standard dynamical linear system,
having as an input the measurements gathered by the DSO.
The estimation error is shown to be in general always finite and
upper bounded when the measurement noise and the grid state
variability are limited. A similar approach was adopted in [11],
where a prediction-correction method is applied to DSSE. The
scheme proposed here does not require a prediction step and
can handle asynchronous measurements.

Notation. lower- (upper-) case boldface letters denote vec-
tors (matrices). Calligraphic symbols are reserved for sets.
Vectors em, 1, and 0 are the m-th canonical vector, the all-one
vectors, and the all-zero vector of suitable dimension. Matrices
IN and 0N represent the identity matrix and the square matrix
whose entries are all zero of dimension N . Given a vector x,
‖x‖ denotes the `2-norm and dg(x) the matrix whose diagonal
is x; given a symmetric positive-definite matrix R, ‖x‖2R−1 is
the weighted squared norm x>R−1x. Given a set of matrices
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{Xi}Ti=1, bdg({Xi}Ti=1) is the block diagonal matrix having
the Xi’s as blocks in the diagonal. The eigenvalues of a matrix
X are collected in the set eig(X).

II. DISTRIBUTION NETWORK MODEL

A radial power distribution grid having N +1 buses can be
modeled by a graph Go = (N ,L). Nodes in N := {0, . . . , N}
represent grid buses, and the edges in L correspond to the L
distribution lines. The active and the reactive power injection
at bus n are denoted by pn and qn, while its voltage magnitude
and its voltage phase as vn and θn. The substation bus
is indexed by n = 0 and it is modeled as a slack bus
whose voltage is fixed at v0 = 1 and θ0 = 0. Every other
bus n is modeled as a constant power or P-Q bus. Powers
corresponding to loads (generators) are such that pn ≤ 0
(pn ≥ 0). The voltage magnitudes, voltage angles and power
injections at all buses excluding the substation are collected
in the vectors v,θ,p,q ∈ RN . Let r`+ ix` be the impedance
of line `, and collect all the impedances in vector r + ix.
The grid connectivity is captured by the branch-bus incidence
matrix Ã ∈ {0,±1}L×(N+1) that can be partitioned into
its first and the rest of its columns as Ã = [a0 A]. The
reduced bus admittance matrix Y ∈ CN×N is defined as
Y := A> dg(r + ix)−1A; Y is symmetric, positive semi-
definite and, if the network is connected, invertible. Power
injections are non-linearly related to nodal voltage phasors;
however, after linearizing complex power injections around the
flat voltage profile 1+j0, the bus voltage deviations ṽ := v−1
and the bus voltage angles can be approximated by [12][

ṽ
θ

]
=

[
R X
X −R

] [
p
q

]
(1)

where R :=
(
real(Y)

)−1
,X :=

(
imag(Y)

)−1
. Trivially,

from (1) it follows that
ṽ
θ
p
q

 =


R X
X −R
IN 0N
0N IN

[pq
]
= Φ

[
p
q

]
. (2)

where we introduced the matrix Φ ∈ R4N×2N .
In our work, we assume that two kinds of metering devices

are used: conventional smart meters, able to measure power
injections and voltage magnitudes, and PMUs, able to measure
power injections and both voltage magnitudes and angles.
Buses endowed with smart meters are collected in the set
MSM, while buses endowed with PMUs in the setMPMU. Let
{tk}k≥1 be the times at which the DSO receives field data.
Precisely, at time tk, the DSO gathers measurements from a
subset of buses, collected in the set S(k). Without loss of
generality, we assume that, at each time tk, measurements
from S buses are retrieved and stacked in the vector y(k),
i.e., S(k) = {s1(k), . . . , sS(k)}. Then,

y(k) = S(k)[ṽ>(k) θ>(k) p>(k) q>(k)]> + n(k) (3)

where n(k) represents measurement noise and where
S(k) is a selection matrix that picks from the vector

[
ṽ>(k) θ>(k) p>(k) q>(k)

]>
the quantities measured

at time tk. Matrix S(k) can be written as

S(k) =
[
S>s1 . . . S>sS

]>
where every Ssn can be defined in two ways:
• if sn ∈MSM , then Ssn ∈ {0, 1}3×4N

Ssn =

e>sn 0> 0> 0>

0> 0> e>sn 0>

0> 0> 0> e>sn

 (4)

• if sn ∈MPMU , then Ssn ∈ {0, 1}4×4N

Ssn =


e>sn 0> 0> 0>

0> e>sn 0> 0>

0> 0> e>sn 0>

0> 0> 0> e>sn

 (5)

Denote the size of y(k), i.e., the number of measurements
that arrive at every time, as Mk. The value of Mk varies
as a function of the type of reporting metering devices. For
instance, if at time tk the DSO gathers measurements from
C buses in MSM and from S − C buses in MPMU, then
Mk = 3C + 4(S −C). In a synchronous setting, S(k) would
be constant over time. Finally, the measurement noise n(k) is
assumed to be zero-mean with diagonal covariance Nk.

