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Abstract. Unsteady aerodynamics will be an important part of the floating wind turbines of the future
operating under high shear across the rotor disk coupled with platform motion and atmospheric turbulence.
We develop an unsteady aerodynamics and dynamic stall model using a long short-term memory variant of
recurrent neural networks. The neural network model is trained using the oscillating airfoil data set from
Ohio State University. The predictions from our machine learning (ML)-based model show good agreement
with the experimental data and other state-of-the-art dynamic stall models for a wide range of airfoils,
Reynolds numbers and reduced frequencies. In some cases the predictions are better than the Beddoes-
Leishman model implementation in OpenFAST, when using the default coefficients. The ML-based model
is also able to capture the key physics associated with dynamic stall, such as the precedence of moment stall
before lift stall and cycle-to-cycle variations in the aerodynamic response. The new unsteady aerodynamics
model is expected to improve prediction of fatigue loads for yaw-based wake-steering control scenarios
in actuator-line and actuator-disc simulations of wind farms. Our methodology for training the ML-model
provides a pathway for improving design level tools using high-fidelity computational fluid dynamics (CFD)
simulations in the future.

1. Introduction
Unsteady aerodynamic response and the associated fluid-structure interaction are important phenomena
in increasingly larger wind turbines with more slender and flexible blades designed with bend-twist
coupling. The reduced frequency κ = ωc/2Vloc of the variation in angle of attack is a key non-
dimensional parameter that determines the level of deviation from quasi-steady aerodynamics, where
ω is the angular frequency of the variation in angle of attack, c is the airfoil chord and Vloc is the local
freestream velocity at the airfoil. Figure 1 shows that a significant portion of the blades on commercially
relevant wind turbines can experience major unsteady aerodynamic effects when subjected to angle of
attack variations at 3 per-rev. Floating wind turbines of the future operating under high shear across the
rotor disk coupled with platform motion and atmospheric turbulence could easily experience 3 per-rev
fluctuations in the local angle of attack. The unsteady aerodynamic effects become more pronounced
when operating under yawed flow and wind veer. Control of future wind farms using wake steering
will place more wind turbines under yawed and partially waked inflow conditions. The design of such
turbines will have to trade off between increased power capture at the farm level and fatigue loads on
individual turbines. The ability to accurately predict unsteady aerodynamic effects will be crucial for the
successful adoption of yaw-based control for wake steering within wind farms.

Unsteady aerodynamics phenomena are characterized by the aerodynamic lag that is usually seen as
a hysteresis loop in the airfoil polars (e.g., lift coefficient Cl) as a function of angle of attack, α. When
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Figure 1: Variation of reduced frequency κ = ωc/2Vloc over the blade length at a forcing of 1 per-rev
(dashed lines) and 3 per-rev (solid lines) for three commercially relevant wind turbines: DTU 10MW [1],
NREL 5 MW [2], WINDPACT 1.5 MW [3].

the mean angle of attack is high enough, flow separation would lead to dynamic stall phenomenon:
flow separation on the suction side leading to moment stall, followed by lift stall, and subsequent
reattachment of the flow at a much lower angle of attack than the static stall angle of attack. Any unsteady
aerodynamic model must be able to accurately model time-histories of the circulatory and non-circulatory
components [4] in response to changes in angles of attack resulting from change in inflow conditions and
blade structural response (e.g., elastic twist from blade torsional dynamics).

