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Presentation Outline 
1) Why ALD for catalyst durability 

2) Leaching & thermal stability for Pd/TiO2 

3) Techno-economic analysis for ALD 



     

       

        

            

Catalyst stability major challenge for renewables 

Microbially produced carboxylic acids 
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Biobased acids can be catalytically upgraded to myriad chemicals 

Metal leaching 
Metal sintering 

Support   collapse 

However, acids can readily deactivate conventional catalyst materials 
Werpy & Peterson (2004) DOE Value Added Chemicals Besson & Gallezot (2003) Catalysis Today Heroguel et al. (2015) Chim Int J Chem 3 



     

   

                

 

 
 

 

  

           

Catalyst stability for biobased adipic acid 

Biobased muconic acid hydrogenation pathway 

O OHO 
O OH HO 

OHO HOOH OOMuconic acid 2-Hexenedioic acid Adipic acid 

Muconic acid easily hydrogenated to adipic acid chemo-catalytically 

Hydrogenation activity Leaching stability Carbon laydown 
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Pd is the most active metal that readily leaches and fouls 

Vardon et al. (2015) Energy & Env. Science Johnson et al. (2016) Metabolic Eng. Comm. Corona et al. (2018) Green Chemistry 4 



State-of technology & our approach to innovate 

LOW CYCLE DOPANT ALD COATING THICK PROTECTIVE ALD COATING 
Approach relies on ‘low cycle’ ALD Approach cracks ≥40 cycle ALD coating 

Increasing
ALD cycle number 

ALD COATING & PROCESS ECONOMICS 

LIFETIME 

WHSV 

COST 
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   (i) evaluate scaled ALD coatings for Pd/TiO2 in acidic environments and 
(ii) determine the associated techno-economic tradeoffs 



 

Part 2 
Leaching & thermal 
stability for Pd/TiO2 



ALD reduced leaching by 2x, while still active 
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Low-cycle ALD improves catalyst leaching stability with acids, but retains activity 
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      Settle et al. (2019) Joule. In press. 



Pd leaching & binding energy of muconic acid 

Oxygenate Pd Leaching 
(ppm) 

Binding 
Energy 

Furfural 0.31 ± 0.01 ---

Hexanoic 
Acid 1.20 ± 0.70 - 58 kJ/mol 

Adipic 
Acid 3.39 ± 1.05 - 72 kJ/mol 

Muconic 
Acid 6.09 ± 0.10 - 217 kJ/mol 
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Low-cycle ALD improves catalyst leaching stability with acids, but retains activity 

Settle et al. (2019) Joule. In press. 
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Scaling ALD with stop flow and fluidized bed 

Catalyst 
Description 

Al Content 
wt% 

Surface Area 
m2 g 1 

Pore 
Diameter 

nm 

Pore Volume 
mL g 1 

CO Uptake 
µmol g 1 

Productivity 
(sec 1) 

Pd Leaching 
(ppm) 

Uncoated 
Pd/TiO2 

--- 140 ± 13 5.8 ± 0.2 0.57 ± 0.05 24 ± 4 10.4 ± 0.3 6.1 

Stop Flow 
ALD 100 mg 3.3 ± 0.04 122 5.6 0.46 14 10.8 2.1 

Fluidized Bed 
ALD 10 g 2.8 121 5.8 0.48 13 6.7 1.2 

Fluidized Bed 
ALD 100 g 4.4 120 4.9 0.50 11 6.1 0.7 

Uncoated 100-mg ALD-coated 10-g ALD-coated 100-g ALD-coated 
100 100 100 100 
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Muconic acid Hexenedioic acid Adipic acid 

Characterization and screening highlight 5-cycles as target coating thickness 

Settle et al. (2019) Joule. In press. 9 



Characterization of ALD coated Pd/TiO2 catalyst 

1.17 +/- 0.2 nm 
Al2O3 coating 1.14 +/- 0.2 nm 

Pd nanoparticles 
10 nm 10 nm 
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        Pt is an artifact of sample preparation using FIB milling 

Nanoscale imaging of complex support morphology and ALD coating 

Settle et al. (2019) Joule. In press. 



Continuous time-on-stream leaching stability 
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Time-on-stream testing for continuous 4x leaching stability under partial conversion 
with 50% reduction in activity 
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      Settle et al. (2019) Joule. In press. 



Challenge of uncoated Pd/TiO2 thermal stability 

Post-rxn catalyst
~8 wt% carbon 

Muconic acid readily fouls catalyst support and requires thermal regeneration 

Metal sintering 

Support   collapse 

Both Pd and TiO2 display poor thermal stability at high temperature 
12 

      

    

      Settle et al. (2019) Joule. In press. 
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Validating ALD catalyst thermal durability 

Uncoated Pd/TiO2 after 700°C 5-cycle ALD after 700°C 

j k 
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Ti Al Pd 

5 μm 5 μm 

Uncoated catalyst ALD catalyst 
Pd particles agglomerate by >30x Pd particles retain 2-nm size 
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      Settle et al. (2019) Joule. In press. 