III. A DSSE ALGORITHM

In this section, we devise an algorithm aiming at estimate
the state of the grid exploiting the measurements gathered from
S buses. Nodal power injections constitute the state of the
grid, described by the vector x ∈ R2N ,x := [p> q>]>.
Let the state of the network at time tk be denoted as x(k).
By combining (2) with (3), we obtain the following linear
measurement model

y(k) = S(k)Φx(k) + n(k). (6)

Recall that measurements are processed as they come in, and
that y(k) carries information of a limited number of buses. We
make the following assumption on measurements acquisition.

Assumption 1. There exists a constant τ > 0 such that the
DSO gathers measurements from every bus n at least once in
the interval [tk, tk+1, . . . tk+τ ], for every k = 1, 2, . . . .

Denote by x̂(k) the estimate of the grid state at time
tk. The DSO update the state estimate after the new set
of measurement y(k) arrives. Precisely, the new estimate is
chosen as the solution of the optimization problem

x̂(k) = argmin
w
‖y(k)− S(k)Φw‖2

N−1
k

+ γ‖w − x̂(k − 1)‖2

(7)
where γ > 0 is the inertia parameter. Note that
• the first term of the cost in (7) is a classical weighted

linear least square term. However, it is not necessarily
strictly convex, e.g., consider the targeted case when the
number of measurements Mk is smaller than the state
size 2N . Hence, if γ = 0, i.e., if we neglect the second
term, problem (7) may have infinite solutions.
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Fig. 1. Block scheme of the dynamical system described by equation (6) and
equation (8).

• The second term of the cost in (7) acts as a regularizer
which penalizes the Euclidean distance of the new es-
timate from the older one. The regularizer makes (7) a
strictly convex problem and hence x̂(k) well defined.

• The smaller the inertia parameter γ is, the further the new
estimate x̂(k) is allowed to be from x̂(k − 1).

• Task (7) is an unconstrained optimization problem. In
some cases, prior information can be leveraged to restrict
the state space, e.g., by adding constraints, and improve
the estimation accuracy. This is left for our future works.

Note that the new estimate can be explicitly written as

x̂(k) = Λ(k)x̂(k − 1) +
1

γ
Λ(k)Φ>S(k)>N−1k y(k) (8)

where

Λ(k) = γ(Φ>S(k)>N−1k S(k)Φ + γI)−1. (9)

Matrix Λ(k) is always symmetric and positive definite. Equa-
tions (6) and (8) represent a linear dynamical system, whose
block scheme is reported in Figure 1. Furthermore, heed that
equation (8) is essentially a classic closed-loop system, see
the dashed area in Figure 1. Such system features the ensuing
stability property, proved in the Appendix.

Proposition 1. Let Assumption 1 hold. Define the state
variation ∆(k) = x(k) − x(k − 1), the estimation error
ξ(k) = x̂(k) − x(k), and the scalar values σ = maxk{λ ∈
eig(Λ(k)), λ 6= 1}. Then,

1) the system (8) is asymptotically stable. In particular, σ <
1 and, for k ≥ 1,

‖x̂(k + τ)‖ ≤ σ‖x̂(k)‖ (10)

2) the system (8) is bounded input - bounded output (BIBO)
stable

3) if the state variation norm and the measurement noise
norm are upper-bounded, i.e., ‖∆(k)‖ ≤ δx, ‖n(k)‖ ≤
δn,∀k, the estimation error satisfies

lim
k→∞

‖ξ(k)‖ ≤ τ
(
δx +

c

γ
δn

)(
1 +

γ

σ

)
. (11)

Proposition 1-2) implies that if the sequence of measure-
ments {y(k)}k is bounded, then the sequence of estimates
{x̂(k)}k does not diverge. On the other hand, Proposition 1-
3) upper bounds the estimation error when state variation and
measurement norm are bounded. Note that the latter scenario

1

23

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21 22

23

24

25

26

27

28

2930

31

32

33 34

35

36

Smart Meters

PMU

Fig. 2. Schematic representation of the IEEE 37-bus test feeder.

includes the case in which n is stochastic with limited support,
e.g., n is a random vector drawn from a uniform distribution
or drawn from a truncated Gaussian distribution.