State-of-the-art unsteady aerodynamics and dynamic stall models use empirical corrections to the
2D steady-state polars based on physical intuition and engineering approximations. Typical dynamic
stall models used in wind energy applications are based on the Beddoes-Leishman (BL) model [4] that
was originally developed for helicopter applications. The model coefficients were originally tuned
for thin symmetric airfoils like National Advisory Committee for Aeronautics (NACA) 0012 airfoil,
operating in the compressible flow regime and the primary stall mechanism was the onset of leading-
edge separation. For wind turbines flow separation is usually observed at the inboard sections composed
of thick, cambered airfoil sections (for structural reasons) where the primary stall mechanism is trailing-
edge stall. Since the development of the original BL model, several researchers have attempted to modify
it for cambered airfoils operating at low Mach numbers relevant to wind turbine applications. Hansen et
al. [5] developed a Beddoes-Leishman type dynamic stall model in state-space using indicial formulation.
Øye [6] attempted to develop a dynamic stall model for wind energy applications. Guntur et al. [7]
have recently tuned the Beddoes-Leishman model to thicker, cambered airfoils typically used on wind
turbines operating at low Mach numbers without much leading-edge separation. In typical wind turbine
design and analysis codes, the 2D aerodynamic polars are also corrected to account for 3D effects such
as rotational augmentation and root and tip loss. Engineering models for corrections due to 3D, unsteady
aerodynamics and dynamic stall use a limited number of model parameters and inputs including the angle
of attack and its derivatives at the current time and optionally inputs at a time lag for tuning. It is difficult
to tune the existing dynamic stall models to account for the strong nonlinearity of the flow response to
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time history and airfoil shape under all possible operating conditions. Loads analysis processes therefore
often use the same model coefficients regardless of the airfoil geometry, operating Reynolds number and
reduced frequency in the design and optimization loops. Modern wind turbines use very thick airfoils
(t/c ∼ 30 − 35%) with flat-back trailing edges near the root and thin (t/c ∼ 12 − 15%) airfoils near
the tip to improve overall aerodynamic performance. Figure 3 shows the variation in airfoil shapes and
thickness for the 10 airfoils used in the present study. The lack of easy and readily available methods to
tune the coefficients of the unsteady aerodynamics models for airfoils of different shapes and thickness
is expected to be a significant concern with future wind turbines.

As an alternative, unsteady aerodynamic models based on deep neural networks (DNN) can mitigate
the aforementioned shortcomings of the traditional models. These unsteady aerodynamic models can be
trained on a large number of input parameters that can represent the operating conditions as well as the
airfoil characteristics in a comprehensive manner that is impossible with traditional models. Depending
on the number and arrangement of the layers within the neural network, these models can be tuned to
capture all relevant aerodynamic effects for a large range of airfoil families. These models also have
the added benefit that they can be trained on both experimental data from wind tunnels as well as data
generated from high-fidelity Reynolds-averaged Navier-Stokes (RANS), or detached eddy simulations
(DES) of airfoils. Furthermore, the training process for DNN-based models can be automated and thus
integrated into the design process.

In the present work, we develop a DNN surrogate model to account for the unsteady aerodynamics
and dynamic stall phenomena in loads analysis in comprehensive wind turbine analysis codes (e.g.,
OpenFAST [8]). The model is trained using a subset of experimental data from the Ohio State University
(OSU) wind tunnel tests [9]. The model is then validated against the remaining data set from experiments.
Finally, the performance of the model is compared with that of the Morten-Hansen (MHH) model [5],
Øye model [6] and the existing Beddoes-Leishman model available in OpenFAST.

2. Methods
We use a variant of recurrent neural networks (RNN) to develop a data-driven model for the unsteady
aerodynamics phenomenon. RNNs are very popular in areas where a sequence of data needs to be
modeled and output depends on the history of states previously observed [10]. We use a network
comprising of long short-term memory (LSTM) [11] networks to construct an unsteady aerodynamics
model. LSTMs are very attractive because they can handle long-term dependencies and provide a solution
to the vanishing gradient problem typically seen with RNNs. A schematic of the network architecture
is shown in Fig. 2. The model consists of two layers of LSTM, each with 64 hidden layers, stacked
on top of each other with a fully connected layer. The input parameters for the LSTM model contains
parameters related to the airfoil operating conditions as well as airfoil geometry. Input parameters for
operating conditions provided to the LSTM model include angle of attack α, the angular velocity α̇,
angular acceleration α̈, and Reynolds number, Re. The aerodynamic response of the airfoil to pitching
and heaving motions are both modeled using only the change in the angle of attack and its derivatives
with respect to time.