Al2O3 ALD thermal durability for TiO2 supports 

Al2O3 ALD retards increasing crystallinity during thermal treatment of TiO2 

Catalyst 
Description 

Uncoated 
Fresh 

Uncoated 
700°C 

5 cycle 
Fresh 

5 cycle 
700°C 

Surface area 
(m2 g 1) 130 22 126 96 

Pore volume 
(mL g 1) 0.57 0.24 0.50 0.47 

Pore diameter 
(nm) 5.9 16.4 5.6 7.2 

CO uptake 
(μmol g 1) 25 5 14 25 

-80% 

-60% 

+200% 

-5x 

-25% 

-6% 

+30% 

+2x 
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Results in improved retention of TiO2 support morphology 

14 Zhang & Banfield (1999) Jnl Mat. Research Lin et al. (2017) Inorganics Settle et al. (2019) Joule. In press. 



Dramatic activity retention after high temp 
OO O 

OHOH OHHO HOHO 
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Muconic Acid Hexenedioic Acid Adipic Acid 
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ALD coated catalyst still retains activity & selectivity after treatment at 700°C 
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      Settle et al. (2019) Joule. In press. 



Repeated thermal cycling of ALD-coated catalyst 
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Time-on-stream testing for continuous 4x leaching stability under partial conversion 

Settle et al. (2019) Joule. In press. 



 

Part 3 
Techno-economic 
analysis for biobased 
adipic acid 
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TiCl4 Cl3 
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Major cost drivers for ALD coating synthesis 

Lab-scale ALD Precursor Cost 

Cost Analysis for ALD Catalyst Coating
Uncoated catalyst 0.5% Pd/TiO2 

Pd metal 5-year average price $23 g-1 

TiO2 support unit price $10 kg-1 

Uncoated catalyst surface area 130 m2 g-1 
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Uncoated catalyst price $130 kg-1 
3.5 wt% ALD catalyst coating Al content

ALD mass of Al2O3 added per kg catalyst 0.066 kg
ALD precursor utilization rate, assumed 50% 
ALD manufacturing cost per kg catalyst, assumed $5 kg-1 Log-Log Scaled ALD Precursor Cost 

TMA precursor unit price, log-log regression $0.14 g-1 

- TMA precursor Al content 37.4% 
-

ALD precursor cost per kg of catalyst $31 kg-1 
ALD coating with 30% margin per kg catalyst $41 kg-1 

Final ALD coated catalyst cost $160 
ALD coated catalyst price increase 23% 
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Settle et al. (2019) Joule. In press. 



Viable performance-cost-stability tradeoffs 
Nutrients H2 & EtOH 

Baseline 

WHSV (h-1)
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Techno-economic analysis suggests ALD catalyst cost can increase by 240% 
if lifetime can be doubled for biobased adipic acid 

19 Settle et al. (2019) Joule. In press. 



ALD-coated catalysts for biobased adipic acid 

Take-Aways 
• ALD reduces Pd leaching and retards anatase 

to rutile transformation for TiO2 support 

• Catalyst stability retained when scaling ALD 
coatings three orders of magnitude 

• Techno-economic analysis shows value of 
extended catalyst lifetime despite ALD cost 

20 
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Validating ALD coating changes bulk properties 

a

Carboxylates adsorbed 
on TiO2

CO adsorbed on
Pd sites

20 µmTi 20 µmAl

20 µmPd20 µmSEM

Elemental mapping & DRIFTS support 5-cycle ALD for impacting bulk properties

Settle et al. (2019) Joule. In press.
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Complete conversion run with ALD catalyst

TOS (h) WHSV (h-1) Adipic yield (%) Pd leached (ppm) Al leached (ppm)
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0.52

>99 0.09 14.81
22 >99 0.06 13.06
45 >99 0.03 3.38
69 >99 0.04 0.17
92 >99 0.03 BDL
110 1.05 >99 0.08 BDL
118 >99 0.10 BDL
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25

Catalyst leaching control test for activity
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Systematically synthesize suite of ALD catalysts

Increasing ALD coating thickness cycle-by-cycle to determine “sweet spot”

Uncoated
Pd/TiO2

Catalyst 
Property

Particle Dia
micron <180

Pack Density
g mL-1 0.76

Surface Area
m2 g-1 130

Pore Diameter
nm 5.9

Pore Volume
mL g-1 0.58

Dispersion
% calculated

47

Commercial TiO2
pellets Alfa Aesar

Crush & sieve pellets  
to <140 mesh

Dry in inert at 110°C 
reduce in H2 at 150°C 

Load Pd by strong 
electrostatic adsorption

Sieve to <80 mesh 
pretreat inert 200°C

Settle et al. (2019) Joule. In press.
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Background on atomic layer deposition (ALD)

ALD “A CYCLE” ALD “B CYCLE”

ALD provides self-limiting growth of protective metal oxide layers at atomic scale

Cerium'

Traditional deposition methods Atomic layer deposition

Offers greater control and uniformity with complex morphologies

Azevedo et al. (2014) Energy Env. Sci. Lu et al. (2016) Surface Sci. Reports. O’Neill et al. (2015) ACS Catalysis. Singh  et al. (2017) Annual Rev. Chem. Bio. Eng.
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