IV. NUMERICAL TESTS

Our estimation algorithm was validated on the IEEE 37-
bus feeder converted to its single-phase equivalent, depicted
in Figure 2. Measurements are taken from the devices and
gathered from the system operator once every 10 seconds.
Loads were generated by adding a zero-mean Gaussian vari-
ation to the benchmark data, with standard deviation 0.22
times the nominal loads [13]. Voltages were obtained via a
power flow solver and then corrupted by a truncated zero-
mean Gaussian noise with 3σ deviation of 1% per unit (pu)
[14]. Every bus in the network is endowed either with a
smart meter or with a PMU, see their location in Figure 2.
The algorithm was tested for different values of the inertia
parameter γ and for different numbers of reporting metering
devices S. Each scenario has been studied through 200 Monte
Carlo simulations. The state estimate was always initialized
at x̂(0) = 0. The S reporting devices were randomly chosen
at each algorithm iteration. However, every device was forced
to report data at least once every 100 iterations. Define the
average relative estimation error e(k) as the average computed
over the Monte Carlo simulations of the relative estimation
error, i.e., e(k) = log

(
E
[
‖ξ(k)‖/‖x(k)‖

])
.

Figure 3 reports e(k) for different values of the inertia
parameter γ, when S = 4. In general, the smaller is γ, the
faster the algorithm error reaches its asymptotic value. For
what concerns the asymptotic error, the best performance are
obtained when γ = 1. This can be understood by looking at
Figure 4, which compares the active power absorbed by bus 23
(denoted as p23) with its estimates (denoted by x̂23) in one of
the Monte Carlo runs for different values of γ. When γ > 1,
the regularizer term in (6) is dominant. Hence, x̂23(k) is forced
to be close to the old estimate x̂23(k−1) and is slowly chasing
the state p23. On the other hand, when γ < 1, Figure 4 shows
high fluctuations of x̂23(k). In fact, the estimate becomes more
sensitive to measurement noise.

Finally, Figure 5 shows how the estimator performs for
different numbers of reporting meters S, when γ = 1. Not
surprisingly, the bigger S is, the better is the performance.
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V. CONCLUSION

We have proposed a state estimation algorithm for power
distribution grids able to deal with asynchronous measure-
ments. Simulations on the standard IEEE-37 bus testbed have
shown the effectiveness of the proposed strategy. General-
izations to non-linear measurements-state relation and con-
sidering a constrained optimization problem rather than (6)
constitute interesting research directions.

APPENDIX

The proof of Proposition 1 will use the next Lemma and,
due to space constraints, it is only sketched.

Lemma 1. Let Assumption 1 holds. Then,
τ⋂
j=0

ker
(
S(k + j)Φ

)
= 0. (12)

Proof of Proposition 1: Firstly, heed that, being
Φ>S(k)>N−1k S(k)Φ a symmetric positive-semidefinite ma-
trix, it can be written as

Φ>S(k)>N−1k S(k)Φ =

[U(k) V(k)] bdg(Σ(k),0N−M )[U(k) V(k)]>

where Σ(k) is the diagonal matrix collecting the eigenvalues
of Φ>S(k)>N−1k S(k)Φ. Columns of V(k) are eigenvectors
spanning ker(Φ>S(k)>N−1k S(k)Φ) = ker(S(k)Φ). Then, it
follows that

Λ(k) = [U(k) V(k)] bdg(Σ̃(k), IN−M )[U(k) V(k)]>.
(13)
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Fig. 5. Average estimation error for different values of S, with γ = 1.

where
Σ̃(k) = γ(γI + Σ(k))−1. (14)

Note that Σ̃(k) is a diagonal matrix whose entries are positive
and stricly lower than 1, and σ = maxk eig(Σ̃(k)). Matrix
V(k) collects all the eigenvectors of Λ(k) associated with the
eigenvealue 1. Given any x̂(k)

x̂(k + τ) =

k+τ∏
j=k

Λ(j)x̂(k)

=

k+τ∏
j=k

[U(j) V(j)] bdg(Σ̃(j), IN−M )[U(j) V(j)]>x̂(k). (15)

Since Assumption 1 and Lemma 1 implies that
k+τ∏
j=k

V(j)V(j)> = 0N , (16)

by combining equations (15) and (16), and by exploiting the
properties of norms, we obtain∥∥∥ k+τ∏

j=k

Λ(j)
∥∥∥ ≤ σ (17)

from which equation (10) follows.
Concerning the BIBO stability, note that, iterating equa-

tion (8) yields

x̂(T ) =
T∏
k=1

Λ(k)x̂(0)+ γ−1
T∑
k=1

T∏
j=k

Λ(j)Φ>S(j)>N−1j y(j)

(18)
Let ymax = maxk{γ−1‖y(k)‖}. The triangle inequality ap-
plied to (18) yields

‖x̂(T )‖ ≤
∥∥∥ T∏
k=1

Λ(k)
∥∥∥‖x̂(0)‖+ ymax

T∑
k=1

∥∥∥ T∏
j=k

Λ(j)
∥∥∥ (19)

≤ ‖x̂(0)‖+ ymaxρτ

µ∑
i=0

σi

≤ ‖x̂(0)‖+ ymaxρτ
1

1− σ
where µ = mod (T/τ) and ρ = maxk ‖Φ>S(k)>N−1k ‖.

Finally, equation (11) can be obtained by making T in (19)
tending to infinity and by using (6) and (10).
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