The airfoil shapes are parameterized with a universal parametric geometric representation (UPGR)
method [12] that Boeing developed specifically to represent aerodynamic shapes. The UPGR
parametrization uses high order polynomials to represent the upper and lower surfaces of the airfoil
separately along with another parametrization to represent the trailing edge. This parametrization is a
reasonable choice as input to machine learning (ML)-based models to capture the camber and thickness
variations across the airfoil efficiently.

The LSTM model is trained on the oscillating airfoil dataset from OSU provided by the National
Wind Technology Center (NWTC) Information Portal [9]. The OSU dataset provides a comprehensive
description of unsteady lift, drag and moment characteristics of the S8XX airfoil family and the N4415
airfoil (see Fig. 3) under a wide range of oscillating conditions (e.g. [13]). They provide a time history of
the angle of attack and aerodynamic forces on the airfoil throughmultiple cycles of stall and reattachment.
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Figure 2: Illustration of LSTM model to predict difference in aerodynamic coefficients from steady state
polars.

The detailed description makes this experimental dataset an ideal test case to demonstrate the viability to
construct a model for unsteady aerodynamics and dynamic stall using machine learning. Figure 4 shows
the variation of the lift coefficient Cl of the S809 airfoil in response to a periodic oscillation of the angle
of attack at the lower and higher extremes of the reduced frequency range. The flow morphology as
the airfoil sections undergo airfoil stall has several stages that can be clearly observed in Figure 4d. As
the angle of attack increases, the aerodynamic lag response causes the dynamic lift to exeed the static
maximum lift. Between the angles of attack where static stall and the dynamic stall occurs, a leading
edge separation bubble forms leading to moment stall (not shown in the figure). The lift continues to
increase as the separation bubble convects over the suction side. The dynamic lift stall occurs when the
separation bubble moves past the trailing edge and the flow enters a state of full separation. Finally,
as the angle of attack decreases the flow eventually reattaches. Figure 4 is representative of the entire
dataset available through the NWTC Information Portal [9]. The data contains experimental errors, high
frequency fluctuations in loads and cycle-to-cycle variations that are expected to present challenges to
the development of any unsteady aerodynamics model. To simplify our analysis, we only consider the
datasets with the leading edge grit applied in order to make the flow fully turbulent over the airfoil.
The methodology developed in the present work will be extended in future to handle laminar-turbulent
transition effects.

3. Results
The ML-based unsteady aerodynamics model is trained on the datasets at high and low reduced
frequencies and tested against against the validation dataset in the middle of the reduced frequency range.
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Figure 3: Airfoil shapes for 10 different airfoils used in the current study.

We separate the The OSU dataset into training and validation datasets based on the reduced frequency,
κ as shown in Fig. 5. The datasets with 0.035 < κ < 0.045 are marked as validation datasets and are
excluded from the training dataset for the ML-based model. Thus the ML-based model is trained on data
at low and high reduced frequencies and tested on data in the middle of the reduced frequency range.
We compare the performance of the ML-based model with that of the Morten-Hansen (MHH) model [5],
Øye model [6] and the state-of-the-art unsteady aerodynamics model used in OpenFAST [8] that is based
on the Beddoes-Leishman model [4], hereafter referred to as the Uns-AeroDyn model.

Figures 6 - 8 show the prediction of the aerodynamic response (lift and moment coefficient) of S809,
S825 and N4415 airfoils to a sinusoidal variation in the angle of attack around a reduced frequency
of κ ∼ 0.04. They compare the response predicted by the ML-based model with that from the Uns-
AeroDyn model, and experimental data. These figures show that the response predicted by the new
machine learning model performs better than the Uns-AeroDyn model without the spurious kinks and
on-par with the Morten-Hansen [5] and Øye model [6]. For the S809 airfoil, Figs. 6b- 6d show that the
ML-based model is able to capture the physical phenomenon of moment stall before the lift stall when
the angle of attack exceeds the static stall angle. Figures 6a-6b show that the ML-based model is able to
capture the peak in the lift coefficient on the upstroke fairly well, when the angle of attack does not far
exceed the static stall angle. The above conclusions apply fairly well to the very different S809, S825
and N4415 airfoil families as shown in Fig. 7 and 8. The ML-based model is also capable of predicting
realistic cycle-to-cycle variations as shown in Fig. 9 unlike other models based on the Beddoes-Leishman
model.

