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Ethers as a Performance Advantaged 
Biofuel

• Numerous 
pathways to ethers 
from biomass

• Ethers (ROR) can 
have high cetane 
number (CN)

• A better 
understanding of 
chemistry of 
autoignition can 
lead to greater 
predictability 



Autoignition 
Chemistry

• Low temperatures and high 
pressures

• Alkyl radical formation 
RH -> R•

• Followed by oxygen addition
R• + O2 -> ROO

• Hydrogen transfer
ROO -> QOOH

• Addition of second oxygen
• Competing side reactions



Twin-Piston Rapid Compression Machine
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• Pneumatically-driven, hydraulically controlled
• Engine-relevant conditions to investigate homogeneous autoignition

• Pc = 10–90+ bar, Tc = 600–1100 K, O2 = 5–21%, φ = 0.2–2+; τ1,τ = 1–150 ms
• Excellent control of reacting gas during/post compression

• Thermal uniformity in reaction chamber via 5-zone heating system
• Creviced piston used to suppress fluid motion

DNS (Nek5000) results courtesy 
C. Frouzakis (ETH Zürich)

Fridlyand, et al. Combustion and Flame, 2019 387.



Experimental methods
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Slow CO 
oxidation

LTHR

• Two tests conducted at each condition with excellent repeatability
• Non-reacting / reacting tests conducted to quantify first-stage / main ignition 

times, and evolution of exothermicity (heat release)
• Normalized heat release rates highlight development of low temperature heat 

release (LTHR), transition through intermediate-temperature conditions, and 
evolution of high-temperature chemistry, including slow CO oxidation

Goldsborough et al., Proceedings of the Combustion Institute, 2019, 603.



Experimental and Modeling Results
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• RCM measurements identify NTC behavior for MPE
• MPE is very reactive, with substantial influence of compressed pressure; 

general shapes of ignition delays captured by kinetic model. More work 
needed to capture pressure dependence – reactivity underestimated.

• First-stage / low-temperature heat release is significantly greater than 
that measured with a gasoline-relevant fuel (PRF 90)



Quartz Plug Flow Reactor Schematic

• Helium, oxygen, and fuel are fed at the front of the reactor
• The quartz tube is heated in a ceramic furnace
• MPE: 0.5 mol%, Oxygen: 9.5 mol%, Helium: 90 mol%- dilute conditions used to 

maintain plug flow conditions 
• Helium flow was adjusted to keep a constant residence time of 2s at all 

temperatures investigated
• Temperature range was 700K to 900K
• Experiments were performed at 1 atmosphere

Flow Reactor Schematic and 
Experimental Conditions



Species Analysis: Dual Gas Chromatographic System

• Dual GC system is equipped with an inert gas sampling line (enclosed in copper for heat transfer), 
equipped with a vacuum pump for filling the GC sample loops, which is heated to 95°C to avoid 
condensation in the line

• Five detectors allow for analysis of the full range of hydrocarbons, most oxygenates, and low MW 
gases 

• GC 1: Two 60m DB-1 columns for simultaneous analysis of C4+ hydrocarbons quantitation (FID) and 
positive ID by mass spec

• GC 2: Dean switch with 3 columns: Quantitation of low MW gases (e.g. methane and ethane), CO, and 
CO2 (FID + 2 TCDs)   



CH4

CO

Flow Reactor 
Results

• Kinetic model fits 
experimental 
results

• Exception is 
propanal – model 
over estimates
yield

• Removal could be 
underestimated



• G4 level of theory – 0.83 kcal mol-1 accuracy (G3/5 set)
• B3LYP/6-31G(2df,p): Geometries, vibrational 

frequencies, IRC calculations, hindered rotor calculations
• Potential energy surfaces (PES): barriers and reaction 

energies
• Transition states => Intrinsic Reaction Coordinate (IRC)
• Hindered rotors 
• Transition State Theory (TST) for rate constants

Rate constants for intramolecular 
hydrogen transferPES for C1 radical 

Transfer from C-1 carbon dominates

Quantum molecular modeling



Reaction Mechanism Generator 
(RMG)
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Gao et al. 2016
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How RMG works
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Reaction Pathways from Kinetic Model

• Typical autoignition chemical pathway
• Propanal side reactions calculated



Reactions forming propanal in model:

Potential reactions of propanal:

Reactions of 
Propanal

• Formation of propanal
leads to radicals

• Weak C-H bonds in 
propanal (88 kcal mol-1)

• Subsequent 
autoignition reactions 
can lead to 
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Cyclic Ethers

[M]

OOQOOH

Radical Propagation

Stabilization

Future Work: Pressure Dependence 

• High pressures stabilize 
QOOH, prevent returning to 
ROO

• Enables second O2 addition 
to OOQOOH and further 
radical propagation 

• We need to improve 
estimates of stabilization 



Conclusions

• Autoignition chemical pathway can describe 
kinetics and products of methylpropyl ether 
oxidation

• Existing model needs improvements for pressure 
dependence
oPressure dependence of ROO -> QOOH -> OOQOOH

• Model overpredicts propanal formation
oNeed to improve reaction chemistry of propanal
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