4. Conclusions
We developed an unsteady aerodynamics and dynamic stall model using a long short-term memory
variant of recurrent neural networks. The neural network model is trained using the oscillating airfoil
dataset from the Ohio State University [9]. Predictions from the model show good agreement with the
experimental data for a wide range of airfoils, Reynolds numbers and reduced frequencies. In some cases
the predictions are better than those from the Beddoes-Leishmanmodel implementation inOpenFAST [8],
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Figure 4: Variation of lift coefficient Cl in response to periodic oscillation of the angle of attack. Data
reproduced from Ramsay et al. [13].
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Figure 5: Scatter plot of OSU data used for training (blue dots) and validation (red dots) of the machine-
learning model for unsteady aerodynamics. (a) S809 airfoil (Ramsay et al. [13]) and (b) S824 airfoil
(Ramsay and Gregorek [14].)

when using the default coefficients. The predictions are also on par with those from the Morten-Hansen
model [5] and the Øye model [6]. One key advantage of the machine learning (ML) model is that the
automation of the model tuning can be readily integrated into the design workflow. The ML-based model
can capture the key physics associated with dynamic stall, such as the precedence of moment stall before
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Figure 6: Prediction of lift (Cl) and moment (Cm) coefficient response to sinusoidal flucutuation of angle
of attack (α) on the S809 airfoil at a reduced frequency κ = 0.04: comparison between experimental data,
ML-based model, Morten-Hansen (MHH) model [5], Øye model [6] and unsteady aerodynamics model
in AeroDyn15 [8].

lift stall and cycle-to-cycle variations in the aerodynamic response. The newML-basedmodel is expected
to provide a replacement option for the unsteady aerodynamics models in wind turbine design codes
like OpenFAST and HAWC2 [15]. We anticipate that the use of the new unsteady aerodynamics model
will improve the prediction of turbine response in actuator-line and actuator-disc simulations of wind
farms. Finally, we also expect increased adoption of the new model in wind farm controls research
to improve prediction of wake-generation for yaw-based control scenarios that significantly increase
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Figure 7: Prediction of lift (Cl) and moment (Cm) coefficient response to sinusoidal flucutuation of angle
of attack (α) on the S825 airfoil around a reduced frequency κ ∼ 0.04: comparison between experimental
data, ML-based model, Morten-Hansen (MHH) model [5], Øye model [6] and unsteady aerodynamics
model in AeroDyn15 [8].

unsteady aerodynamics effects.
Our grand vision is to improve aerodynamics models in comprehensive wind turbine analysis codes

and design level tools using data from high-fidelity CFD simulations using the ExaWind framework [16,
17]. This will allow us to generate lower order aerodynamics models for airfoils and blade shapes for
which no experimental data exist. However the state-of-the-art turbulencemodels used in the high-fidelity
CFD simulations suffer from a loss of accuracy under highly stalled conditions. Machine-learningmodels
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Figure 8: Prediction of lift (Cl) and moment (Cm) coefficient response to sinusoidal flucutuation of angle
of attack (α) on the N4415 airfoil at a reduced frequency κ = 0.04: comparison between experimental
data, ML-based model, Morten-Hansen (MHH) model [5], Øye model [6] and unsteady aerodynamics
model in AeroDyn15 [8].

offer an attractive alternative to correct the results from CFD simulations using experimental data. In the
future, we will use this pathway to augment experimental data using CFD simulations before developing
ML-based models for various aerodynamic phenomena. Future work will extend the machine learning
model to account for 3D flow effects including rotational augmentation.
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Figure 9: Prediction of lift coefficient response to sinusoidal flucutuation of angle of attack on the S809
airfoil at a reduced frequency κ = 0.04: comparison between experimental data and ML-based model
over 3 cycles.
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